Microbial-mediated contribution of kelp detritus to different forms of oceanic carbon sequestration
Kelp is one of the most important primary producers in the coastal oceans. When it matures or begins to decay, a substantial amount of detritus sinks and is degraded by microorganisms. However, the fate of these detritus after long-term microbial degradation, which is closely related to their ultima...
Ausführliche Beschreibung
Autor*in: |
Xiuting Feng [verfasserIn] Hongmei Li [verfasserIn] Zenghu Zhang [verfasserIn] Tianqi Xiong [verfasserIn] Xiaoyong Shi [verfasserIn] Chen He [verfasserIn] Quan Shi [verfasserIn] Nianzhi Jiao [verfasserIn] Yongyu Zhang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Ecological Indicators - Elsevier, 2021, 142(2022), Seite 109186- |
---|---|
Übergeordnetes Werk: |
volume:142 ; year:2022 ; pages:109186- |
Links: |
---|
DOI / URN: |
10.1016/j.ecolind.2022.109186 |
---|
Katalog-ID: |
DOAJ079284396 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ079284396 | ||
003 | DE-627 | ||
005 | 20230503061244.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230307s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ecolind.2022.109186 |2 doi | |
035 | |a (DE-627)DOAJ079284396 | ||
035 | |a (DE-599)DOAJ4ad5402209574467b99d74942e39d6b8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH540-549.5 | |
100 | 0 | |a Xiuting Feng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Microbial-mediated contribution of kelp detritus to different forms of oceanic carbon sequestration |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Kelp is one of the most important primary producers in the coastal oceans. When it matures or begins to decay, a substantial amount of detritus sinks and is degraded by microorganisms. However, the fate of these detritus after long-term microbial degradation, which is closely related to their ultimate carbon sequestration function, is not yet clear. Here, by studying the long-term (210-day) microbial degradation dynamics of kelp detritus, we reveal that the bioavailable components of kelp detritus (when kept in the dark) persisted for over four months. This left a considerable amount (in total, ca. 8.85%) of different forms of stable carbon that could function in long-term carbon sequestration. Among them, recalcitrant dissolved organic carbon (RDOC), recalcitrant particulate organic carbon, dissolved inorganic carbon, particulate inorganic carbon, and residual large particulate carbon accounted for 1.27%, 0.12%, 6.00%, 0.04%, and 1.41% of the initial kelp detrital carbon, respectively. The remaining organic carbon resisted further degradation due to the high content of humic-like substances, polycyclic aromatics, and highly aromatic compounds. Microbial community structure showed obvious successional characteristics during the long-term degradation process, driving the gradual transformation of the detritus-derived organic carbon from labile to recalcitrant. Notably, microbial transformation of the bioavailable components of kelp detritus contributed 28.7% of the remaining RDOC molecular species. This study provides novel insights into the contribution of the microbial-mediated degradation of kelp detritus to different forms of carbon sequestration. | ||
650 | 4 | |a Kelp detritus | |
650 | 4 | |a Carbon sequestration | |
650 | 4 | |a Microbial degradation | |
650 | 4 | |a Recalcitrant organic carbon | |
650 | 4 | |a Dissolved organic carbon | |
653 | 0 | |a Ecology | |
700 | 0 | |a Hongmei Li |e verfasserin |4 aut | |
700 | 0 | |a Zenghu Zhang |e verfasserin |4 aut | |
700 | 0 | |a Tianqi Xiong |e verfasserin |4 aut | |
700 | 0 | |a Xiaoyong Shi |e verfasserin |4 aut | |
700 | 0 | |a Chen He |e verfasserin |4 aut | |
700 | 0 | |a Quan Shi |e verfasserin |4 aut | |
700 | 0 | |a Nianzhi Jiao |e verfasserin |4 aut | |
700 | 0 | |a Yongyu Zhang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Ecological Indicators |d Elsevier, 2021 |g 142(2022), Seite 109186- |w (DE-627)338074163 |w (DE-600)2063587-4 |x 18727034 |7 nnns |
773 | 1 | 8 | |g volume:142 |g year:2022 |g pages:109186- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ecolind.2022.109186 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/4ad5402209574467b99d74942e39d6b8 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S1470160X22006586 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1470-160X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 142 |j 2022 |h 109186- |
author_variant |
x f xf h l hl z z zz t x tx x s xs c h ch q s qs n j nj y z yz |
---|---|
matchkey_str |
article:18727034:2022----::irbamdaecnrbtookldtiutdfeetomoo |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QH |
publishDate |
2022 |
allfields |
10.1016/j.ecolind.2022.109186 doi (DE-627)DOAJ079284396 (DE-599)DOAJ4ad5402209574467b99d74942e39d6b8 DE-627 ger DE-627 rakwb eng QH540-549.5 Xiuting Feng verfasserin aut Microbial-mediated contribution of kelp detritus to different forms of oceanic carbon sequestration 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Kelp is one of the most important primary producers in the coastal oceans. When it matures or begins to decay, a substantial amount of detritus sinks and is degraded by microorganisms. However, the fate of these detritus after long-term microbial degradation, which is closely related to their ultimate carbon sequestration function, is not yet clear. Here, by studying the long-term (210-day) microbial degradation dynamics of kelp detritus, we reveal that the bioavailable components of kelp detritus (when kept in the dark) persisted for over four months. This left a considerable amount (in total, ca. 8.85%) of different forms of stable carbon that could function in long-term carbon sequestration. Among them, recalcitrant dissolved organic carbon (RDOC), recalcitrant particulate organic carbon, dissolved inorganic carbon, particulate inorganic carbon, and residual large particulate carbon accounted for 1.27%, 0.12%, 6.00%, 0.04%, and 1.41% of the initial kelp detrital carbon, respectively. The remaining organic carbon resisted further degradation due to the high content of humic-like substances, polycyclic aromatics, and highly aromatic compounds. Microbial community structure showed obvious successional characteristics during the long-term degradation process, driving the gradual transformation of the detritus-derived organic carbon from labile to recalcitrant. Notably, microbial transformation of the bioavailable components of kelp detritus contributed 28.7% of the remaining RDOC molecular species. This study provides novel insights into the contribution of the microbial-mediated degradation of kelp detritus to different forms of carbon sequestration. Kelp detritus Carbon sequestration Microbial degradation Recalcitrant organic carbon Dissolved organic carbon Ecology Hongmei Li verfasserin aut Zenghu Zhang verfasserin aut Tianqi Xiong verfasserin aut Xiaoyong Shi verfasserin aut Chen He verfasserin aut Quan Shi verfasserin aut Nianzhi Jiao verfasserin aut Yongyu Zhang verfasserin aut In Ecological Indicators Elsevier, 2021 142(2022), Seite 109186- (DE-627)338074163 (DE-600)2063587-4 18727034 nnns volume:142 year:2022 pages:109186- https://doi.org/10.1016/j.ecolind.2022.109186 kostenfrei https://doaj.org/article/4ad5402209574467b99d74942e39d6b8 kostenfrei http://www.sciencedirect.com/science/article/pii/S1470160X22006586 kostenfrei https://doaj.org/toc/1470-160X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 142 2022 109186- |
spelling |
10.1016/j.ecolind.2022.109186 doi (DE-627)DOAJ079284396 (DE-599)DOAJ4ad5402209574467b99d74942e39d6b8 DE-627 ger DE-627 rakwb eng QH540-549.5 Xiuting Feng verfasserin aut Microbial-mediated contribution of kelp detritus to different forms of oceanic carbon sequestration 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Kelp is one of the most important primary producers in the coastal oceans. When it matures or begins to decay, a substantial amount of detritus sinks and is degraded by microorganisms. However, the fate of these detritus after long-term microbial degradation, which is closely related to their ultimate carbon sequestration function, is not yet clear. Here, by studying the long-term (210-day) microbial degradation dynamics of kelp detritus, we reveal that the bioavailable components of kelp detritus (when kept in the dark) persisted for over four months. This left a considerable amount (in total, ca. 8.85%) of different forms of stable carbon that could function in long-term carbon sequestration. Among them, recalcitrant dissolved organic carbon (RDOC), recalcitrant particulate organic carbon, dissolved inorganic carbon, particulate inorganic carbon, and residual large particulate carbon accounted for 1.27%, 0.12%, 6.00%, 0.04%, and 1.41% of the initial kelp detrital carbon, respectively. The remaining organic carbon resisted further degradation due to the high content of humic-like substances, polycyclic aromatics, and highly aromatic compounds. Microbial community structure showed obvious successional characteristics during the long-term degradation process, driving the gradual transformation of the detritus-derived organic carbon from labile to recalcitrant. Notably, microbial transformation of the bioavailable components of kelp detritus contributed 28.7% of the remaining RDOC molecular species. This study provides novel insights into the contribution of the microbial-mediated degradation of kelp detritus to different forms of carbon sequestration. Kelp detritus Carbon sequestration Microbial degradation Recalcitrant organic carbon Dissolved organic carbon Ecology Hongmei Li verfasserin aut Zenghu Zhang verfasserin aut Tianqi Xiong verfasserin aut Xiaoyong Shi verfasserin aut Chen He verfasserin aut Quan Shi verfasserin aut Nianzhi Jiao verfasserin aut Yongyu Zhang verfasserin aut In Ecological Indicators Elsevier, 2021 142(2022), Seite 109186- (DE-627)338074163 (DE-600)2063587-4 18727034 nnns volume:142 year:2022 pages:109186- https://doi.org/10.1016/j.ecolind.2022.109186 kostenfrei https://doaj.org/article/4ad5402209574467b99d74942e39d6b8 kostenfrei http://www.sciencedirect.com/science/article/pii/S1470160X22006586 kostenfrei https://doaj.org/toc/1470-160X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 142 2022 109186- |
allfields_unstemmed |
10.1016/j.ecolind.2022.109186 doi (DE-627)DOAJ079284396 (DE-599)DOAJ4ad5402209574467b99d74942e39d6b8 DE-627 ger DE-627 rakwb eng QH540-549.5 Xiuting Feng verfasserin aut Microbial-mediated contribution of kelp detritus to different forms of oceanic carbon sequestration 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Kelp is one of the most important primary producers in the coastal oceans. When it matures or begins to decay, a substantial amount of detritus sinks and is degraded by microorganisms. However, the fate of these detritus after long-term microbial degradation, which is closely related to their ultimate carbon sequestration function, is not yet clear. Here, by studying the long-term (210-day) microbial degradation dynamics of kelp detritus, we reveal that the bioavailable components of kelp detritus (when kept in the dark) persisted for over four months. This left a considerable amount (in total, ca. 8.85%) of different forms of stable carbon that could function in long-term carbon sequestration. Among them, recalcitrant dissolved organic carbon (RDOC), recalcitrant particulate organic carbon, dissolved inorganic carbon, particulate inorganic carbon, and residual large particulate carbon accounted for 1.27%, 0.12%, 6.00%, 0.04%, and 1.41% of the initial kelp detrital carbon, respectively. The remaining organic carbon resisted further degradation due to the high content of humic-like substances, polycyclic aromatics, and highly aromatic compounds. Microbial community structure showed obvious successional characteristics during the long-term degradation process, driving the gradual transformation of the detritus-derived organic carbon from labile to recalcitrant. Notably, microbial transformation of the bioavailable components of kelp detritus contributed 28.7% of the remaining RDOC molecular species. This study provides novel insights into the contribution of the microbial-mediated degradation of kelp detritus to different forms of carbon sequestration. Kelp detritus Carbon sequestration Microbial degradation Recalcitrant organic carbon Dissolved organic carbon Ecology Hongmei Li verfasserin aut Zenghu Zhang verfasserin aut Tianqi Xiong verfasserin aut Xiaoyong Shi verfasserin aut Chen He verfasserin aut Quan Shi verfasserin aut Nianzhi Jiao verfasserin aut Yongyu Zhang verfasserin aut In Ecological Indicators Elsevier, 2021 142(2022), Seite 109186- (DE-627)338074163 (DE-600)2063587-4 18727034 nnns volume:142 year:2022 pages:109186- https://doi.org/10.1016/j.ecolind.2022.109186 kostenfrei https://doaj.org/article/4ad5402209574467b99d74942e39d6b8 kostenfrei http://www.sciencedirect.com/science/article/pii/S1470160X22006586 kostenfrei https://doaj.org/toc/1470-160X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 142 2022 109186- |
allfieldsGer |
10.1016/j.ecolind.2022.109186 doi (DE-627)DOAJ079284396 (DE-599)DOAJ4ad5402209574467b99d74942e39d6b8 DE-627 ger DE-627 rakwb eng QH540-549.5 Xiuting Feng verfasserin aut Microbial-mediated contribution of kelp detritus to different forms of oceanic carbon sequestration 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Kelp is one of the most important primary producers in the coastal oceans. When it matures or begins to decay, a substantial amount of detritus sinks and is degraded by microorganisms. However, the fate of these detritus after long-term microbial degradation, which is closely related to their ultimate carbon sequestration function, is not yet clear. Here, by studying the long-term (210-day) microbial degradation dynamics of kelp detritus, we reveal that the bioavailable components of kelp detritus (when kept in the dark) persisted for over four months. This left a considerable amount (in total, ca. 8.85%) of different forms of stable carbon that could function in long-term carbon sequestration. Among them, recalcitrant dissolved organic carbon (RDOC), recalcitrant particulate organic carbon, dissolved inorganic carbon, particulate inorganic carbon, and residual large particulate carbon accounted for 1.27%, 0.12%, 6.00%, 0.04%, and 1.41% of the initial kelp detrital carbon, respectively. The remaining organic carbon resisted further degradation due to the high content of humic-like substances, polycyclic aromatics, and highly aromatic compounds. Microbial community structure showed obvious successional characteristics during the long-term degradation process, driving the gradual transformation of the detritus-derived organic carbon from labile to recalcitrant. Notably, microbial transformation of the bioavailable components of kelp detritus contributed 28.7% of the remaining RDOC molecular species. This study provides novel insights into the contribution of the microbial-mediated degradation of kelp detritus to different forms of carbon sequestration. Kelp detritus Carbon sequestration Microbial degradation Recalcitrant organic carbon Dissolved organic carbon Ecology Hongmei Li verfasserin aut Zenghu Zhang verfasserin aut Tianqi Xiong verfasserin aut Xiaoyong Shi verfasserin aut Chen He verfasserin aut Quan Shi verfasserin aut Nianzhi Jiao verfasserin aut Yongyu Zhang verfasserin aut In Ecological Indicators Elsevier, 2021 142(2022), Seite 109186- (DE-627)338074163 (DE-600)2063587-4 18727034 nnns volume:142 year:2022 pages:109186- https://doi.org/10.1016/j.ecolind.2022.109186 kostenfrei https://doaj.org/article/4ad5402209574467b99d74942e39d6b8 kostenfrei http://www.sciencedirect.com/science/article/pii/S1470160X22006586 kostenfrei https://doaj.org/toc/1470-160X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 142 2022 109186- |
allfieldsSound |
10.1016/j.ecolind.2022.109186 doi (DE-627)DOAJ079284396 (DE-599)DOAJ4ad5402209574467b99d74942e39d6b8 DE-627 ger DE-627 rakwb eng QH540-549.5 Xiuting Feng verfasserin aut Microbial-mediated contribution of kelp detritus to different forms of oceanic carbon sequestration 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Kelp is one of the most important primary producers in the coastal oceans. When it matures or begins to decay, a substantial amount of detritus sinks and is degraded by microorganisms. However, the fate of these detritus after long-term microbial degradation, which is closely related to their ultimate carbon sequestration function, is not yet clear. Here, by studying the long-term (210-day) microbial degradation dynamics of kelp detritus, we reveal that the bioavailable components of kelp detritus (when kept in the dark) persisted for over four months. This left a considerable amount (in total, ca. 8.85%) of different forms of stable carbon that could function in long-term carbon sequestration. Among them, recalcitrant dissolved organic carbon (RDOC), recalcitrant particulate organic carbon, dissolved inorganic carbon, particulate inorganic carbon, and residual large particulate carbon accounted for 1.27%, 0.12%, 6.00%, 0.04%, and 1.41% of the initial kelp detrital carbon, respectively. The remaining organic carbon resisted further degradation due to the high content of humic-like substances, polycyclic aromatics, and highly aromatic compounds. Microbial community structure showed obvious successional characteristics during the long-term degradation process, driving the gradual transformation of the detritus-derived organic carbon from labile to recalcitrant. Notably, microbial transformation of the bioavailable components of kelp detritus contributed 28.7% of the remaining RDOC molecular species. This study provides novel insights into the contribution of the microbial-mediated degradation of kelp detritus to different forms of carbon sequestration. Kelp detritus Carbon sequestration Microbial degradation Recalcitrant organic carbon Dissolved organic carbon Ecology Hongmei Li verfasserin aut Zenghu Zhang verfasserin aut Tianqi Xiong verfasserin aut Xiaoyong Shi verfasserin aut Chen He verfasserin aut Quan Shi verfasserin aut Nianzhi Jiao verfasserin aut Yongyu Zhang verfasserin aut In Ecological Indicators Elsevier, 2021 142(2022), Seite 109186- (DE-627)338074163 (DE-600)2063587-4 18727034 nnns volume:142 year:2022 pages:109186- https://doi.org/10.1016/j.ecolind.2022.109186 kostenfrei https://doaj.org/article/4ad5402209574467b99d74942e39d6b8 kostenfrei http://www.sciencedirect.com/science/article/pii/S1470160X22006586 kostenfrei https://doaj.org/toc/1470-160X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 142 2022 109186- |
language |
English |
source |
In Ecological Indicators 142(2022), Seite 109186- volume:142 year:2022 pages:109186- |
sourceStr |
In Ecological Indicators 142(2022), Seite 109186- volume:142 year:2022 pages:109186- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Kelp detritus Carbon sequestration Microbial degradation Recalcitrant organic carbon Dissolved organic carbon Ecology |
isfreeaccess_bool |
true |
container_title |
Ecological Indicators |
authorswithroles_txt_mv |
Xiuting Feng @@aut@@ Hongmei Li @@aut@@ Zenghu Zhang @@aut@@ Tianqi Xiong @@aut@@ Xiaoyong Shi @@aut@@ Chen He @@aut@@ Quan Shi @@aut@@ Nianzhi Jiao @@aut@@ Yongyu Zhang @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
338074163 |
id |
DOAJ079284396 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ079284396</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503061244.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230307s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ecolind.2022.109186</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ079284396</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4ad5402209574467b99d74942e39d6b8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH540-549.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiuting Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Microbial-mediated contribution of kelp detritus to different forms of oceanic carbon sequestration</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Kelp is one of the most important primary producers in the coastal oceans. When it matures or begins to decay, a substantial amount of detritus sinks and is degraded by microorganisms. However, the fate of these detritus after long-term microbial degradation, which is closely related to their ultimate carbon sequestration function, is not yet clear. Here, by studying the long-term (210-day) microbial degradation dynamics of kelp detritus, we reveal that the bioavailable components of kelp detritus (when kept in the dark) persisted for over four months. This left a considerable amount (in total, ca. 8.85%) of different forms of stable carbon that could function in long-term carbon sequestration. Among them, recalcitrant dissolved organic carbon (RDOC), recalcitrant particulate organic carbon, dissolved inorganic carbon, particulate inorganic carbon, and residual large particulate carbon accounted for 1.27%, 0.12%, 6.00%, 0.04%, and 1.41% of the initial kelp detrital carbon, respectively. The remaining organic carbon resisted further degradation due to the high content of humic-like substances, polycyclic aromatics, and highly aromatic compounds. Microbial community structure showed obvious successional characteristics during the long-term degradation process, driving the gradual transformation of the detritus-derived organic carbon from labile to recalcitrant. Notably, microbial transformation of the bioavailable components of kelp detritus contributed 28.7% of the remaining RDOC molecular species. This study provides novel insights into the contribution of the microbial-mediated degradation of kelp detritus to different forms of carbon sequestration.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kelp detritus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon sequestration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microbial degradation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Recalcitrant organic carbon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dissolved organic carbon</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Ecology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongmei Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zenghu Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tianqi Xiong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoyong Shi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chen He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Quan Shi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nianzhi Jiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yongyu Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ecological Indicators</subfield><subfield code="d">Elsevier, 2021</subfield><subfield code="g">142(2022), Seite 109186-</subfield><subfield code="w">(DE-627)338074163</subfield><subfield code="w">(DE-600)2063587-4</subfield><subfield code="x">18727034</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:142</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:109186-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ecolind.2022.109186</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4ad5402209574467b99d74942e39d6b8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1470160X22006586</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1470-160X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">142</subfield><subfield code="j">2022</subfield><subfield code="h">109186-</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Xiuting Feng |
spellingShingle |
Xiuting Feng misc QH540-549.5 misc Kelp detritus misc Carbon sequestration misc Microbial degradation misc Recalcitrant organic carbon misc Dissolved organic carbon misc Ecology Microbial-mediated contribution of kelp detritus to different forms of oceanic carbon sequestration |
authorStr |
Xiuting Feng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)338074163 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH540-549 |
illustrated |
Not Illustrated |
issn |
18727034 |
topic_title |
QH540-549.5 Microbial-mediated contribution of kelp detritus to different forms of oceanic carbon sequestration Kelp detritus Carbon sequestration Microbial degradation Recalcitrant organic carbon Dissolved organic carbon |
topic |
misc QH540-549.5 misc Kelp detritus misc Carbon sequestration misc Microbial degradation misc Recalcitrant organic carbon misc Dissolved organic carbon misc Ecology |
topic_unstemmed |
misc QH540-549.5 misc Kelp detritus misc Carbon sequestration misc Microbial degradation misc Recalcitrant organic carbon misc Dissolved organic carbon misc Ecology |
topic_browse |
misc QH540-549.5 misc Kelp detritus misc Carbon sequestration misc Microbial degradation misc Recalcitrant organic carbon misc Dissolved organic carbon misc Ecology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Ecological Indicators |
hierarchy_parent_id |
338074163 |
hierarchy_top_title |
Ecological Indicators |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)338074163 (DE-600)2063587-4 |
title |
Microbial-mediated contribution of kelp detritus to different forms of oceanic carbon sequestration |
ctrlnum |
(DE-627)DOAJ079284396 (DE-599)DOAJ4ad5402209574467b99d74942e39d6b8 |
title_full |
Microbial-mediated contribution of kelp detritus to different forms of oceanic carbon sequestration |
author_sort |
Xiuting Feng |
journal |
Ecological Indicators |
journalStr |
Ecological Indicators |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
109186 |
author_browse |
Xiuting Feng Hongmei Li Zenghu Zhang Tianqi Xiong Xiaoyong Shi Chen He Quan Shi Nianzhi Jiao Yongyu Zhang |
container_volume |
142 |
class |
QH540-549.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Xiuting Feng |
doi_str_mv |
10.1016/j.ecolind.2022.109186 |
author2-role |
verfasserin |
title_sort |
microbial-mediated contribution of kelp detritus to different forms of oceanic carbon sequestration |
callnumber |
QH540-549.5 |
title_auth |
Microbial-mediated contribution of kelp detritus to different forms of oceanic carbon sequestration |
abstract |
Kelp is one of the most important primary producers in the coastal oceans. When it matures or begins to decay, a substantial amount of detritus sinks and is degraded by microorganisms. However, the fate of these detritus after long-term microbial degradation, which is closely related to their ultimate carbon sequestration function, is not yet clear. Here, by studying the long-term (210-day) microbial degradation dynamics of kelp detritus, we reveal that the bioavailable components of kelp detritus (when kept in the dark) persisted for over four months. This left a considerable amount (in total, ca. 8.85%) of different forms of stable carbon that could function in long-term carbon sequestration. Among them, recalcitrant dissolved organic carbon (RDOC), recalcitrant particulate organic carbon, dissolved inorganic carbon, particulate inorganic carbon, and residual large particulate carbon accounted for 1.27%, 0.12%, 6.00%, 0.04%, and 1.41% of the initial kelp detrital carbon, respectively. The remaining organic carbon resisted further degradation due to the high content of humic-like substances, polycyclic aromatics, and highly aromatic compounds. Microbial community structure showed obvious successional characteristics during the long-term degradation process, driving the gradual transformation of the detritus-derived organic carbon from labile to recalcitrant. Notably, microbial transformation of the bioavailable components of kelp detritus contributed 28.7% of the remaining RDOC molecular species. This study provides novel insights into the contribution of the microbial-mediated degradation of kelp detritus to different forms of carbon sequestration. |
abstractGer |
Kelp is one of the most important primary producers in the coastal oceans. When it matures or begins to decay, a substantial amount of detritus sinks and is degraded by microorganisms. However, the fate of these detritus after long-term microbial degradation, which is closely related to their ultimate carbon sequestration function, is not yet clear. Here, by studying the long-term (210-day) microbial degradation dynamics of kelp detritus, we reveal that the bioavailable components of kelp detritus (when kept in the dark) persisted for over four months. This left a considerable amount (in total, ca. 8.85%) of different forms of stable carbon that could function in long-term carbon sequestration. Among them, recalcitrant dissolved organic carbon (RDOC), recalcitrant particulate organic carbon, dissolved inorganic carbon, particulate inorganic carbon, and residual large particulate carbon accounted for 1.27%, 0.12%, 6.00%, 0.04%, and 1.41% of the initial kelp detrital carbon, respectively. The remaining organic carbon resisted further degradation due to the high content of humic-like substances, polycyclic aromatics, and highly aromatic compounds. Microbial community structure showed obvious successional characteristics during the long-term degradation process, driving the gradual transformation of the detritus-derived organic carbon from labile to recalcitrant. Notably, microbial transformation of the bioavailable components of kelp detritus contributed 28.7% of the remaining RDOC molecular species. This study provides novel insights into the contribution of the microbial-mediated degradation of kelp detritus to different forms of carbon sequestration. |
abstract_unstemmed |
Kelp is one of the most important primary producers in the coastal oceans. When it matures or begins to decay, a substantial amount of detritus sinks and is degraded by microorganisms. However, the fate of these detritus after long-term microbial degradation, which is closely related to their ultimate carbon sequestration function, is not yet clear. Here, by studying the long-term (210-day) microbial degradation dynamics of kelp detritus, we reveal that the bioavailable components of kelp detritus (when kept in the dark) persisted for over four months. This left a considerable amount (in total, ca. 8.85%) of different forms of stable carbon that could function in long-term carbon sequestration. Among them, recalcitrant dissolved organic carbon (RDOC), recalcitrant particulate organic carbon, dissolved inorganic carbon, particulate inorganic carbon, and residual large particulate carbon accounted for 1.27%, 0.12%, 6.00%, 0.04%, and 1.41% of the initial kelp detrital carbon, respectively. The remaining organic carbon resisted further degradation due to the high content of humic-like substances, polycyclic aromatics, and highly aromatic compounds. Microbial community structure showed obvious successional characteristics during the long-term degradation process, driving the gradual transformation of the detritus-derived organic carbon from labile to recalcitrant. Notably, microbial transformation of the bioavailable components of kelp detritus contributed 28.7% of the remaining RDOC molecular species. This study provides novel insights into the contribution of the microbial-mediated degradation of kelp detritus to different forms of carbon sequestration. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Microbial-mediated contribution of kelp detritus to different forms of oceanic carbon sequestration |
url |
https://doi.org/10.1016/j.ecolind.2022.109186 https://doaj.org/article/4ad5402209574467b99d74942e39d6b8 http://www.sciencedirect.com/science/article/pii/S1470160X22006586 https://doaj.org/toc/1470-160X |
remote_bool |
true |
author2 |
Hongmei Li Zenghu Zhang Tianqi Xiong Xiaoyong Shi Chen He Quan Shi Nianzhi Jiao Yongyu Zhang |
author2Str |
Hongmei Li Zenghu Zhang Tianqi Xiong Xiaoyong Shi Chen He Quan Shi Nianzhi Jiao Yongyu Zhang |
ppnlink |
338074163 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ecolind.2022.109186 |
callnumber-a |
QH540-549.5 |
up_date |
2024-07-03T22:41:27.850Z |
_version_ |
1803599466046947328 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ079284396</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503061244.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230307s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ecolind.2022.109186</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ079284396</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4ad5402209574467b99d74942e39d6b8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH540-549.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiuting Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Microbial-mediated contribution of kelp detritus to different forms of oceanic carbon sequestration</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Kelp is one of the most important primary producers in the coastal oceans. When it matures or begins to decay, a substantial amount of detritus sinks and is degraded by microorganisms. However, the fate of these detritus after long-term microbial degradation, which is closely related to their ultimate carbon sequestration function, is not yet clear. Here, by studying the long-term (210-day) microbial degradation dynamics of kelp detritus, we reveal that the bioavailable components of kelp detritus (when kept in the dark) persisted for over four months. This left a considerable amount (in total, ca. 8.85%) of different forms of stable carbon that could function in long-term carbon sequestration. Among them, recalcitrant dissolved organic carbon (RDOC), recalcitrant particulate organic carbon, dissolved inorganic carbon, particulate inorganic carbon, and residual large particulate carbon accounted for 1.27%, 0.12%, 6.00%, 0.04%, and 1.41% of the initial kelp detrital carbon, respectively. The remaining organic carbon resisted further degradation due to the high content of humic-like substances, polycyclic aromatics, and highly aromatic compounds. Microbial community structure showed obvious successional characteristics during the long-term degradation process, driving the gradual transformation of the detritus-derived organic carbon from labile to recalcitrant. Notably, microbial transformation of the bioavailable components of kelp detritus contributed 28.7% of the remaining RDOC molecular species. This study provides novel insights into the contribution of the microbial-mediated degradation of kelp detritus to different forms of carbon sequestration.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kelp detritus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon sequestration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microbial degradation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Recalcitrant organic carbon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dissolved organic carbon</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Ecology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongmei Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zenghu Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tianqi Xiong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoyong Shi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chen He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Quan Shi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nianzhi Jiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yongyu Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ecological Indicators</subfield><subfield code="d">Elsevier, 2021</subfield><subfield code="g">142(2022), Seite 109186-</subfield><subfield code="w">(DE-627)338074163</subfield><subfield code="w">(DE-600)2063587-4</subfield><subfield code="x">18727034</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:142</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:109186-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ecolind.2022.109186</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4ad5402209574467b99d74942e39d6b8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1470160X22006586</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1470-160X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">142</subfield><subfield code="j">2022</subfield><subfield code="h">109186-</subfield></datafield></record></collection>
|
score |
7.4011927 |