Factors influencing seismic wave attenuation in the lithosphere in continental rift zones
Attenuation of seismic waves in the crust and the upper mantle has been studied in three global rift systems: the Baikal rift system (Eurasia), the North Tanzanian divergence zone (Africa) and the Basin and Range Province (North America). Using the records of direct and coda waves of regional earthq...
Ausführliche Beschreibung
Autor*in: |
А. А. Dobrynina [verfasserIn] V. A. Sankov [verfasserIn] J. Déverchère [verfasserIn] V. V. Chechelnitsky [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch ; Russisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Геодинамика и тектонофизика - Russian Academy of Sciences, Siberian Branch, Institute of the Earth's crust, 2015, 8(2017), 1, Seite 107-133 |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2017 ; number:1 ; pages:107-133 |
Links: |
---|
DOI / URN: |
10.5800/GT-2017-8-1-0234 |
---|
Katalog-ID: |
DOAJ079490883 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ079490883 | ||
003 | DE-627 | ||
005 | 20230410123023.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230307s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.5800/GT-2017-8-1-0234 |2 doi | |
035 | |a (DE-627)DOAJ079490883 | ||
035 | |a (DE-599)DOAJd7d54e22b2bb486da608b2fb90ef63e1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng |a rus | ||
100 | 0 | |a А. А. Dobrynina |e verfasserin |4 aut | |
245 | 1 | 0 | |a Factors influencing seismic wave attenuation in the lithosphere in continental rift zones |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Attenuation of seismic waves in the crust and the upper mantle has been studied in three global rift systems: the Baikal rift system (Eurasia), the North Tanzanian divergence zone (Africa) and the Basin and Range Province (North America). Using the records of direct and coda waves of regional earthquakes, the single scattering theory [Aki, Chouet, 1975], the hybrid model from [Zeng, 1991] and the approach described in [Wennerberg, 1993], we estimated the seismic quality factor (QC), frequency parameter (n), attenuation coefficient (δ), and total attenuation (QT). In addition, we evaluated the contributions of two components into total attenuation: intrinsic attenuation (Qi), and scattering attenuation (Qsc). Values of QC are strongly dependent on the frequency within the range of 0.2–16 Hz, as well as on the length of the coda processing window. The observed increase of QC with larger lengths of the coda processing window can be interpreted as a decrease in attenuation with increasing depth. Having compared the depth variations in the attenuation coefficient (δ) and the frequency (n) with the velocity structures of the studied regions, we conclude that seismic wave attenuation changes at the velocity boundaries in the medium. Moreover, the comparison results show that the estimated variations in the attenuation parameters with increasing depth are considerably dependent on utilized velocity models of the medium. Lateral variations in attenuation of seismic waves correlate with the geological and geophysical characteristics of the regions, and attenuation is primarily dependent on the regional seismic activity and regional heat flow. The geological inhomogeneities of the medium and the age of crust consolidation are secondary factors. Our estimations of intrinsic attenuation (Qi) and scattering attenuation (Qsc) show that in all the three studied regions, intrinsic attenuation is the major contributor to total attenuation. Our study shows that the characteristics of seismic wave attenuation in the three different rift systems are consistent with each other, and this may suggest that the lithosphere in the zones of these different rift systems has been modified to similar levels. | ||
650 | 4 | |a baikal rift system | |
650 | 4 | |a east african rift system | |
650 | 4 | |a north american basin and range province | |
650 | 4 | |a attenuation of seismic waves | |
650 | 4 | |a seismic quality factor | |
650 | 4 | |a seismicity | |
650 | 4 | |a coda waves | |
650 | 4 | |a intrinsic attenuation | |
650 | 4 | |a scattering attenuation | |
650 | 4 | |a heat flow | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a V. A. Sankov |e verfasserin |4 aut | |
700 | 0 | |a J. Déverchère |e verfasserin |4 aut | |
700 | 0 | |a V. V. Chechelnitsky |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Геодинамика и тектонофизика |d Russian Academy of Sciences, Siberian Branch, Institute of the Earth's crust, 2015 |g 8(2017), 1, Seite 107-133 |w (DE-627)626048311 |w (DE-600)2552346-6 |x 2078502X |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2017 |g number:1 |g pages:107-133 |
856 | 4 | 0 | |u https://doi.org/10.5800/GT-2017-8-1-0234 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/d7d54e22b2bb486da608b2fb90ef63e1 |z kostenfrei |
856 | 4 | 0 | |u https://www.gt-crust.ru/jour/article/view/335 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2078-502X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2017 |e 1 |h 107-133 |
author_variant |
а а d ааd v a s vas j d jd v v c vvc |
---|---|
matchkey_str |
article:2078502X:2017----::atrifunigesiwvatnainnhltopee |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.5800/GT-2017-8-1-0234 doi (DE-627)DOAJ079490883 (DE-599)DOAJd7d54e22b2bb486da608b2fb90ef63e1 DE-627 ger DE-627 rakwb eng rus А. А. Dobrynina verfasserin aut Factors influencing seismic wave attenuation in the lithosphere in continental rift zones 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Attenuation of seismic waves in the crust and the upper mantle has been studied in three global rift systems: the Baikal rift system (Eurasia), the North Tanzanian divergence zone (Africa) and the Basin and Range Province (North America). Using the records of direct and coda waves of regional earthquakes, the single scattering theory [Aki, Chouet, 1975], the hybrid model from [Zeng, 1991] and the approach described in [Wennerberg, 1993], we estimated the seismic quality factor (QC), frequency parameter (n), attenuation coefficient (δ), and total attenuation (QT). In addition, we evaluated the contributions of two components into total attenuation: intrinsic attenuation (Qi), and scattering attenuation (Qsc). Values of QC are strongly dependent on the frequency within the range of 0.2–16 Hz, as well as on the length of the coda processing window. The observed increase of QC with larger lengths of the coda processing window can be interpreted as a decrease in attenuation with increasing depth. Having compared the depth variations in the attenuation coefficient (δ) and the frequency (n) with the velocity structures of the studied regions, we conclude that seismic wave attenuation changes at the velocity boundaries in the medium. Moreover, the comparison results show that the estimated variations in the attenuation parameters with increasing depth are considerably dependent on utilized velocity models of the medium. Lateral variations in attenuation of seismic waves correlate with the geological and geophysical characteristics of the regions, and attenuation is primarily dependent on the regional seismic activity and regional heat flow. The geological inhomogeneities of the medium and the age of crust consolidation are secondary factors. Our estimations of intrinsic attenuation (Qi) and scattering attenuation (Qsc) show that in all the three studied regions, intrinsic attenuation is the major contributor to total attenuation. Our study shows that the characteristics of seismic wave attenuation in the three different rift systems are consistent with each other, and this may suggest that the lithosphere in the zones of these different rift systems has been modified to similar levels. baikal rift system east african rift system north american basin and range province attenuation of seismic waves seismic quality factor seismicity coda waves intrinsic attenuation scattering attenuation heat flow Science Q V. A. Sankov verfasserin aut J. Déverchère verfasserin aut V. V. Chechelnitsky verfasserin aut In Геодинамика и тектонофизика Russian Academy of Sciences, Siberian Branch, Institute of the Earth's crust, 2015 8(2017), 1, Seite 107-133 (DE-627)626048311 (DE-600)2552346-6 2078502X nnns volume:8 year:2017 number:1 pages:107-133 https://doi.org/10.5800/GT-2017-8-1-0234 kostenfrei https://doaj.org/article/d7d54e22b2bb486da608b2fb90ef63e1 kostenfrei https://www.gt-crust.ru/jour/article/view/335 kostenfrei https://doaj.org/toc/2078-502X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2017 1 107-133 |
spelling |
10.5800/GT-2017-8-1-0234 doi (DE-627)DOAJ079490883 (DE-599)DOAJd7d54e22b2bb486da608b2fb90ef63e1 DE-627 ger DE-627 rakwb eng rus А. А. Dobrynina verfasserin aut Factors influencing seismic wave attenuation in the lithosphere in continental rift zones 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Attenuation of seismic waves in the crust and the upper mantle has been studied in three global rift systems: the Baikal rift system (Eurasia), the North Tanzanian divergence zone (Africa) and the Basin and Range Province (North America). Using the records of direct and coda waves of regional earthquakes, the single scattering theory [Aki, Chouet, 1975], the hybrid model from [Zeng, 1991] and the approach described in [Wennerberg, 1993], we estimated the seismic quality factor (QC), frequency parameter (n), attenuation coefficient (δ), and total attenuation (QT). In addition, we evaluated the contributions of two components into total attenuation: intrinsic attenuation (Qi), and scattering attenuation (Qsc). Values of QC are strongly dependent on the frequency within the range of 0.2–16 Hz, as well as on the length of the coda processing window. The observed increase of QC with larger lengths of the coda processing window can be interpreted as a decrease in attenuation with increasing depth. Having compared the depth variations in the attenuation coefficient (δ) and the frequency (n) with the velocity structures of the studied regions, we conclude that seismic wave attenuation changes at the velocity boundaries in the medium. Moreover, the comparison results show that the estimated variations in the attenuation parameters with increasing depth are considerably dependent on utilized velocity models of the medium. Lateral variations in attenuation of seismic waves correlate with the geological and geophysical characteristics of the regions, and attenuation is primarily dependent on the regional seismic activity and regional heat flow. The geological inhomogeneities of the medium and the age of crust consolidation are secondary factors. Our estimations of intrinsic attenuation (Qi) and scattering attenuation (Qsc) show that in all the three studied regions, intrinsic attenuation is the major contributor to total attenuation. Our study shows that the characteristics of seismic wave attenuation in the three different rift systems are consistent with each other, and this may suggest that the lithosphere in the zones of these different rift systems has been modified to similar levels. baikal rift system east african rift system north american basin and range province attenuation of seismic waves seismic quality factor seismicity coda waves intrinsic attenuation scattering attenuation heat flow Science Q V. A. Sankov verfasserin aut J. Déverchère verfasserin aut V. V. Chechelnitsky verfasserin aut In Геодинамика и тектонофизика Russian Academy of Sciences, Siberian Branch, Institute of the Earth's crust, 2015 8(2017), 1, Seite 107-133 (DE-627)626048311 (DE-600)2552346-6 2078502X nnns volume:8 year:2017 number:1 pages:107-133 https://doi.org/10.5800/GT-2017-8-1-0234 kostenfrei https://doaj.org/article/d7d54e22b2bb486da608b2fb90ef63e1 kostenfrei https://www.gt-crust.ru/jour/article/view/335 kostenfrei https://doaj.org/toc/2078-502X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2017 1 107-133 |
allfields_unstemmed |
10.5800/GT-2017-8-1-0234 doi (DE-627)DOAJ079490883 (DE-599)DOAJd7d54e22b2bb486da608b2fb90ef63e1 DE-627 ger DE-627 rakwb eng rus А. А. Dobrynina verfasserin aut Factors influencing seismic wave attenuation in the lithosphere in continental rift zones 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Attenuation of seismic waves in the crust and the upper mantle has been studied in three global rift systems: the Baikal rift system (Eurasia), the North Tanzanian divergence zone (Africa) and the Basin and Range Province (North America). Using the records of direct and coda waves of regional earthquakes, the single scattering theory [Aki, Chouet, 1975], the hybrid model from [Zeng, 1991] and the approach described in [Wennerberg, 1993], we estimated the seismic quality factor (QC), frequency parameter (n), attenuation coefficient (δ), and total attenuation (QT). In addition, we evaluated the contributions of two components into total attenuation: intrinsic attenuation (Qi), and scattering attenuation (Qsc). Values of QC are strongly dependent on the frequency within the range of 0.2–16 Hz, as well as on the length of the coda processing window. The observed increase of QC with larger lengths of the coda processing window can be interpreted as a decrease in attenuation with increasing depth. Having compared the depth variations in the attenuation coefficient (δ) and the frequency (n) with the velocity structures of the studied regions, we conclude that seismic wave attenuation changes at the velocity boundaries in the medium. Moreover, the comparison results show that the estimated variations in the attenuation parameters with increasing depth are considerably dependent on utilized velocity models of the medium. Lateral variations in attenuation of seismic waves correlate with the geological and geophysical characteristics of the regions, and attenuation is primarily dependent on the regional seismic activity and regional heat flow. The geological inhomogeneities of the medium and the age of crust consolidation are secondary factors. Our estimations of intrinsic attenuation (Qi) and scattering attenuation (Qsc) show that in all the three studied regions, intrinsic attenuation is the major contributor to total attenuation. Our study shows that the characteristics of seismic wave attenuation in the three different rift systems are consistent with each other, and this may suggest that the lithosphere in the zones of these different rift systems has been modified to similar levels. baikal rift system east african rift system north american basin and range province attenuation of seismic waves seismic quality factor seismicity coda waves intrinsic attenuation scattering attenuation heat flow Science Q V. A. Sankov verfasserin aut J. Déverchère verfasserin aut V. V. Chechelnitsky verfasserin aut In Геодинамика и тектонофизика Russian Academy of Sciences, Siberian Branch, Institute of the Earth's crust, 2015 8(2017), 1, Seite 107-133 (DE-627)626048311 (DE-600)2552346-6 2078502X nnns volume:8 year:2017 number:1 pages:107-133 https://doi.org/10.5800/GT-2017-8-1-0234 kostenfrei https://doaj.org/article/d7d54e22b2bb486da608b2fb90ef63e1 kostenfrei https://www.gt-crust.ru/jour/article/view/335 kostenfrei https://doaj.org/toc/2078-502X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2017 1 107-133 |
allfieldsGer |
10.5800/GT-2017-8-1-0234 doi (DE-627)DOAJ079490883 (DE-599)DOAJd7d54e22b2bb486da608b2fb90ef63e1 DE-627 ger DE-627 rakwb eng rus А. А. Dobrynina verfasserin aut Factors influencing seismic wave attenuation in the lithosphere in continental rift zones 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Attenuation of seismic waves in the crust and the upper mantle has been studied in three global rift systems: the Baikal rift system (Eurasia), the North Tanzanian divergence zone (Africa) and the Basin and Range Province (North America). Using the records of direct and coda waves of regional earthquakes, the single scattering theory [Aki, Chouet, 1975], the hybrid model from [Zeng, 1991] and the approach described in [Wennerberg, 1993], we estimated the seismic quality factor (QC), frequency parameter (n), attenuation coefficient (δ), and total attenuation (QT). In addition, we evaluated the contributions of two components into total attenuation: intrinsic attenuation (Qi), and scattering attenuation (Qsc). Values of QC are strongly dependent on the frequency within the range of 0.2–16 Hz, as well as on the length of the coda processing window. The observed increase of QC with larger lengths of the coda processing window can be interpreted as a decrease in attenuation with increasing depth. Having compared the depth variations in the attenuation coefficient (δ) and the frequency (n) with the velocity structures of the studied regions, we conclude that seismic wave attenuation changes at the velocity boundaries in the medium. Moreover, the comparison results show that the estimated variations in the attenuation parameters with increasing depth are considerably dependent on utilized velocity models of the medium. Lateral variations in attenuation of seismic waves correlate with the geological and geophysical characteristics of the regions, and attenuation is primarily dependent on the regional seismic activity and regional heat flow. The geological inhomogeneities of the medium and the age of crust consolidation are secondary factors. Our estimations of intrinsic attenuation (Qi) and scattering attenuation (Qsc) show that in all the three studied regions, intrinsic attenuation is the major contributor to total attenuation. Our study shows that the characteristics of seismic wave attenuation in the three different rift systems are consistent with each other, and this may suggest that the lithosphere in the zones of these different rift systems has been modified to similar levels. baikal rift system east african rift system north american basin and range province attenuation of seismic waves seismic quality factor seismicity coda waves intrinsic attenuation scattering attenuation heat flow Science Q V. A. Sankov verfasserin aut J. Déverchère verfasserin aut V. V. Chechelnitsky verfasserin aut In Геодинамика и тектонофизика Russian Academy of Sciences, Siberian Branch, Institute of the Earth's crust, 2015 8(2017), 1, Seite 107-133 (DE-627)626048311 (DE-600)2552346-6 2078502X nnns volume:8 year:2017 number:1 pages:107-133 https://doi.org/10.5800/GT-2017-8-1-0234 kostenfrei https://doaj.org/article/d7d54e22b2bb486da608b2fb90ef63e1 kostenfrei https://www.gt-crust.ru/jour/article/view/335 kostenfrei https://doaj.org/toc/2078-502X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2017 1 107-133 |
allfieldsSound |
10.5800/GT-2017-8-1-0234 doi (DE-627)DOAJ079490883 (DE-599)DOAJd7d54e22b2bb486da608b2fb90ef63e1 DE-627 ger DE-627 rakwb eng rus А. А. Dobrynina verfasserin aut Factors influencing seismic wave attenuation in the lithosphere in continental rift zones 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Attenuation of seismic waves in the crust and the upper mantle has been studied in three global rift systems: the Baikal rift system (Eurasia), the North Tanzanian divergence zone (Africa) and the Basin and Range Province (North America). Using the records of direct and coda waves of regional earthquakes, the single scattering theory [Aki, Chouet, 1975], the hybrid model from [Zeng, 1991] and the approach described in [Wennerberg, 1993], we estimated the seismic quality factor (QC), frequency parameter (n), attenuation coefficient (δ), and total attenuation (QT). In addition, we evaluated the contributions of two components into total attenuation: intrinsic attenuation (Qi), and scattering attenuation (Qsc). Values of QC are strongly dependent on the frequency within the range of 0.2–16 Hz, as well as on the length of the coda processing window. The observed increase of QC with larger lengths of the coda processing window can be interpreted as a decrease in attenuation with increasing depth. Having compared the depth variations in the attenuation coefficient (δ) and the frequency (n) with the velocity structures of the studied regions, we conclude that seismic wave attenuation changes at the velocity boundaries in the medium. Moreover, the comparison results show that the estimated variations in the attenuation parameters with increasing depth are considerably dependent on utilized velocity models of the medium. Lateral variations in attenuation of seismic waves correlate with the geological and geophysical characteristics of the regions, and attenuation is primarily dependent on the regional seismic activity and regional heat flow. The geological inhomogeneities of the medium and the age of crust consolidation are secondary factors. Our estimations of intrinsic attenuation (Qi) and scattering attenuation (Qsc) show that in all the three studied regions, intrinsic attenuation is the major contributor to total attenuation. Our study shows that the characteristics of seismic wave attenuation in the three different rift systems are consistent with each other, and this may suggest that the lithosphere in the zones of these different rift systems has been modified to similar levels. baikal rift system east african rift system north american basin and range province attenuation of seismic waves seismic quality factor seismicity coda waves intrinsic attenuation scattering attenuation heat flow Science Q V. A. Sankov verfasserin aut J. Déverchère verfasserin aut V. V. Chechelnitsky verfasserin aut In Геодинамика и тектонофизика Russian Academy of Sciences, Siberian Branch, Institute of the Earth's crust, 2015 8(2017), 1, Seite 107-133 (DE-627)626048311 (DE-600)2552346-6 2078502X nnns volume:8 year:2017 number:1 pages:107-133 https://doi.org/10.5800/GT-2017-8-1-0234 kostenfrei https://doaj.org/article/d7d54e22b2bb486da608b2fb90ef63e1 kostenfrei https://www.gt-crust.ru/jour/article/view/335 kostenfrei https://doaj.org/toc/2078-502X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2017 1 107-133 |
language |
English Russian |
source |
In Геодинамика и тектонофизика 8(2017), 1, Seite 107-133 volume:8 year:2017 number:1 pages:107-133 |
sourceStr |
In Геодинамика и тектонофизика 8(2017), 1, Seite 107-133 volume:8 year:2017 number:1 pages:107-133 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
baikal rift system east african rift system north american basin and range province attenuation of seismic waves seismic quality factor seismicity coda waves intrinsic attenuation scattering attenuation heat flow Science Q |
isfreeaccess_bool |
true |
container_title |
Геодинамика и тектонофизика |
authorswithroles_txt_mv |
А. А. Dobrynina @@aut@@ V. A. Sankov @@aut@@ J. Déverchère @@aut@@ V. V. Chechelnitsky @@aut@@ |
publishDateDaySort_date |
2017-01-01T00:00:00Z |
hierarchy_top_id |
626048311 |
id |
DOAJ079490883 |
language_de |
englisch russisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ079490883</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230410123023.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230307s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.5800/GT-2017-8-1-0234</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ079490883</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd7d54e22b2bb486da608b2fb90ef63e1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">rus</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">А. А. Dobrynina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Factors influencing seismic wave attenuation in the lithosphere in continental rift zones</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Attenuation of seismic waves in the crust and the upper mantle has been studied in three global rift systems: the Baikal rift system (Eurasia), the North Tanzanian divergence zone (Africa) and the Basin and Range Province (North America). Using the records of direct and coda waves of regional earthquakes, the single scattering theory [Aki, Chouet, 1975], the hybrid model from [Zeng, 1991] and the approach described in [Wennerberg, 1993], we estimated the seismic quality factor (QC), frequency parameter (n), attenuation coefficient (δ), and total attenuation (QT). In addition, we evaluated the contributions of two components into total attenuation: intrinsic attenuation (Qi), and scattering attenuation (Qsc). Values of QC are strongly dependent on the frequency within the range of 0.2–16 Hz, as well as on the length of the coda processing window. The observed increase of QC with larger lengths of the coda processing window can be interpreted as a decrease in attenuation with increasing depth. Having compared the depth variations in the attenuation coefficient (δ) and the frequency (n) with the velocity structures of the studied regions, we conclude that seismic wave attenuation changes at the velocity boundaries in the medium. Moreover, the comparison results show that the estimated variations in the attenuation parameters with increasing depth are considerably dependent on utilized velocity models of the medium. Lateral variations in attenuation of seismic waves correlate with the geological and geophysical characteristics of the regions, and attenuation is primarily dependent on the regional seismic activity and regional heat flow. The geological inhomogeneities of the medium and the age of crust consolidation are secondary factors. Our estimations of intrinsic attenuation (Qi) and scattering attenuation (Qsc) show that in all the three studied regions, intrinsic attenuation is the major contributor to total attenuation. Our study shows that the characteristics of seismic wave attenuation in the three different rift systems are consistent with each other, and this may suggest that the lithosphere in the zones of these different rift systems has been modified to similar levels.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">baikal rift system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">east african rift system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">north american basin and range province</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">attenuation of seismic waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">seismic quality factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">seismicity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coda waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">intrinsic attenuation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">scattering attenuation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heat flow</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">V. A. Sankov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">J. Déverchère</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">V. V. Chechelnitsky</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Геодинамика и тектонофизика</subfield><subfield code="d">Russian Academy of Sciences, Siberian Branch, Institute of the Earth's crust, 2015</subfield><subfield code="g">8(2017), 1, Seite 107-133</subfield><subfield code="w">(DE-627)626048311</subfield><subfield code="w">(DE-600)2552346-6</subfield><subfield code="x">2078502X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:107-133</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.5800/GT-2017-8-1-0234</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d7d54e22b2bb486da608b2fb90ef63e1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.gt-crust.ru/jour/article/view/335</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2078-502X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="h">107-133</subfield></datafield></record></collection>
|
author |
А. А. Dobrynina |
spellingShingle |
А. А. Dobrynina misc baikal rift system misc east african rift system misc north american basin and range province misc attenuation of seismic waves misc seismic quality factor misc seismicity misc coda waves misc intrinsic attenuation misc scattering attenuation misc heat flow misc Science misc Q Factors influencing seismic wave attenuation in the lithosphere in continental rift zones |
authorStr |
А. А. Dobrynina |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)626048311 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2078502X |
topic_title |
Factors influencing seismic wave attenuation in the lithosphere in continental rift zones baikal rift system east african rift system north american basin and range province attenuation of seismic waves seismic quality factor seismicity coda waves intrinsic attenuation scattering attenuation heat flow |
topic |
misc baikal rift system misc east african rift system misc north american basin and range province misc attenuation of seismic waves misc seismic quality factor misc seismicity misc coda waves misc intrinsic attenuation misc scattering attenuation misc heat flow misc Science misc Q |
topic_unstemmed |
misc baikal rift system misc east african rift system misc north american basin and range province misc attenuation of seismic waves misc seismic quality factor misc seismicity misc coda waves misc intrinsic attenuation misc scattering attenuation misc heat flow misc Science misc Q |
topic_browse |
misc baikal rift system misc east african rift system misc north american basin and range province misc attenuation of seismic waves misc seismic quality factor misc seismicity misc coda waves misc intrinsic attenuation misc scattering attenuation misc heat flow misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Геодинамика и тектонофизика |
hierarchy_parent_id |
626048311 |
hierarchy_top_title |
Геодинамика и тектонофизика |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)626048311 (DE-600)2552346-6 |
title |
Factors influencing seismic wave attenuation in the lithosphere in continental rift zones |
ctrlnum |
(DE-627)DOAJ079490883 (DE-599)DOAJd7d54e22b2bb486da608b2fb90ef63e1 |
title_full |
Factors influencing seismic wave attenuation in the lithosphere in continental rift zones |
author_sort |
А. А. Dobrynina |
journal |
Геодинамика и тектонофизика |
journalStr |
Геодинамика и тектонофизика |
lang_code |
eng rus |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
107 |
author_browse |
А. А. Dobrynina V. A. Sankov J. Déverchère V. V. Chechelnitsky |
container_volume |
8 |
format_se |
Elektronische Aufsätze |
author-letter |
А. А. Dobrynina |
doi_str_mv |
10.5800/GT-2017-8-1-0234 |
author2-role |
verfasserin |
title_sort |
factors influencing seismic wave attenuation in the lithosphere in continental rift zones |
title_auth |
Factors influencing seismic wave attenuation in the lithosphere in continental rift zones |
abstract |
Attenuation of seismic waves in the crust and the upper mantle has been studied in three global rift systems: the Baikal rift system (Eurasia), the North Tanzanian divergence zone (Africa) and the Basin and Range Province (North America). Using the records of direct and coda waves of regional earthquakes, the single scattering theory [Aki, Chouet, 1975], the hybrid model from [Zeng, 1991] and the approach described in [Wennerberg, 1993], we estimated the seismic quality factor (QC), frequency parameter (n), attenuation coefficient (δ), and total attenuation (QT). In addition, we evaluated the contributions of two components into total attenuation: intrinsic attenuation (Qi), and scattering attenuation (Qsc). Values of QC are strongly dependent on the frequency within the range of 0.2–16 Hz, as well as on the length of the coda processing window. The observed increase of QC with larger lengths of the coda processing window can be interpreted as a decrease in attenuation with increasing depth. Having compared the depth variations in the attenuation coefficient (δ) and the frequency (n) with the velocity structures of the studied regions, we conclude that seismic wave attenuation changes at the velocity boundaries in the medium. Moreover, the comparison results show that the estimated variations in the attenuation parameters with increasing depth are considerably dependent on utilized velocity models of the medium. Lateral variations in attenuation of seismic waves correlate with the geological and geophysical characteristics of the regions, and attenuation is primarily dependent on the regional seismic activity and regional heat flow. The geological inhomogeneities of the medium and the age of crust consolidation are secondary factors. Our estimations of intrinsic attenuation (Qi) and scattering attenuation (Qsc) show that in all the three studied regions, intrinsic attenuation is the major contributor to total attenuation. Our study shows that the characteristics of seismic wave attenuation in the three different rift systems are consistent with each other, and this may suggest that the lithosphere in the zones of these different rift systems has been modified to similar levels. |
abstractGer |
Attenuation of seismic waves in the crust and the upper mantle has been studied in three global rift systems: the Baikal rift system (Eurasia), the North Tanzanian divergence zone (Africa) and the Basin and Range Province (North America). Using the records of direct and coda waves of regional earthquakes, the single scattering theory [Aki, Chouet, 1975], the hybrid model from [Zeng, 1991] and the approach described in [Wennerberg, 1993], we estimated the seismic quality factor (QC), frequency parameter (n), attenuation coefficient (δ), and total attenuation (QT). In addition, we evaluated the contributions of two components into total attenuation: intrinsic attenuation (Qi), and scattering attenuation (Qsc). Values of QC are strongly dependent on the frequency within the range of 0.2–16 Hz, as well as on the length of the coda processing window. The observed increase of QC with larger lengths of the coda processing window can be interpreted as a decrease in attenuation with increasing depth. Having compared the depth variations in the attenuation coefficient (δ) and the frequency (n) with the velocity structures of the studied regions, we conclude that seismic wave attenuation changes at the velocity boundaries in the medium. Moreover, the comparison results show that the estimated variations in the attenuation parameters with increasing depth are considerably dependent on utilized velocity models of the medium. Lateral variations in attenuation of seismic waves correlate with the geological and geophysical characteristics of the regions, and attenuation is primarily dependent on the regional seismic activity and regional heat flow. The geological inhomogeneities of the medium and the age of crust consolidation are secondary factors. Our estimations of intrinsic attenuation (Qi) and scattering attenuation (Qsc) show that in all the three studied regions, intrinsic attenuation is the major contributor to total attenuation. Our study shows that the characteristics of seismic wave attenuation in the three different rift systems are consistent with each other, and this may suggest that the lithosphere in the zones of these different rift systems has been modified to similar levels. |
abstract_unstemmed |
Attenuation of seismic waves in the crust and the upper mantle has been studied in three global rift systems: the Baikal rift system (Eurasia), the North Tanzanian divergence zone (Africa) and the Basin and Range Province (North America). Using the records of direct and coda waves of regional earthquakes, the single scattering theory [Aki, Chouet, 1975], the hybrid model from [Zeng, 1991] and the approach described in [Wennerberg, 1993], we estimated the seismic quality factor (QC), frequency parameter (n), attenuation coefficient (δ), and total attenuation (QT). In addition, we evaluated the contributions of two components into total attenuation: intrinsic attenuation (Qi), and scattering attenuation (Qsc). Values of QC are strongly dependent on the frequency within the range of 0.2–16 Hz, as well as on the length of the coda processing window. The observed increase of QC with larger lengths of the coda processing window can be interpreted as a decrease in attenuation with increasing depth. Having compared the depth variations in the attenuation coefficient (δ) and the frequency (n) with the velocity structures of the studied regions, we conclude that seismic wave attenuation changes at the velocity boundaries in the medium. Moreover, the comparison results show that the estimated variations in the attenuation parameters with increasing depth are considerably dependent on utilized velocity models of the medium. Lateral variations in attenuation of seismic waves correlate with the geological and geophysical characteristics of the regions, and attenuation is primarily dependent on the regional seismic activity and regional heat flow. The geological inhomogeneities of the medium and the age of crust consolidation are secondary factors. Our estimations of intrinsic attenuation (Qi) and scattering attenuation (Qsc) show that in all the three studied regions, intrinsic attenuation is the major contributor to total attenuation. Our study shows that the characteristics of seismic wave attenuation in the three different rift systems are consistent with each other, and this may suggest that the lithosphere in the zones of these different rift systems has been modified to similar levels. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Factors influencing seismic wave attenuation in the lithosphere in continental rift zones |
url |
https://doi.org/10.5800/GT-2017-8-1-0234 https://doaj.org/article/d7d54e22b2bb486da608b2fb90ef63e1 https://www.gt-crust.ru/jour/article/view/335 https://doaj.org/toc/2078-502X |
remote_bool |
true |
author2 |
V. A. Sankov J. Déverchère V. V. Chechelnitsky |
author2Str |
V. A. Sankov J. Déverchère V. V. Chechelnitsky |
ppnlink |
626048311 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.5800/GT-2017-8-1-0234 |
up_date |
2024-07-03T23:41:16.788Z |
_version_ |
1803603229321199616 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ079490883</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230410123023.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230307s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.5800/GT-2017-8-1-0234</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ079490883</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd7d54e22b2bb486da608b2fb90ef63e1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">rus</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">А. А. Dobrynina</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Factors influencing seismic wave attenuation in the lithosphere in continental rift zones</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Attenuation of seismic waves in the crust and the upper mantle has been studied in three global rift systems: the Baikal rift system (Eurasia), the North Tanzanian divergence zone (Africa) and the Basin and Range Province (North America). Using the records of direct and coda waves of regional earthquakes, the single scattering theory [Aki, Chouet, 1975], the hybrid model from [Zeng, 1991] and the approach described in [Wennerberg, 1993], we estimated the seismic quality factor (QC), frequency parameter (n), attenuation coefficient (δ), and total attenuation (QT). In addition, we evaluated the contributions of two components into total attenuation: intrinsic attenuation (Qi), and scattering attenuation (Qsc). Values of QC are strongly dependent on the frequency within the range of 0.2–16 Hz, as well as on the length of the coda processing window. The observed increase of QC with larger lengths of the coda processing window can be interpreted as a decrease in attenuation with increasing depth. Having compared the depth variations in the attenuation coefficient (δ) and the frequency (n) with the velocity structures of the studied regions, we conclude that seismic wave attenuation changes at the velocity boundaries in the medium. Moreover, the comparison results show that the estimated variations in the attenuation parameters with increasing depth are considerably dependent on utilized velocity models of the medium. Lateral variations in attenuation of seismic waves correlate with the geological and geophysical characteristics of the regions, and attenuation is primarily dependent on the regional seismic activity and regional heat flow. The geological inhomogeneities of the medium and the age of crust consolidation are secondary factors. Our estimations of intrinsic attenuation (Qi) and scattering attenuation (Qsc) show that in all the three studied regions, intrinsic attenuation is the major contributor to total attenuation. Our study shows that the characteristics of seismic wave attenuation in the three different rift systems are consistent with each other, and this may suggest that the lithosphere in the zones of these different rift systems has been modified to similar levels.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">baikal rift system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">east african rift system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">north american basin and range province</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">attenuation of seismic waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">seismic quality factor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">seismicity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coda waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">intrinsic attenuation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">scattering attenuation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heat flow</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">V. A. Sankov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">J. Déverchère</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">V. V. Chechelnitsky</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Геодинамика и тектонофизика</subfield><subfield code="d">Russian Academy of Sciences, Siberian Branch, Institute of the Earth's crust, 2015</subfield><subfield code="g">8(2017), 1, Seite 107-133</subfield><subfield code="w">(DE-627)626048311</subfield><subfield code="w">(DE-600)2552346-6</subfield><subfield code="x">2078502X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:107-133</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.5800/GT-2017-8-1-0234</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d7d54e22b2bb486da608b2fb90ef63e1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.gt-crust.ru/jour/article/view/335</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2078-502X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="h">107-133</subfield></datafield></record></collection>
|
score |
7.4017324 |