On a Generalization of a Lucas’ Result and an Application to the 4-Pascal’s Triangle
The Pascal’s triangle is generalized to “the <i<k</i<-Pascal’s triangle” with any integer <inline-formula< <math display="inline"< <semantics< <mrow< <mi<k</mi< <mo<≥</mo< <mn<2</mn< </mrow< </semantics< &l...
Ausführliche Beschreibung
Autor*in: |
Atsushi Yamagami [verfasserIn] Kazuki Taniguchi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Symmetry - MDPI AG, 2009, 12(2020), 2, p 288 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2020 ; number:2, p 288 |
Links: |
---|
DOI / URN: |
10.3390/sym12020288 |
---|
Katalog-ID: |
DOAJ079287948 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ079287948 | ||
003 | DE-627 | ||
005 | 20230307013819.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230307s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/sym12020288 |2 doi | |
035 | |a (DE-627)DOAJ079287948 | ||
035 | |a (DE-599)DOAJ0db67940865b4ec7a2aa9f55bb01da45 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Atsushi Yamagami |e verfasserin |4 aut | |
245 | 1 | 0 | |a On a Generalization of a Lucas’ Result and an Application to the 4-Pascal’s Triangle |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The Pascal’s triangle is generalized to “the <i<k</i<-Pascal’s triangle” with any integer <inline-formula< <math display="inline"< <semantics< <mrow< <mi<k</mi< <mo<≥</mo< <mn<2</mn< </mrow< </semantics< </math< </inline-formula<. Let <i<p</i< be any prime number. In this article, we prove that for any positive integers <i<n</i< and <i<e</i<, the <i<n</i<-th row in the <inline-formula< <math display="inline"< <semantics< <msup< <mi<p</mi< <mi<e</mi< </msup< </semantics< </math< </inline-formula<-Pascal’s triangle consists of integers which are congruent to 1 modulo <i<p</i< if and only if <i<n</i< is of the form <inline-formula< <math display="inline"< <semantics< <mstyle displaystyle="true" scriptlevel="0"< <mfrac< <mrow< <msup< <mi<p</mi< <mrow< <mi<e</mi< <mi<m</mi< </mrow< </msup< <mo<−</mo< <mn<1</mn< </mrow< <mrow< <msup< <mi<p</mi< <mi<e</mi< </msup< <mo<−</mo< <mn<1</mn< </mrow< </mfrac< </mstyle< </semantics< </math< </inline-formula< with some integer <inline-formula< <math display="inline"< <semantics< <mrow< <mi<m</mi< <mo<≥</mo< <mn<1</mn< </mrow< </semantics< </math< </inline-formula<. This is a generalization of a Lucas’ result asserting that the <i<n</i<-th row in the (2-)Pascal’s triangle consists of odd integers if and only if <i<n</i< is a Mersenne number. As an application, we then see that there exists no row in the 4-Pascal’s triangle consisting of integers which are congruent to 1 modulo 4 except the first row. In this application, we use the congruence <inline-formula< <math display="inline"< <semantics< <mrow< <msup< <mrow< <mo stretchy="false"<(</mo< <mi<x</mi< <mo<+</mo< <mn<1</mn< <mo stretchy="false"<)</mo< </mrow< <msup< <mi<p</mi< <mi<e</mi< </msup< </msup< <mo<≡</mo< <msup< <mrow< <mo stretchy="false"<(</mo< <msup< <mi<x</mi< <mi<p</mi< </msup< <mo<+</mo< <mn<1</mn< <mo stretchy="false"<)</mo< </mrow< <msup< <mi<p</mi< <mrow< <mi<e</mi< <mo<−</mo< <mn<1</mn< </mrow< </msup< </msup< <mrow< <mo stretchy="false"<(</mo< <mi<mod</mi< <mspace width="4pt"<</mspace< <msup< <mi<p</mi< <mi<e</mi< </msup< <mo stretchy="false"<)</mo< </mrow< </mrow< </semantics< </math< </inline-formula< of binomial expansions which we could prove for any prime number <i<p</i< and any positive integer <i<e</i<. We think that this article is fit for the Special Issue “Number Theory and Symmetry,” since we prove a symmetric property on the 4-Pascal’s triangle by means of a number-theoretical property of binomial expansions. | ||
650 | 4 | |a the pe-pascal’s triangle | |
650 | 4 | |a lucas’ result on the pascal’s triangle | |
650 | 4 | |a congruences of binomial expansions | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Kazuki Taniguchi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Symmetry |d MDPI AG, 2009 |g 12(2020), 2, p 288 |w (DE-627)610604112 |w (DE-600)2518382-5 |x 20738994 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2020 |g number:2, p 288 |
856 | 4 | 0 | |u https://doi.org/10.3390/sym12020288 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/0db67940865b4ec7a2aa9f55bb01da45 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2073-8994/12/2/288 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-8994 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2020 |e 2, p 288 |
author_variant |
a y ay k t kt |
---|---|
matchkey_str |
article:20738994:2020----::ngnrlztooauarsladnplctott |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
QA |
publishDate |
2020 |
allfields |
10.3390/sym12020288 doi (DE-627)DOAJ079287948 (DE-599)DOAJ0db67940865b4ec7a2aa9f55bb01da45 DE-627 ger DE-627 rakwb eng QA1-939 Atsushi Yamagami verfasserin aut On a Generalization of a Lucas’ Result and an Application to the 4-Pascal’s Triangle 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Pascal’s triangle is generalized to “the <i<k</i<-Pascal’s triangle” with any integer <inline-formula< <math display="inline"< <semantics< <mrow< <mi<k</mi< <mo<≥</mo< <mn<2</mn< </mrow< </semantics< </math< </inline-formula<. Let <i<p</i< be any prime number. In this article, we prove that for any positive integers <i<n</i< and <i<e</i<, the <i<n</i<-th row in the <inline-formula< <math display="inline"< <semantics< <msup< <mi<p</mi< <mi<e</mi< </msup< </semantics< </math< </inline-formula<-Pascal’s triangle consists of integers which are congruent to 1 modulo <i<p</i< if and only if <i<n</i< is of the form <inline-formula< <math display="inline"< <semantics< <mstyle displaystyle="true" scriptlevel="0"< <mfrac< <mrow< <msup< <mi<p</mi< <mrow< <mi<e</mi< <mi<m</mi< </mrow< </msup< <mo<−</mo< <mn<1</mn< </mrow< <mrow< <msup< <mi<p</mi< <mi<e</mi< </msup< <mo<−</mo< <mn<1</mn< </mrow< </mfrac< </mstyle< </semantics< </math< </inline-formula< with some integer <inline-formula< <math display="inline"< <semantics< <mrow< <mi<m</mi< <mo<≥</mo< <mn<1</mn< </mrow< </semantics< </math< </inline-formula<. This is a generalization of a Lucas’ result asserting that the <i<n</i<-th row in the (2-)Pascal’s triangle consists of odd integers if and only if <i<n</i< is a Mersenne number. As an application, we then see that there exists no row in the 4-Pascal’s triangle consisting of integers which are congruent to 1 modulo 4 except the first row. In this application, we use the congruence <inline-formula< <math display="inline"< <semantics< <mrow< <msup< <mrow< <mo stretchy="false"<(</mo< <mi<x</mi< <mo<+</mo< <mn<1</mn< <mo stretchy="false"<)</mo< </mrow< <msup< <mi<p</mi< <mi<e</mi< </msup< </msup< <mo<≡</mo< <msup< <mrow< <mo stretchy="false"<(</mo< <msup< <mi<x</mi< <mi<p</mi< </msup< <mo<+</mo< <mn<1</mn< <mo stretchy="false"<)</mo< </mrow< <msup< <mi<p</mi< <mrow< <mi<e</mi< <mo<−</mo< <mn<1</mn< </mrow< </msup< </msup< <mrow< <mo stretchy="false"<(</mo< <mi<mod</mi< <mspace width="4pt"<</mspace< <msup< <mi<p</mi< <mi<e</mi< </msup< <mo stretchy="false"<)</mo< </mrow< </mrow< </semantics< </math< </inline-formula< of binomial expansions which we could prove for any prime number <i<p</i< and any positive integer <i<e</i<. We think that this article is fit for the Special Issue “Number Theory and Symmetry,” since we prove a symmetric property on the 4-Pascal’s triangle by means of a number-theoretical property of binomial expansions. the pe-pascal’s triangle lucas’ result on the pascal’s triangle congruences of binomial expansions Mathematics Kazuki Taniguchi verfasserin aut In Symmetry MDPI AG, 2009 12(2020), 2, p 288 (DE-627)610604112 (DE-600)2518382-5 20738994 nnns volume:12 year:2020 number:2, p 288 https://doi.org/10.3390/sym12020288 kostenfrei https://doaj.org/article/0db67940865b4ec7a2aa9f55bb01da45 kostenfrei https://www.mdpi.com/2073-8994/12/2/288 kostenfrei https://doaj.org/toc/2073-8994 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2020 2, p 288 |
spelling |
10.3390/sym12020288 doi (DE-627)DOAJ079287948 (DE-599)DOAJ0db67940865b4ec7a2aa9f55bb01da45 DE-627 ger DE-627 rakwb eng QA1-939 Atsushi Yamagami verfasserin aut On a Generalization of a Lucas’ Result and an Application to the 4-Pascal’s Triangle 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Pascal’s triangle is generalized to “the <i<k</i<-Pascal’s triangle” with any integer <inline-formula< <math display="inline"< <semantics< <mrow< <mi<k</mi< <mo<≥</mo< <mn<2</mn< </mrow< </semantics< </math< </inline-formula<. Let <i<p</i< be any prime number. In this article, we prove that for any positive integers <i<n</i< and <i<e</i<, the <i<n</i<-th row in the <inline-formula< <math display="inline"< <semantics< <msup< <mi<p</mi< <mi<e</mi< </msup< </semantics< </math< </inline-formula<-Pascal’s triangle consists of integers which are congruent to 1 modulo <i<p</i< if and only if <i<n</i< is of the form <inline-formula< <math display="inline"< <semantics< <mstyle displaystyle="true" scriptlevel="0"< <mfrac< <mrow< <msup< <mi<p</mi< <mrow< <mi<e</mi< <mi<m</mi< </mrow< </msup< <mo<−</mo< <mn<1</mn< </mrow< <mrow< <msup< <mi<p</mi< <mi<e</mi< </msup< <mo<−</mo< <mn<1</mn< </mrow< </mfrac< </mstyle< </semantics< </math< </inline-formula< with some integer <inline-formula< <math display="inline"< <semantics< <mrow< <mi<m</mi< <mo<≥</mo< <mn<1</mn< </mrow< </semantics< </math< </inline-formula<. This is a generalization of a Lucas’ result asserting that the <i<n</i<-th row in the (2-)Pascal’s triangle consists of odd integers if and only if <i<n</i< is a Mersenne number. As an application, we then see that there exists no row in the 4-Pascal’s triangle consisting of integers which are congruent to 1 modulo 4 except the first row. In this application, we use the congruence <inline-formula< <math display="inline"< <semantics< <mrow< <msup< <mrow< <mo stretchy="false"<(</mo< <mi<x</mi< <mo<+</mo< <mn<1</mn< <mo stretchy="false"<)</mo< </mrow< <msup< <mi<p</mi< <mi<e</mi< </msup< </msup< <mo<≡</mo< <msup< <mrow< <mo stretchy="false"<(</mo< <msup< <mi<x</mi< <mi<p</mi< </msup< <mo<+</mo< <mn<1</mn< <mo stretchy="false"<)</mo< </mrow< <msup< <mi<p</mi< <mrow< <mi<e</mi< <mo<−</mo< <mn<1</mn< </mrow< </msup< </msup< <mrow< <mo stretchy="false"<(</mo< <mi<mod</mi< <mspace width="4pt"<</mspace< <msup< <mi<p</mi< <mi<e</mi< </msup< <mo stretchy="false"<)</mo< </mrow< </mrow< </semantics< </math< </inline-formula< of binomial expansions which we could prove for any prime number <i<p</i< and any positive integer <i<e</i<. We think that this article is fit for the Special Issue “Number Theory and Symmetry,” since we prove a symmetric property on the 4-Pascal’s triangle by means of a number-theoretical property of binomial expansions. the pe-pascal’s triangle lucas’ result on the pascal’s triangle congruences of binomial expansions Mathematics Kazuki Taniguchi verfasserin aut In Symmetry MDPI AG, 2009 12(2020), 2, p 288 (DE-627)610604112 (DE-600)2518382-5 20738994 nnns volume:12 year:2020 number:2, p 288 https://doi.org/10.3390/sym12020288 kostenfrei https://doaj.org/article/0db67940865b4ec7a2aa9f55bb01da45 kostenfrei https://www.mdpi.com/2073-8994/12/2/288 kostenfrei https://doaj.org/toc/2073-8994 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2020 2, p 288 |
allfields_unstemmed |
10.3390/sym12020288 doi (DE-627)DOAJ079287948 (DE-599)DOAJ0db67940865b4ec7a2aa9f55bb01da45 DE-627 ger DE-627 rakwb eng QA1-939 Atsushi Yamagami verfasserin aut On a Generalization of a Lucas’ Result and an Application to the 4-Pascal’s Triangle 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Pascal’s triangle is generalized to “the <i<k</i<-Pascal’s triangle” with any integer <inline-formula< <math display="inline"< <semantics< <mrow< <mi<k</mi< <mo<≥</mo< <mn<2</mn< </mrow< </semantics< </math< </inline-formula<. Let <i<p</i< be any prime number. In this article, we prove that for any positive integers <i<n</i< and <i<e</i<, the <i<n</i<-th row in the <inline-formula< <math display="inline"< <semantics< <msup< <mi<p</mi< <mi<e</mi< </msup< </semantics< </math< </inline-formula<-Pascal’s triangle consists of integers which are congruent to 1 modulo <i<p</i< if and only if <i<n</i< is of the form <inline-formula< <math display="inline"< <semantics< <mstyle displaystyle="true" scriptlevel="0"< <mfrac< <mrow< <msup< <mi<p</mi< <mrow< <mi<e</mi< <mi<m</mi< </mrow< </msup< <mo<−</mo< <mn<1</mn< </mrow< <mrow< <msup< <mi<p</mi< <mi<e</mi< </msup< <mo<−</mo< <mn<1</mn< </mrow< </mfrac< </mstyle< </semantics< </math< </inline-formula< with some integer <inline-formula< <math display="inline"< <semantics< <mrow< <mi<m</mi< <mo<≥</mo< <mn<1</mn< </mrow< </semantics< </math< </inline-formula<. This is a generalization of a Lucas’ result asserting that the <i<n</i<-th row in the (2-)Pascal’s triangle consists of odd integers if and only if <i<n</i< is a Mersenne number. As an application, we then see that there exists no row in the 4-Pascal’s triangle consisting of integers which are congruent to 1 modulo 4 except the first row. In this application, we use the congruence <inline-formula< <math display="inline"< <semantics< <mrow< <msup< <mrow< <mo stretchy="false"<(</mo< <mi<x</mi< <mo<+</mo< <mn<1</mn< <mo stretchy="false"<)</mo< </mrow< <msup< <mi<p</mi< <mi<e</mi< </msup< </msup< <mo<≡</mo< <msup< <mrow< <mo stretchy="false"<(</mo< <msup< <mi<x</mi< <mi<p</mi< </msup< <mo<+</mo< <mn<1</mn< <mo stretchy="false"<)</mo< </mrow< <msup< <mi<p</mi< <mrow< <mi<e</mi< <mo<−</mo< <mn<1</mn< </mrow< </msup< </msup< <mrow< <mo stretchy="false"<(</mo< <mi<mod</mi< <mspace width="4pt"<</mspace< <msup< <mi<p</mi< <mi<e</mi< </msup< <mo stretchy="false"<)</mo< </mrow< </mrow< </semantics< </math< </inline-formula< of binomial expansions which we could prove for any prime number <i<p</i< and any positive integer <i<e</i<. We think that this article is fit for the Special Issue “Number Theory and Symmetry,” since we prove a symmetric property on the 4-Pascal’s triangle by means of a number-theoretical property of binomial expansions. the pe-pascal’s triangle lucas’ result on the pascal’s triangle congruences of binomial expansions Mathematics Kazuki Taniguchi verfasserin aut In Symmetry MDPI AG, 2009 12(2020), 2, p 288 (DE-627)610604112 (DE-600)2518382-5 20738994 nnns volume:12 year:2020 number:2, p 288 https://doi.org/10.3390/sym12020288 kostenfrei https://doaj.org/article/0db67940865b4ec7a2aa9f55bb01da45 kostenfrei https://www.mdpi.com/2073-8994/12/2/288 kostenfrei https://doaj.org/toc/2073-8994 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2020 2, p 288 |
allfieldsGer |
10.3390/sym12020288 doi (DE-627)DOAJ079287948 (DE-599)DOAJ0db67940865b4ec7a2aa9f55bb01da45 DE-627 ger DE-627 rakwb eng QA1-939 Atsushi Yamagami verfasserin aut On a Generalization of a Lucas’ Result and an Application to the 4-Pascal’s Triangle 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Pascal’s triangle is generalized to “the <i<k</i<-Pascal’s triangle” with any integer <inline-formula< <math display="inline"< <semantics< <mrow< <mi<k</mi< <mo<≥</mo< <mn<2</mn< </mrow< </semantics< </math< </inline-formula<. Let <i<p</i< be any prime number. In this article, we prove that for any positive integers <i<n</i< and <i<e</i<, the <i<n</i<-th row in the <inline-formula< <math display="inline"< <semantics< <msup< <mi<p</mi< <mi<e</mi< </msup< </semantics< </math< </inline-formula<-Pascal’s triangle consists of integers which are congruent to 1 modulo <i<p</i< if and only if <i<n</i< is of the form <inline-formula< <math display="inline"< <semantics< <mstyle displaystyle="true" scriptlevel="0"< <mfrac< <mrow< <msup< <mi<p</mi< <mrow< <mi<e</mi< <mi<m</mi< </mrow< </msup< <mo<−</mo< <mn<1</mn< </mrow< <mrow< <msup< <mi<p</mi< <mi<e</mi< </msup< <mo<−</mo< <mn<1</mn< </mrow< </mfrac< </mstyle< </semantics< </math< </inline-formula< with some integer <inline-formula< <math display="inline"< <semantics< <mrow< <mi<m</mi< <mo<≥</mo< <mn<1</mn< </mrow< </semantics< </math< </inline-formula<. This is a generalization of a Lucas’ result asserting that the <i<n</i<-th row in the (2-)Pascal’s triangle consists of odd integers if and only if <i<n</i< is a Mersenne number. As an application, we then see that there exists no row in the 4-Pascal’s triangle consisting of integers which are congruent to 1 modulo 4 except the first row. In this application, we use the congruence <inline-formula< <math display="inline"< <semantics< <mrow< <msup< <mrow< <mo stretchy="false"<(</mo< <mi<x</mi< <mo<+</mo< <mn<1</mn< <mo stretchy="false"<)</mo< </mrow< <msup< <mi<p</mi< <mi<e</mi< </msup< </msup< <mo<≡</mo< <msup< <mrow< <mo stretchy="false"<(</mo< <msup< <mi<x</mi< <mi<p</mi< </msup< <mo<+</mo< <mn<1</mn< <mo stretchy="false"<)</mo< </mrow< <msup< <mi<p</mi< <mrow< <mi<e</mi< <mo<−</mo< <mn<1</mn< </mrow< </msup< </msup< <mrow< <mo stretchy="false"<(</mo< <mi<mod</mi< <mspace width="4pt"<</mspace< <msup< <mi<p</mi< <mi<e</mi< </msup< <mo stretchy="false"<)</mo< </mrow< </mrow< </semantics< </math< </inline-formula< of binomial expansions which we could prove for any prime number <i<p</i< and any positive integer <i<e</i<. We think that this article is fit for the Special Issue “Number Theory and Symmetry,” since we prove a symmetric property on the 4-Pascal’s triangle by means of a number-theoretical property of binomial expansions. the pe-pascal’s triangle lucas’ result on the pascal’s triangle congruences of binomial expansions Mathematics Kazuki Taniguchi verfasserin aut In Symmetry MDPI AG, 2009 12(2020), 2, p 288 (DE-627)610604112 (DE-600)2518382-5 20738994 nnns volume:12 year:2020 number:2, p 288 https://doi.org/10.3390/sym12020288 kostenfrei https://doaj.org/article/0db67940865b4ec7a2aa9f55bb01da45 kostenfrei https://www.mdpi.com/2073-8994/12/2/288 kostenfrei https://doaj.org/toc/2073-8994 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2020 2, p 288 |
allfieldsSound |
10.3390/sym12020288 doi (DE-627)DOAJ079287948 (DE-599)DOAJ0db67940865b4ec7a2aa9f55bb01da45 DE-627 ger DE-627 rakwb eng QA1-939 Atsushi Yamagami verfasserin aut On a Generalization of a Lucas’ Result and an Application to the 4-Pascal’s Triangle 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The Pascal’s triangle is generalized to “the <i<k</i<-Pascal’s triangle” with any integer <inline-formula< <math display="inline"< <semantics< <mrow< <mi<k</mi< <mo<≥</mo< <mn<2</mn< </mrow< </semantics< </math< </inline-formula<. Let <i<p</i< be any prime number. In this article, we prove that for any positive integers <i<n</i< and <i<e</i<, the <i<n</i<-th row in the <inline-formula< <math display="inline"< <semantics< <msup< <mi<p</mi< <mi<e</mi< </msup< </semantics< </math< </inline-formula<-Pascal’s triangle consists of integers which are congruent to 1 modulo <i<p</i< if and only if <i<n</i< is of the form <inline-formula< <math display="inline"< <semantics< <mstyle displaystyle="true" scriptlevel="0"< <mfrac< <mrow< <msup< <mi<p</mi< <mrow< <mi<e</mi< <mi<m</mi< </mrow< </msup< <mo<−</mo< <mn<1</mn< </mrow< <mrow< <msup< <mi<p</mi< <mi<e</mi< </msup< <mo<−</mo< <mn<1</mn< </mrow< </mfrac< </mstyle< </semantics< </math< </inline-formula< with some integer <inline-formula< <math display="inline"< <semantics< <mrow< <mi<m</mi< <mo<≥</mo< <mn<1</mn< </mrow< </semantics< </math< </inline-formula<. This is a generalization of a Lucas’ result asserting that the <i<n</i<-th row in the (2-)Pascal’s triangle consists of odd integers if and only if <i<n</i< is a Mersenne number. As an application, we then see that there exists no row in the 4-Pascal’s triangle consisting of integers which are congruent to 1 modulo 4 except the first row. In this application, we use the congruence <inline-formula< <math display="inline"< <semantics< <mrow< <msup< <mrow< <mo stretchy="false"<(</mo< <mi<x</mi< <mo<+</mo< <mn<1</mn< <mo stretchy="false"<)</mo< </mrow< <msup< <mi<p</mi< <mi<e</mi< </msup< </msup< <mo<≡</mo< <msup< <mrow< <mo stretchy="false"<(</mo< <msup< <mi<x</mi< <mi<p</mi< </msup< <mo<+</mo< <mn<1</mn< <mo stretchy="false"<)</mo< </mrow< <msup< <mi<p</mi< <mrow< <mi<e</mi< <mo<−</mo< <mn<1</mn< </mrow< </msup< </msup< <mrow< <mo stretchy="false"<(</mo< <mi<mod</mi< <mspace width="4pt"<</mspace< <msup< <mi<p</mi< <mi<e</mi< </msup< <mo stretchy="false"<)</mo< </mrow< </mrow< </semantics< </math< </inline-formula< of binomial expansions which we could prove for any prime number <i<p</i< and any positive integer <i<e</i<. We think that this article is fit for the Special Issue “Number Theory and Symmetry,” since we prove a symmetric property on the 4-Pascal’s triangle by means of a number-theoretical property of binomial expansions. the pe-pascal’s triangle lucas’ result on the pascal’s triangle congruences of binomial expansions Mathematics Kazuki Taniguchi verfasserin aut In Symmetry MDPI AG, 2009 12(2020), 2, p 288 (DE-627)610604112 (DE-600)2518382-5 20738994 nnns volume:12 year:2020 number:2, p 288 https://doi.org/10.3390/sym12020288 kostenfrei https://doaj.org/article/0db67940865b4ec7a2aa9f55bb01da45 kostenfrei https://www.mdpi.com/2073-8994/12/2/288 kostenfrei https://doaj.org/toc/2073-8994 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2020 2, p 288 |
language |
English |
source |
In Symmetry 12(2020), 2, p 288 volume:12 year:2020 number:2, p 288 |
sourceStr |
In Symmetry 12(2020), 2, p 288 volume:12 year:2020 number:2, p 288 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
the pe-pascal’s triangle lucas’ result on the pascal’s triangle congruences of binomial expansions Mathematics |
isfreeaccess_bool |
true |
container_title |
Symmetry |
authorswithroles_txt_mv |
Atsushi Yamagami @@aut@@ Kazuki Taniguchi @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
610604112 |
id |
DOAJ079287948 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ079287948</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307013819.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230307s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/sym12020288</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ079287948</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0db67940865b4ec7a2aa9f55bb01da45</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Atsushi Yamagami</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On a Generalization of a Lucas’ Result and an Application to the 4-Pascal’s Triangle</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Pascal’s triangle is generalized to “the <i<k</i<-Pascal’s triangle” with any integer <inline-formula< <math display="inline"< <semantics< <mrow< <mi<k</mi< <mo<≥</mo< <mn<2</mn< </mrow< </semantics< </math< </inline-formula<. Let <i<p</i< be any prime number. In this article, we prove that for any positive integers <i<n</i< and <i<e</i<, the <i<n</i<-th row in the <inline-formula< <math display="inline"< <semantics< <msup< <mi<p</mi< <mi<e</mi< </msup< </semantics< </math< </inline-formula<-Pascal’s triangle consists of integers which are congruent to 1 modulo <i<p</i< if and only if <i<n</i< is of the form <inline-formula< <math display="inline"< <semantics< <mstyle displaystyle="true" scriptlevel="0"< <mfrac< <mrow< <msup< <mi<p</mi< <mrow< <mi<e</mi< <mi<m</mi< </mrow< </msup< <mo<−</mo< <mn<1</mn< </mrow< <mrow< <msup< <mi<p</mi< <mi<e</mi< </msup< <mo<−</mo< <mn<1</mn< </mrow< </mfrac< </mstyle< </semantics< </math< </inline-formula< with some integer <inline-formula< <math display="inline"< <semantics< <mrow< <mi<m</mi< <mo<≥</mo< <mn<1</mn< </mrow< </semantics< </math< </inline-formula<. This is a generalization of a Lucas’ result asserting that the <i<n</i<-th row in the (2-)Pascal’s triangle consists of odd integers if and only if <i<n</i< is a Mersenne number. As an application, we then see that there exists no row in the 4-Pascal’s triangle consisting of integers which are congruent to 1 modulo 4 except the first row. In this application, we use the congruence <inline-formula< <math display="inline"< <semantics< <mrow< <msup< <mrow< <mo stretchy="false"<(</mo< <mi<x</mi< <mo<+</mo< <mn<1</mn< <mo stretchy="false"<)</mo< </mrow< <msup< <mi<p</mi< <mi<e</mi< </msup< </msup< <mo<≡</mo< <msup< <mrow< <mo stretchy="false"<(</mo< <msup< <mi<x</mi< <mi<p</mi< </msup< <mo<+</mo< <mn<1</mn< <mo stretchy="false"<)</mo< </mrow< <msup< <mi<p</mi< <mrow< <mi<e</mi< <mo<−</mo< <mn<1</mn< </mrow< </msup< </msup< <mrow< <mo stretchy="false"<(</mo< <mi<mod</mi< <mspace width="4pt"<</mspace< <msup< <mi<p</mi< <mi<e</mi< </msup< <mo stretchy="false"<)</mo< </mrow< </mrow< </semantics< </math< </inline-formula< of binomial expansions which we could prove for any prime number <i<p</i< and any positive integer <i<e</i<. We think that this article is fit for the Special Issue “Number Theory and Symmetry,” since we prove a symmetric property on the 4-Pascal’s triangle by means of a number-theoretical property of binomial expansions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">the pe-pascal’s triangle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lucas’ result on the pascal’s triangle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">congruences of binomial expansions</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kazuki Taniguchi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Symmetry</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">12(2020), 2, p 288</subfield><subfield code="w">(DE-627)610604112</subfield><subfield code="w">(DE-600)2518382-5</subfield><subfield code="x">20738994</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:2, p 288</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/sym12020288</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0db67940865b4ec7a2aa9f55bb01da45</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-8994/12/2/288</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-8994</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2020</subfield><subfield code="e">2, p 288</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Atsushi Yamagami |
spellingShingle |
Atsushi Yamagami misc QA1-939 misc the pe-pascal’s triangle misc lucas’ result on the pascal’s triangle misc congruences of binomial expansions misc Mathematics On a Generalization of a Lucas’ Result and an Application to the 4-Pascal’s Triangle |
authorStr |
Atsushi Yamagami |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)610604112 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
20738994 |
topic_title |
QA1-939 On a Generalization of a Lucas’ Result and an Application to the 4-Pascal’s Triangle the pe-pascal’s triangle lucas’ result on the pascal’s triangle congruences of binomial expansions |
topic |
misc QA1-939 misc the pe-pascal’s triangle misc lucas’ result on the pascal’s triangle misc congruences of binomial expansions misc Mathematics |
topic_unstemmed |
misc QA1-939 misc the pe-pascal’s triangle misc lucas’ result on the pascal’s triangle misc congruences of binomial expansions misc Mathematics |
topic_browse |
misc QA1-939 misc the pe-pascal’s triangle misc lucas’ result on the pascal’s triangle misc congruences of binomial expansions misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Symmetry |
hierarchy_parent_id |
610604112 |
hierarchy_top_title |
Symmetry |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)610604112 (DE-600)2518382-5 |
title |
On a Generalization of a Lucas’ Result and an Application to the 4-Pascal’s Triangle |
ctrlnum |
(DE-627)DOAJ079287948 (DE-599)DOAJ0db67940865b4ec7a2aa9f55bb01da45 |
title_full |
On a Generalization of a Lucas’ Result and an Application to the 4-Pascal’s Triangle |
author_sort |
Atsushi Yamagami |
journal |
Symmetry |
journalStr |
Symmetry |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Atsushi Yamagami Kazuki Taniguchi |
container_volume |
12 |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Atsushi Yamagami |
doi_str_mv |
10.3390/sym12020288 |
author2-role |
verfasserin |
title_sort |
on a generalization of a lucas’ result and an application to the 4-pascal’s triangle |
callnumber |
QA1-939 |
title_auth |
On a Generalization of a Lucas’ Result and an Application to the 4-Pascal’s Triangle |
abstract |
The Pascal’s triangle is generalized to “the <i<k</i<-Pascal’s triangle” with any integer <inline-formula< <math display="inline"< <semantics< <mrow< <mi<k</mi< <mo<≥</mo< <mn<2</mn< </mrow< </semantics< </math< </inline-formula<. Let <i<p</i< be any prime number. In this article, we prove that for any positive integers <i<n</i< and <i<e</i<, the <i<n</i<-th row in the <inline-formula< <math display="inline"< <semantics< <msup< <mi<p</mi< <mi<e</mi< </msup< </semantics< </math< </inline-formula<-Pascal’s triangle consists of integers which are congruent to 1 modulo <i<p</i< if and only if <i<n</i< is of the form <inline-formula< <math display="inline"< <semantics< <mstyle displaystyle="true" scriptlevel="0"< <mfrac< <mrow< <msup< <mi<p</mi< <mrow< <mi<e</mi< <mi<m</mi< </mrow< </msup< <mo<−</mo< <mn<1</mn< </mrow< <mrow< <msup< <mi<p</mi< <mi<e</mi< </msup< <mo<−</mo< <mn<1</mn< </mrow< </mfrac< </mstyle< </semantics< </math< </inline-formula< with some integer <inline-formula< <math display="inline"< <semantics< <mrow< <mi<m</mi< <mo<≥</mo< <mn<1</mn< </mrow< </semantics< </math< </inline-formula<. This is a generalization of a Lucas’ result asserting that the <i<n</i<-th row in the (2-)Pascal’s triangle consists of odd integers if and only if <i<n</i< is a Mersenne number. As an application, we then see that there exists no row in the 4-Pascal’s triangle consisting of integers which are congruent to 1 modulo 4 except the first row. In this application, we use the congruence <inline-formula< <math display="inline"< <semantics< <mrow< <msup< <mrow< <mo stretchy="false"<(</mo< <mi<x</mi< <mo<+</mo< <mn<1</mn< <mo stretchy="false"<)</mo< </mrow< <msup< <mi<p</mi< <mi<e</mi< </msup< </msup< <mo<≡</mo< <msup< <mrow< <mo stretchy="false"<(</mo< <msup< <mi<x</mi< <mi<p</mi< </msup< <mo<+</mo< <mn<1</mn< <mo stretchy="false"<)</mo< </mrow< <msup< <mi<p</mi< <mrow< <mi<e</mi< <mo<−</mo< <mn<1</mn< </mrow< </msup< </msup< <mrow< <mo stretchy="false"<(</mo< <mi<mod</mi< <mspace width="4pt"<</mspace< <msup< <mi<p</mi< <mi<e</mi< </msup< <mo stretchy="false"<)</mo< </mrow< </mrow< </semantics< </math< </inline-formula< of binomial expansions which we could prove for any prime number <i<p</i< and any positive integer <i<e</i<. We think that this article is fit for the Special Issue “Number Theory and Symmetry,” since we prove a symmetric property on the 4-Pascal’s triangle by means of a number-theoretical property of binomial expansions. |
abstractGer |
The Pascal’s triangle is generalized to “the <i<k</i<-Pascal’s triangle” with any integer <inline-formula< <math display="inline"< <semantics< <mrow< <mi<k</mi< <mo<≥</mo< <mn<2</mn< </mrow< </semantics< </math< </inline-formula<. Let <i<p</i< be any prime number. In this article, we prove that for any positive integers <i<n</i< and <i<e</i<, the <i<n</i<-th row in the <inline-formula< <math display="inline"< <semantics< <msup< <mi<p</mi< <mi<e</mi< </msup< </semantics< </math< </inline-formula<-Pascal’s triangle consists of integers which are congruent to 1 modulo <i<p</i< if and only if <i<n</i< is of the form <inline-formula< <math display="inline"< <semantics< <mstyle displaystyle="true" scriptlevel="0"< <mfrac< <mrow< <msup< <mi<p</mi< <mrow< <mi<e</mi< <mi<m</mi< </mrow< </msup< <mo<−</mo< <mn<1</mn< </mrow< <mrow< <msup< <mi<p</mi< <mi<e</mi< </msup< <mo<−</mo< <mn<1</mn< </mrow< </mfrac< </mstyle< </semantics< </math< </inline-formula< with some integer <inline-formula< <math display="inline"< <semantics< <mrow< <mi<m</mi< <mo<≥</mo< <mn<1</mn< </mrow< </semantics< </math< </inline-formula<. This is a generalization of a Lucas’ result asserting that the <i<n</i<-th row in the (2-)Pascal’s triangle consists of odd integers if and only if <i<n</i< is a Mersenne number. As an application, we then see that there exists no row in the 4-Pascal’s triangle consisting of integers which are congruent to 1 modulo 4 except the first row. In this application, we use the congruence <inline-formula< <math display="inline"< <semantics< <mrow< <msup< <mrow< <mo stretchy="false"<(</mo< <mi<x</mi< <mo<+</mo< <mn<1</mn< <mo stretchy="false"<)</mo< </mrow< <msup< <mi<p</mi< <mi<e</mi< </msup< </msup< <mo<≡</mo< <msup< <mrow< <mo stretchy="false"<(</mo< <msup< <mi<x</mi< <mi<p</mi< </msup< <mo<+</mo< <mn<1</mn< <mo stretchy="false"<)</mo< </mrow< <msup< <mi<p</mi< <mrow< <mi<e</mi< <mo<−</mo< <mn<1</mn< </mrow< </msup< </msup< <mrow< <mo stretchy="false"<(</mo< <mi<mod</mi< <mspace width="4pt"<</mspace< <msup< <mi<p</mi< <mi<e</mi< </msup< <mo stretchy="false"<)</mo< </mrow< </mrow< </semantics< </math< </inline-formula< of binomial expansions which we could prove for any prime number <i<p</i< and any positive integer <i<e</i<. We think that this article is fit for the Special Issue “Number Theory and Symmetry,” since we prove a symmetric property on the 4-Pascal’s triangle by means of a number-theoretical property of binomial expansions. |
abstract_unstemmed |
The Pascal’s triangle is generalized to “the <i<k</i<-Pascal’s triangle” with any integer <inline-formula< <math display="inline"< <semantics< <mrow< <mi<k</mi< <mo<≥</mo< <mn<2</mn< </mrow< </semantics< </math< </inline-formula<. Let <i<p</i< be any prime number. In this article, we prove that for any positive integers <i<n</i< and <i<e</i<, the <i<n</i<-th row in the <inline-formula< <math display="inline"< <semantics< <msup< <mi<p</mi< <mi<e</mi< </msup< </semantics< </math< </inline-formula<-Pascal’s triangle consists of integers which are congruent to 1 modulo <i<p</i< if and only if <i<n</i< is of the form <inline-formula< <math display="inline"< <semantics< <mstyle displaystyle="true" scriptlevel="0"< <mfrac< <mrow< <msup< <mi<p</mi< <mrow< <mi<e</mi< <mi<m</mi< </mrow< </msup< <mo<−</mo< <mn<1</mn< </mrow< <mrow< <msup< <mi<p</mi< <mi<e</mi< </msup< <mo<−</mo< <mn<1</mn< </mrow< </mfrac< </mstyle< </semantics< </math< </inline-formula< with some integer <inline-formula< <math display="inline"< <semantics< <mrow< <mi<m</mi< <mo<≥</mo< <mn<1</mn< </mrow< </semantics< </math< </inline-formula<. This is a generalization of a Lucas’ result asserting that the <i<n</i<-th row in the (2-)Pascal’s triangle consists of odd integers if and only if <i<n</i< is a Mersenne number. As an application, we then see that there exists no row in the 4-Pascal’s triangle consisting of integers which are congruent to 1 modulo 4 except the first row. In this application, we use the congruence <inline-formula< <math display="inline"< <semantics< <mrow< <msup< <mrow< <mo stretchy="false"<(</mo< <mi<x</mi< <mo<+</mo< <mn<1</mn< <mo stretchy="false"<)</mo< </mrow< <msup< <mi<p</mi< <mi<e</mi< </msup< </msup< <mo<≡</mo< <msup< <mrow< <mo stretchy="false"<(</mo< <msup< <mi<x</mi< <mi<p</mi< </msup< <mo<+</mo< <mn<1</mn< <mo stretchy="false"<)</mo< </mrow< <msup< <mi<p</mi< <mrow< <mi<e</mi< <mo<−</mo< <mn<1</mn< </mrow< </msup< </msup< <mrow< <mo stretchy="false"<(</mo< <mi<mod</mi< <mspace width="4pt"<</mspace< <msup< <mi<p</mi< <mi<e</mi< </msup< <mo stretchy="false"<)</mo< </mrow< </mrow< </semantics< </math< </inline-formula< of binomial expansions which we could prove for any prime number <i<p</i< and any positive integer <i<e</i<. We think that this article is fit for the Special Issue “Number Theory and Symmetry,” since we prove a symmetric property on the 4-Pascal’s triangle by means of a number-theoretical property of binomial expansions. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2, p 288 |
title_short |
On a Generalization of a Lucas’ Result and an Application to the 4-Pascal’s Triangle |
url |
https://doi.org/10.3390/sym12020288 https://doaj.org/article/0db67940865b4ec7a2aa9f55bb01da45 https://www.mdpi.com/2073-8994/12/2/288 https://doaj.org/toc/2073-8994 |
remote_bool |
true |
author2 |
Kazuki Taniguchi |
author2Str |
Kazuki Taniguchi |
ppnlink |
610604112 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/sym12020288 |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T22:42:35.931Z |
_version_ |
1803599537435049984 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ079287948</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230307013819.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230307s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/sym12020288</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ079287948</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0db67940865b4ec7a2aa9f55bb01da45</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Atsushi Yamagami</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On a Generalization of a Lucas’ Result and an Application to the 4-Pascal’s Triangle</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Pascal’s triangle is generalized to “the <i<k</i<-Pascal’s triangle” with any integer <inline-formula< <math display="inline"< <semantics< <mrow< <mi<k</mi< <mo<≥</mo< <mn<2</mn< </mrow< </semantics< </math< </inline-formula<. Let <i<p</i< be any prime number. In this article, we prove that for any positive integers <i<n</i< and <i<e</i<, the <i<n</i<-th row in the <inline-formula< <math display="inline"< <semantics< <msup< <mi<p</mi< <mi<e</mi< </msup< </semantics< </math< </inline-formula<-Pascal’s triangle consists of integers which are congruent to 1 modulo <i<p</i< if and only if <i<n</i< is of the form <inline-formula< <math display="inline"< <semantics< <mstyle displaystyle="true" scriptlevel="0"< <mfrac< <mrow< <msup< <mi<p</mi< <mrow< <mi<e</mi< <mi<m</mi< </mrow< </msup< <mo<−</mo< <mn<1</mn< </mrow< <mrow< <msup< <mi<p</mi< <mi<e</mi< </msup< <mo<−</mo< <mn<1</mn< </mrow< </mfrac< </mstyle< </semantics< </math< </inline-formula< with some integer <inline-formula< <math display="inline"< <semantics< <mrow< <mi<m</mi< <mo<≥</mo< <mn<1</mn< </mrow< </semantics< </math< </inline-formula<. This is a generalization of a Lucas’ result asserting that the <i<n</i<-th row in the (2-)Pascal’s triangle consists of odd integers if and only if <i<n</i< is a Mersenne number. As an application, we then see that there exists no row in the 4-Pascal’s triangle consisting of integers which are congruent to 1 modulo 4 except the first row. In this application, we use the congruence <inline-formula< <math display="inline"< <semantics< <mrow< <msup< <mrow< <mo stretchy="false"<(</mo< <mi<x</mi< <mo<+</mo< <mn<1</mn< <mo stretchy="false"<)</mo< </mrow< <msup< <mi<p</mi< <mi<e</mi< </msup< </msup< <mo<≡</mo< <msup< <mrow< <mo stretchy="false"<(</mo< <msup< <mi<x</mi< <mi<p</mi< </msup< <mo<+</mo< <mn<1</mn< <mo stretchy="false"<)</mo< </mrow< <msup< <mi<p</mi< <mrow< <mi<e</mi< <mo<−</mo< <mn<1</mn< </mrow< </msup< </msup< <mrow< <mo stretchy="false"<(</mo< <mi<mod</mi< <mspace width="4pt"<</mspace< <msup< <mi<p</mi< <mi<e</mi< </msup< <mo stretchy="false"<)</mo< </mrow< </mrow< </semantics< </math< </inline-formula< of binomial expansions which we could prove for any prime number <i<p</i< and any positive integer <i<e</i<. We think that this article is fit for the Special Issue “Number Theory and Symmetry,” since we prove a symmetric property on the 4-Pascal’s triangle by means of a number-theoretical property of binomial expansions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">the pe-pascal’s triangle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lucas’ result on the pascal’s triangle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">congruences of binomial expansions</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kazuki Taniguchi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Symmetry</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">12(2020), 2, p 288</subfield><subfield code="w">(DE-627)610604112</subfield><subfield code="w">(DE-600)2518382-5</subfield><subfield code="x">20738994</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:2, p 288</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/sym12020288</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0db67940865b4ec7a2aa9f55bb01da45</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-8994/12/2/288</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-8994</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2020</subfield><subfield code="e">2, p 288</subfield></datafield></record></collection>
|
score |
7.4018803 |