Towards an Algorithm-Based Tailored Treatment of Acute Neonatal Hyperammonemia
Acute neonatal hyperammonemia is associated with poor neurological outcomes and high mortality. We developed, based on kinetic modeling, a user-friendly and widely applicable algorithm to tailor the treatment of acute neonatal hyperammonemia. A single compartmental model was calibrated assuming a di...
Ausführliche Beschreibung
Autor*in: |
Sunny Eloot [verfasserIn] Jonathan De Rudder [verfasserIn] Patrick Verloo [verfasserIn] Evelyn Dhont [verfasserIn] Ann Raes [verfasserIn] Wim Van Biesen [verfasserIn] Evelien Snauwaert [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Toxins - MDPI AG, 2010, 13(2021), 7, p 484 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2021 ; number:7, p 484 |
Links: |
---|
DOI / URN: |
10.3390/toxins13070484 |
---|
Katalog-ID: |
DOAJ079342914 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ079342914 | ||
003 | DE-627 | ||
005 | 20240412165246.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230307s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/toxins13070484 |2 doi | |
035 | |a (DE-627)DOAJ079342914 | ||
035 | |a (DE-599)DOAJfd4a80af47934805894be7898102c2f2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Sunny Eloot |e verfasserin |4 aut | |
245 | 1 | 0 | |a Towards an Algorithm-Based Tailored Treatment of Acute Neonatal Hyperammonemia |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Acute neonatal hyperammonemia is associated with poor neurological outcomes and high mortality. We developed, based on kinetic modeling, a user-friendly and widely applicable algorithm to tailor the treatment of acute neonatal hyperammonemia. A single compartmental model was calibrated assuming a distribution volume equal to the patient’s total body water (V), as calculated using Wells’ formula, and dialyzer clearance as derived from the measured ammonia time–concentration curves during 11 dialysis sessions in four patients (3.2 ± 0.4 kg). Based on these kinetic simulations, dialysis protocols could be derived for clinical use with different body weights, start concentrations, dialysis machines/dialyzers and dialysis settings (e.g., blood flow Q<sub<B</sub<). By a single measurement of ammonia concentration at the dialyzer inlet and outlet, dialyzer clearance (K) can be calculated as K = Q<sub<B</sub<∙[(C<sub<inlet</sub< − C<sub<outlet</sub<)/C<sub<inlet</sub<]. The time (T) needed to decrease the ammonia concentration from a predialysis start concentration C<sub<start</sub< to a desired target concentration C<sub<target</sub< is then equal to T = (−V/K)∙LN(C<sub<target</sub</C<sub<start</sub<). By implementing these formulae in a simple spreadsheet, medical staff can draw an institution-specific flowchart for patient-tailored treatment of hyperammonemia. | ||
650 | 4 | |a hyperammonemia | |
650 | 4 | |a inborn errors of metabolism | |
650 | 4 | |a hemodialysis | |
650 | 4 | |a infant | |
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
700 | 0 | |a Jonathan De Rudder |e verfasserin |4 aut | |
700 | 0 | |a Patrick Verloo |e verfasserin |4 aut | |
700 | 0 | |a Evelyn Dhont |e verfasserin |4 aut | |
700 | 0 | |a Ann Raes |e verfasserin |4 aut | |
700 | 0 | |a Wim Van Biesen |e verfasserin |4 aut | |
700 | 0 | |a Evelien Snauwaert |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Toxins |d MDPI AG, 2010 |g 13(2021), 7, p 484 |w (DE-627)610604236 |w (DE-600)2518395-3 |x 20726651 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2021 |g number:7, p 484 |
856 | 4 | 0 | |u https://doi.org/10.3390/toxins13070484 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/fd4a80af47934805894be7898102c2f2 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2072-6651/13/7/484 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2072-6651 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2021 |e 7, p 484 |
author_variant |
s e se j d r jdr p v pv e d ed a r ar w v b wvb e s es |
---|---|
matchkey_str |
article:20726651:2021----::oadaagrtmaetioetetetfctno |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.3390/toxins13070484 doi (DE-627)DOAJ079342914 (DE-599)DOAJfd4a80af47934805894be7898102c2f2 DE-627 ger DE-627 rakwb eng Sunny Eloot verfasserin aut Towards an Algorithm-Based Tailored Treatment of Acute Neonatal Hyperammonemia 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Acute neonatal hyperammonemia is associated with poor neurological outcomes and high mortality. We developed, based on kinetic modeling, a user-friendly and widely applicable algorithm to tailor the treatment of acute neonatal hyperammonemia. A single compartmental model was calibrated assuming a distribution volume equal to the patient’s total body water (V), as calculated using Wells’ formula, and dialyzer clearance as derived from the measured ammonia time–concentration curves during 11 dialysis sessions in four patients (3.2 ± 0.4 kg). Based on these kinetic simulations, dialysis protocols could be derived for clinical use with different body weights, start concentrations, dialysis machines/dialyzers and dialysis settings (e.g., blood flow Q<sub<B</sub<). By a single measurement of ammonia concentration at the dialyzer inlet and outlet, dialyzer clearance (K) can be calculated as K = Q<sub<B</sub<∙[(C<sub<inlet</sub< − C<sub<outlet</sub<)/C<sub<inlet</sub<]. The time (T) needed to decrease the ammonia concentration from a predialysis start concentration C<sub<start</sub< to a desired target concentration C<sub<target</sub< is then equal to T = (−V/K)∙LN(C<sub<target</sub</C<sub<start</sub<). By implementing these formulae in a simple spreadsheet, medical staff can draw an institution-specific flowchart for patient-tailored treatment of hyperammonemia. hyperammonemia inborn errors of metabolism hemodialysis infant Medicine R Jonathan De Rudder verfasserin aut Patrick Verloo verfasserin aut Evelyn Dhont verfasserin aut Ann Raes verfasserin aut Wim Van Biesen verfasserin aut Evelien Snauwaert verfasserin aut In Toxins MDPI AG, 2010 13(2021), 7, p 484 (DE-627)610604236 (DE-600)2518395-3 20726651 nnns volume:13 year:2021 number:7, p 484 https://doi.org/10.3390/toxins13070484 kostenfrei https://doaj.org/article/fd4a80af47934805894be7898102c2f2 kostenfrei https://www.mdpi.com/2072-6651/13/7/484 kostenfrei https://doaj.org/toc/2072-6651 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 7, p 484 |
spelling |
10.3390/toxins13070484 doi (DE-627)DOAJ079342914 (DE-599)DOAJfd4a80af47934805894be7898102c2f2 DE-627 ger DE-627 rakwb eng Sunny Eloot verfasserin aut Towards an Algorithm-Based Tailored Treatment of Acute Neonatal Hyperammonemia 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Acute neonatal hyperammonemia is associated with poor neurological outcomes and high mortality. We developed, based on kinetic modeling, a user-friendly and widely applicable algorithm to tailor the treatment of acute neonatal hyperammonemia. A single compartmental model was calibrated assuming a distribution volume equal to the patient’s total body water (V), as calculated using Wells’ formula, and dialyzer clearance as derived from the measured ammonia time–concentration curves during 11 dialysis sessions in four patients (3.2 ± 0.4 kg). Based on these kinetic simulations, dialysis protocols could be derived for clinical use with different body weights, start concentrations, dialysis machines/dialyzers and dialysis settings (e.g., blood flow Q<sub<B</sub<). By a single measurement of ammonia concentration at the dialyzer inlet and outlet, dialyzer clearance (K) can be calculated as K = Q<sub<B</sub<∙[(C<sub<inlet</sub< − C<sub<outlet</sub<)/C<sub<inlet</sub<]. The time (T) needed to decrease the ammonia concentration from a predialysis start concentration C<sub<start</sub< to a desired target concentration C<sub<target</sub< is then equal to T = (−V/K)∙LN(C<sub<target</sub</C<sub<start</sub<). By implementing these formulae in a simple spreadsheet, medical staff can draw an institution-specific flowchart for patient-tailored treatment of hyperammonemia. hyperammonemia inborn errors of metabolism hemodialysis infant Medicine R Jonathan De Rudder verfasserin aut Patrick Verloo verfasserin aut Evelyn Dhont verfasserin aut Ann Raes verfasserin aut Wim Van Biesen verfasserin aut Evelien Snauwaert verfasserin aut In Toxins MDPI AG, 2010 13(2021), 7, p 484 (DE-627)610604236 (DE-600)2518395-3 20726651 nnns volume:13 year:2021 number:7, p 484 https://doi.org/10.3390/toxins13070484 kostenfrei https://doaj.org/article/fd4a80af47934805894be7898102c2f2 kostenfrei https://www.mdpi.com/2072-6651/13/7/484 kostenfrei https://doaj.org/toc/2072-6651 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 7, p 484 |
allfields_unstemmed |
10.3390/toxins13070484 doi (DE-627)DOAJ079342914 (DE-599)DOAJfd4a80af47934805894be7898102c2f2 DE-627 ger DE-627 rakwb eng Sunny Eloot verfasserin aut Towards an Algorithm-Based Tailored Treatment of Acute Neonatal Hyperammonemia 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Acute neonatal hyperammonemia is associated with poor neurological outcomes and high mortality. We developed, based on kinetic modeling, a user-friendly and widely applicable algorithm to tailor the treatment of acute neonatal hyperammonemia. A single compartmental model was calibrated assuming a distribution volume equal to the patient’s total body water (V), as calculated using Wells’ formula, and dialyzer clearance as derived from the measured ammonia time–concentration curves during 11 dialysis sessions in four patients (3.2 ± 0.4 kg). Based on these kinetic simulations, dialysis protocols could be derived for clinical use with different body weights, start concentrations, dialysis machines/dialyzers and dialysis settings (e.g., blood flow Q<sub<B</sub<). By a single measurement of ammonia concentration at the dialyzer inlet and outlet, dialyzer clearance (K) can be calculated as K = Q<sub<B</sub<∙[(C<sub<inlet</sub< − C<sub<outlet</sub<)/C<sub<inlet</sub<]. The time (T) needed to decrease the ammonia concentration from a predialysis start concentration C<sub<start</sub< to a desired target concentration C<sub<target</sub< is then equal to T = (−V/K)∙LN(C<sub<target</sub</C<sub<start</sub<). By implementing these formulae in a simple spreadsheet, medical staff can draw an institution-specific flowchart for patient-tailored treatment of hyperammonemia. hyperammonemia inborn errors of metabolism hemodialysis infant Medicine R Jonathan De Rudder verfasserin aut Patrick Verloo verfasserin aut Evelyn Dhont verfasserin aut Ann Raes verfasserin aut Wim Van Biesen verfasserin aut Evelien Snauwaert verfasserin aut In Toxins MDPI AG, 2010 13(2021), 7, p 484 (DE-627)610604236 (DE-600)2518395-3 20726651 nnns volume:13 year:2021 number:7, p 484 https://doi.org/10.3390/toxins13070484 kostenfrei https://doaj.org/article/fd4a80af47934805894be7898102c2f2 kostenfrei https://www.mdpi.com/2072-6651/13/7/484 kostenfrei https://doaj.org/toc/2072-6651 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 7, p 484 |
allfieldsGer |
10.3390/toxins13070484 doi (DE-627)DOAJ079342914 (DE-599)DOAJfd4a80af47934805894be7898102c2f2 DE-627 ger DE-627 rakwb eng Sunny Eloot verfasserin aut Towards an Algorithm-Based Tailored Treatment of Acute Neonatal Hyperammonemia 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Acute neonatal hyperammonemia is associated with poor neurological outcomes and high mortality. We developed, based on kinetic modeling, a user-friendly and widely applicable algorithm to tailor the treatment of acute neonatal hyperammonemia. A single compartmental model was calibrated assuming a distribution volume equal to the patient’s total body water (V), as calculated using Wells’ formula, and dialyzer clearance as derived from the measured ammonia time–concentration curves during 11 dialysis sessions in four patients (3.2 ± 0.4 kg). Based on these kinetic simulations, dialysis protocols could be derived for clinical use with different body weights, start concentrations, dialysis machines/dialyzers and dialysis settings (e.g., blood flow Q<sub<B</sub<). By a single measurement of ammonia concentration at the dialyzer inlet and outlet, dialyzer clearance (K) can be calculated as K = Q<sub<B</sub<∙[(C<sub<inlet</sub< − C<sub<outlet</sub<)/C<sub<inlet</sub<]. The time (T) needed to decrease the ammonia concentration from a predialysis start concentration C<sub<start</sub< to a desired target concentration C<sub<target</sub< is then equal to T = (−V/K)∙LN(C<sub<target</sub</C<sub<start</sub<). By implementing these formulae in a simple spreadsheet, medical staff can draw an institution-specific flowchart for patient-tailored treatment of hyperammonemia. hyperammonemia inborn errors of metabolism hemodialysis infant Medicine R Jonathan De Rudder verfasserin aut Patrick Verloo verfasserin aut Evelyn Dhont verfasserin aut Ann Raes verfasserin aut Wim Van Biesen verfasserin aut Evelien Snauwaert verfasserin aut In Toxins MDPI AG, 2010 13(2021), 7, p 484 (DE-627)610604236 (DE-600)2518395-3 20726651 nnns volume:13 year:2021 number:7, p 484 https://doi.org/10.3390/toxins13070484 kostenfrei https://doaj.org/article/fd4a80af47934805894be7898102c2f2 kostenfrei https://www.mdpi.com/2072-6651/13/7/484 kostenfrei https://doaj.org/toc/2072-6651 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 7, p 484 |
allfieldsSound |
10.3390/toxins13070484 doi (DE-627)DOAJ079342914 (DE-599)DOAJfd4a80af47934805894be7898102c2f2 DE-627 ger DE-627 rakwb eng Sunny Eloot verfasserin aut Towards an Algorithm-Based Tailored Treatment of Acute Neonatal Hyperammonemia 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Acute neonatal hyperammonemia is associated with poor neurological outcomes and high mortality. We developed, based on kinetic modeling, a user-friendly and widely applicable algorithm to tailor the treatment of acute neonatal hyperammonemia. A single compartmental model was calibrated assuming a distribution volume equal to the patient’s total body water (V), as calculated using Wells’ formula, and dialyzer clearance as derived from the measured ammonia time–concentration curves during 11 dialysis sessions in four patients (3.2 ± 0.4 kg). Based on these kinetic simulations, dialysis protocols could be derived for clinical use with different body weights, start concentrations, dialysis machines/dialyzers and dialysis settings (e.g., blood flow Q<sub<B</sub<). By a single measurement of ammonia concentration at the dialyzer inlet and outlet, dialyzer clearance (K) can be calculated as K = Q<sub<B</sub<∙[(C<sub<inlet</sub< − C<sub<outlet</sub<)/C<sub<inlet</sub<]. The time (T) needed to decrease the ammonia concentration from a predialysis start concentration C<sub<start</sub< to a desired target concentration C<sub<target</sub< is then equal to T = (−V/K)∙LN(C<sub<target</sub</C<sub<start</sub<). By implementing these formulae in a simple spreadsheet, medical staff can draw an institution-specific flowchart for patient-tailored treatment of hyperammonemia. hyperammonemia inborn errors of metabolism hemodialysis infant Medicine R Jonathan De Rudder verfasserin aut Patrick Verloo verfasserin aut Evelyn Dhont verfasserin aut Ann Raes verfasserin aut Wim Van Biesen verfasserin aut Evelien Snauwaert verfasserin aut In Toxins MDPI AG, 2010 13(2021), 7, p 484 (DE-627)610604236 (DE-600)2518395-3 20726651 nnns volume:13 year:2021 number:7, p 484 https://doi.org/10.3390/toxins13070484 kostenfrei https://doaj.org/article/fd4a80af47934805894be7898102c2f2 kostenfrei https://www.mdpi.com/2072-6651/13/7/484 kostenfrei https://doaj.org/toc/2072-6651 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2021 7, p 484 |
language |
English |
source |
In Toxins 13(2021), 7, p 484 volume:13 year:2021 number:7, p 484 |
sourceStr |
In Toxins 13(2021), 7, p 484 volume:13 year:2021 number:7, p 484 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
hyperammonemia inborn errors of metabolism hemodialysis infant Medicine R |
isfreeaccess_bool |
true |
container_title |
Toxins |
authorswithroles_txt_mv |
Sunny Eloot @@aut@@ Jonathan De Rudder @@aut@@ Patrick Verloo @@aut@@ Evelyn Dhont @@aut@@ Ann Raes @@aut@@ Wim Van Biesen @@aut@@ Evelien Snauwaert @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
610604236 |
id |
DOAJ079342914 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ079342914</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412165246.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230307s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/toxins13070484</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ079342914</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfd4a80af47934805894be7898102c2f2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sunny Eloot</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Towards an Algorithm-Based Tailored Treatment of Acute Neonatal Hyperammonemia</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Acute neonatal hyperammonemia is associated with poor neurological outcomes and high mortality. We developed, based on kinetic modeling, a user-friendly and widely applicable algorithm to tailor the treatment of acute neonatal hyperammonemia. A single compartmental model was calibrated assuming a distribution volume equal to the patient’s total body water (V), as calculated using Wells’ formula, and dialyzer clearance as derived from the measured ammonia time–concentration curves during 11 dialysis sessions in four patients (3.2 ± 0.4 kg). Based on these kinetic simulations, dialysis protocols could be derived for clinical use with different body weights, start concentrations, dialysis machines/dialyzers and dialysis settings (e.g., blood flow Q<sub<B</sub<). By a single measurement of ammonia concentration at the dialyzer inlet and outlet, dialyzer clearance (K) can be calculated as K = Q<sub<B</sub<∙[(C<sub<inlet</sub< − C<sub<outlet</sub<)/C<sub<inlet</sub<]. The time (T) needed to decrease the ammonia concentration from a predialysis start concentration C<sub<start</sub< to a desired target concentration C<sub<target</sub< is then equal to T = (−V/K)∙LN(C<sub<target</sub</C<sub<start</sub<). By implementing these formulae in a simple spreadsheet, medical staff can draw an institution-specific flowchart for patient-tailored treatment of hyperammonemia.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hyperammonemia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inborn errors of metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hemodialysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">infant</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jonathan De Rudder</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Patrick Verloo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Evelyn Dhont</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ann Raes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wim Van Biesen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Evelien Snauwaert</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Toxins</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">13(2021), 7, p 484</subfield><subfield code="w">(DE-627)610604236</subfield><subfield code="w">(DE-600)2518395-3</subfield><subfield code="x">20726651</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:7, p 484</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/toxins13070484</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fd4a80af47934805894be7898102c2f2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-6651/13/7/484</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-6651</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">7, p 484</subfield></datafield></record></collection>
|
author |
Sunny Eloot |
spellingShingle |
Sunny Eloot misc hyperammonemia misc inborn errors of metabolism misc hemodialysis misc infant misc Medicine misc R Towards an Algorithm-Based Tailored Treatment of Acute Neonatal Hyperammonemia |
authorStr |
Sunny Eloot |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)610604236 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20726651 |
topic_title |
Towards an Algorithm-Based Tailored Treatment of Acute Neonatal Hyperammonemia hyperammonemia inborn errors of metabolism hemodialysis infant |
topic |
misc hyperammonemia misc inborn errors of metabolism misc hemodialysis misc infant misc Medicine misc R |
topic_unstemmed |
misc hyperammonemia misc inborn errors of metabolism misc hemodialysis misc infant misc Medicine misc R |
topic_browse |
misc hyperammonemia misc inborn errors of metabolism misc hemodialysis misc infant misc Medicine misc R |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Toxins |
hierarchy_parent_id |
610604236 |
hierarchy_top_title |
Toxins |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)610604236 (DE-600)2518395-3 |
title |
Towards an Algorithm-Based Tailored Treatment of Acute Neonatal Hyperammonemia |
ctrlnum |
(DE-627)DOAJ079342914 (DE-599)DOAJfd4a80af47934805894be7898102c2f2 |
title_full |
Towards an Algorithm-Based Tailored Treatment of Acute Neonatal Hyperammonemia |
author_sort |
Sunny Eloot |
journal |
Toxins |
journalStr |
Toxins |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
author_browse |
Sunny Eloot Jonathan De Rudder Patrick Verloo Evelyn Dhont Ann Raes Wim Van Biesen Evelien Snauwaert |
container_volume |
13 |
format_se |
Elektronische Aufsätze |
author-letter |
Sunny Eloot |
doi_str_mv |
10.3390/toxins13070484 |
author2-role |
verfasserin |
title_sort |
towards an algorithm-based tailored treatment of acute neonatal hyperammonemia |
title_auth |
Towards an Algorithm-Based Tailored Treatment of Acute Neonatal Hyperammonemia |
abstract |
Acute neonatal hyperammonemia is associated with poor neurological outcomes and high mortality. We developed, based on kinetic modeling, a user-friendly and widely applicable algorithm to tailor the treatment of acute neonatal hyperammonemia. A single compartmental model was calibrated assuming a distribution volume equal to the patient’s total body water (V), as calculated using Wells’ formula, and dialyzer clearance as derived from the measured ammonia time–concentration curves during 11 dialysis sessions in four patients (3.2 ± 0.4 kg). Based on these kinetic simulations, dialysis protocols could be derived for clinical use with different body weights, start concentrations, dialysis machines/dialyzers and dialysis settings (e.g., blood flow Q<sub<B</sub<). By a single measurement of ammonia concentration at the dialyzer inlet and outlet, dialyzer clearance (K) can be calculated as K = Q<sub<B</sub<∙[(C<sub<inlet</sub< − C<sub<outlet</sub<)/C<sub<inlet</sub<]. The time (T) needed to decrease the ammonia concentration from a predialysis start concentration C<sub<start</sub< to a desired target concentration C<sub<target</sub< is then equal to T = (−V/K)∙LN(C<sub<target</sub</C<sub<start</sub<). By implementing these formulae in a simple spreadsheet, medical staff can draw an institution-specific flowchart for patient-tailored treatment of hyperammonemia. |
abstractGer |
Acute neonatal hyperammonemia is associated with poor neurological outcomes and high mortality. We developed, based on kinetic modeling, a user-friendly and widely applicable algorithm to tailor the treatment of acute neonatal hyperammonemia. A single compartmental model was calibrated assuming a distribution volume equal to the patient’s total body water (V), as calculated using Wells’ formula, and dialyzer clearance as derived from the measured ammonia time–concentration curves during 11 dialysis sessions in four patients (3.2 ± 0.4 kg). Based on these kinetic simulations, dialysis protocols could be derived for clinical use with different body weights, start concentrations, dialysis machines/dialyzers and dialysis settings (e.g., blood flow Q<sub<B</sub<). By a single measurement of ammonia concentration at the dialyzer inlet and outlet, dialyzer clearance (K) can be calculated as K = Q<sub<B</sub<∙[(C<sub<inlet</sub< − C<sub<outlet</sub<)/C<sub<inlet</sub<]. The time (T) needed to decrease the ammonia concentration from a predialysis start concentration C<sub<start</sub< to a desired target concentration C<sub<target</sub< is then equal to T = (−V/K)∙LN(C<sub<target</sub</C<sub<start</sub<). By implementing these formulae in a simple spreadsheet, medical staff can draw an institution-specific flowchart for patient-tailored treatment of hyperammonemia. |
abstract_unstemmed |
Acute neonatal hyperammonemia is associated with poor neurological outcomes and high mortality. We developed, based on kinetic modeling, a user-friendly and widely applicable algorithm to tailor the treatment of acute neonatal hyperammonemia. A single compartmental model was calibrated assuming a distribution volume equal to the patient’s total body water (V), as calculated using Wells’ formula, and dialyzer clearance as derived from the measured ammonia time–concentration curves during 11 dialysis sessions in four patients (3.2 ± 0.4 kg). Based on these kinetic simulations, dialysis protocols could be derived for clinical use with different body weights, start concentrations, dialysis machines/dialyzers and dialysis settings (e.g., blood flow Q<sub<B</sub<). By a single measurement of ammonia concentration at the dialyzer inlet and outlet, dialyzer clearance (K) can be calculated as K = Q<sub<B</sub<∙[(C<sub<inlet</sub< − C<sub<outlet</sub<)/C<sub<inlet</sub<]. The time (T) needed to decrease the ammonia concentration from a predialysis start concentration C<sub<start</sub< to a desired target concentration C<sub<target</sub< is then equal to T = (−V/K)∙LN(C<sub<target</sub</C<sub<start</sub<). By implementing these formulae in a simple spreadsheet, medical staff can draw an institution-specific flowchart for patient-tailored treatment of hyperammonemia. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
7, p 484 |
title_short |
Towards an Algorithm-Based Tailored Treatment of Acute Neonatal Hyperammonemia |
url |
https://doi.org/10.3390/toxins13070484 https://doaj.org/article/fd4a80af47934805894be7898102c2f2 https://www.mdpi.com/2072-6651/13/7/484 https://doaj.org/toc/2072-6651 |
remote_bool |
true |
author2 |
Jonathan De Rudder Patrick Verloo Evelyn Dhont Ann Raes Wim Van Biesen Evelien Snauwaert |
author2Str |
Jonathan De Rudder Patrick Verloo Evelyn Dhont Ann Raes Wim Van Biesen Evelien Snauwaert |
ppnlink |
610604236 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/toxins13070484 |
up_date |
2024-07-03T22:59:44.138Z |
_version_ |
1803600615587184640 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ079342914</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240412165246.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230307s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/toxins13070484</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ079342914</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJfd4a80af47934805894be7898102c2f2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sunny Eloot</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Towards an Algorithm-Based Tailored Treatment of Acute Neonatal Hyperammonemia</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Acute neonatal hyperammonemia is associated with poor neurological outcomes and high mortality. We developed, based on kinetic modeling, a user-friendly and widely applicable algorithm to tailor the treatment of acute neonatal hyperammonemia. A single compartmental model was calibrated assuming a distribution volume equal to the patient’s total body water (V), as calculated using Wells’ formula, and dialyzer clearance as derived from the measured ammonia time–concentration curves during 11 dialysis sessions in four patients (3.2 ± 0.4 kg). Based on these kinetic simulations, dialysis protocols could be derived for clinical use with different body weights, start concentrations, dialysis machines/dialyzers and dialysis settings (e.g., blood flow Q<sub<B</sub<). By a single measurement of ammonia concentration at the dialyzer inlet and outlet, dialyzer clearance (K) can be calculated as K = Q<sub<B</sub<∙[(C<sub<inlet</sub< − C<sub<outlet</sub<)/C<sub<inlet</sub<]. The time (T) needed to decrease the ammonia concentration from a predialysis start concentration C<sub<start</sub< to a desired target concentration C<sub<target</sub< is then equal to T = (−V/K)∙LN(C<sub<target</sub</C<sub<start</sub<). By implementing these formulae in a simple spreadsheet, medical staff can draw an institution-specific flowchart for patient-tailored treatment of hyperammonemia.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hyperammonemia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inborn errors of metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hemodialysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">infant</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jonathan De Rudder</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Patrick Verloo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Evelyn Dhont</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ann Raes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wim Van Biesen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Evelien Snauwaert</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Toxins</subfield><subfield code="d">MDPI AG, 2010</subfield><subfield code="g">13(2021), 7, p 484</subfield><subfield code="w">(DE-627)610604236</subfield><subfield code="w">(DE-600)2518395-3</subfield><subfield code="x">20726651</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:7, p 484</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/toxins13070484</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/fd4a80af47934805894be7898102c2f2</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2072-6651/13/7/484</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2072-6651</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">7, p 484</subfield></datafield></record></collection>
|
score |
7.4027834 |