Atomic Solution for Certain Gardner Equation
In this paper, a new technique using a tensor product is presented in order to provide exact solutions to some certain fractional differential equations. Particularly, the well-known third order Gardner’s equation, which is also known in some contexts as KdV-mKdV, of the fractional type. This type o...
Ausführliche Beschreibung
Autor*in: |
Mohammad Al-Khaleel [verfasserIn] Sharifa Al-Sharif [verfasserIn] Ameerah AlJarrah [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Symmetry - MDPI AG, 2009, 15(2023), 2, p 440 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2023 ; number:2, p 440 |
Links: |
---|
DOI / URN: |
10.3390/sym15020440 |
---|
Katalog-ID: |
DOAJ079962858 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ079962858 | ||
003 | DE-627 | ||
005 | 20240413061053.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230310s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/sym15020440 |2 doi | |
035 | |a (DE-627)DOAJ079962858 | ||
035 | |a (DE-599)DOAJ25cf01a678e14c1aa924c757d9f64b0f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
100 | 0 | |a Mohammad Al-Khaleel |e verfasserin |4 aut | |
245 | 1 | 0 | |a Atomic Solution for Certain Gardner Equation |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this paper, a new technique using a tensor product is presented in order to provide exact solutions to some certain fractional differential equations. Particularly, the well-known third order Gardner’s equation, which is also known in some contexts as KdV-mKdV, of the fractional type. This type of equations plays an important role in modeling many symmetric and asymmetric problems. Moreover, the existence of an atomic solution using a tensor product technique for certain second order equations has been proved. | ||
650 | 4 | |a inverse problems | |
650 | 4 | |a Gardner’s equation | |
650 | 4 | |a tensor product of Banach spaces | |
653 | 0 | |a Mathematics | |
700 | 0 | |a Sharifa Al-Sharif |e verfasserin |4 aut | |
700 | 0 | |a Ameerah AlJarrah |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Symmetry |d MDPI AG, 2009 |g 15(2023), 2, p 440 |w (DE-627)610604112 |w (DE-600)2518382-5 |x 20738994 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2023 |g number:2, p 440 |
856 | 4 | 0 | |u https://doi.org/10.3390/sym15020440 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/25cf01a678e14c1aa924c757d9f64b0f |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2073-8994/15/2/440 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-8994 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2023 |e 2, p 440 |
author_variant |
m a k mak s a s sas a a aa |
---|---|
matchkey_str |
article:20738994:2023----::tmcouinocrana |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QA |
publishDate |
2023 |
allfields |
10.3390/sym15020440 doi (DE-627)DOAJ079962858 (DE-599)DOAJ25cf01a678e14c1aa924c757d9f64b0f DE-627 ger DE-627 rakwb eng QA1-939 Mohammad Al-Khaleel verfasserin aut Atomic Solution for Certain Gardner Equation 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a new technique using a tensor product is presented in order to provide exact solutions to some certain fractional differential equations. Particularly, the well-known third order Gardner’s equation, which is also known in some contexts as KdV-mKdV, of the fractional type. This type of equations plays an important role in modeling many symmetric and asymmetric problems. Moreover, the existence of an atomic solution using a tensor product technique for certain second order equations has been proved. inverse problems Gardner’s equation tensor product of Banach spaces Mathematics Sharifa Al-Sharif verfasserin aut Ameerah AlJarrah verfasserin aut In Symmetry MDPI AG, 2009 15(2023), 2, p 440 (DE-627)610604112 (DE-600)2518382-5 20738994 nnns volume:15 year:2023 number:2, p 440 https://doi.org/10.3390/sym15020440 kostenfrei https://doaj.org/article/25cf01a678e14c1aa924c757d9f64b0f kostenfrei https://www.mdpi.com/2073-8994/15/2/440 kostenfrei https://doaj.org/toc/2073-8994 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 2, p 440 |
spelling |
10.3390/sym15020440 doi (DE-627)DOAJ079962858 (DE-599)DOAJ25cf01a678e14c1aa924c757d9f64b0f DE-627 ger DE-627 rakwb eng QA1-939 Mohammad Al-Khaleel verfasserin aut Atomic Solution for Certain Gardner Equation 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a new technique using a tensor product is presented in order to provide exact solutions to some certain fractional differential equations. Particularly, the well-known third order Gardner’s equation, which is also known in some contexts as KdV-mKdV, of the fractional type. This type of equations plays an important role in modeling many symmetric and asymmetric problems. Moreover, the existence of an atomic solution using a tensor product technique for certain second order equations has been proved. inverse problems Gardner’s equation tensor product of Banach spaces Mathematics Sharifa Al-Sharif verfasserin aut Ameerah AlJarrah verfasserin aut In Symmetry MDPI AG, 2009 15(2023), 2, p 440 (DE-627)610604112 (DE-600)2518382-5 20738994 nnns volume:15 year:2023 number:2, p 440 https://doi.org/10.3390/sym15020440 kostenfrei https://doaj.org/article/25cf01a678e14c1aa924c757d9f64b0f kostenfrei https://www.mdpi.com/2073-8994/15/2/440 kostenfrei https://doaj.org/toc/2073-8994 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 2, p 440 |
allfields_unstemmed |
10.3390/sym15020440 doi (DE-627)DOAJ079962858 (DE-599)DOAJ25cf01a678e14c1aa924c757d9f64b0f DE-627 ger DE-627 rakwb eng QA1-939 Mohammad Al-Khaleel verfasserin aut Atomic Solution for Certain Gardner Equation 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a new technique using a tensor product is presented in order to provide exact solutions to some certain fractional differential equations. Particularly, the well-known third order Gardner’s equation, which is also known in some contexts as KdV-mKdV, of the fractional type. This type of equations plays an important role in modeling many symmetric and asymmetric problems. Moreover, the existence of an atomic solution using a tensor product technique for certain second order equations has been proved. inverse problems Gardner’s equation tensor product of Banach spaces Mathematics Sharifa Al-Sharif verfasserin aut Ameerah AlJarrah verfasserin aut In Symmetry MDPI AG, 2009 15(2023), 2, p 440 (DE-627)610604112 (DE-600)2518382-5 20738994 nnns volume:15 year:2023 number:2, p 440 https://doi.org/10.3390/sym15020440 kostenfrei https://doaj.org/article/25cf01a678e14c1aa924c757d9f64b0f kostenfrei https://www.mdpi.com/2073-8994/15/2/440 kostenfrei https://doaj.org/toc/2073-8994 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 2, p 440 |
allfieldsGer |
10.3390/sym15020440 doi (DE-627)DOAJ079962858 (DE-599)DOAJ25cf01a678e14c1aa924c757d9f64b0f DE-627 ger DE-627 rakwb eng QA1-939 Mohammad Al-Khaleel verfasserin aut Atomic Solution for Certain Gardner Equation 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a new technique using a tensor product is presented in order to provide exact solutions to some certain fractional differential equations. Particularly, the well-known third order Gardner’s equation, which is also known in some contexts as KdV-mKdV, of the fractional type. This type of equations plays an important role in modeling many symmetric and asymmetric problems. Moreover, the existence of an atomic solution using a tensor product technique for certain second order equations has been proved. inverse problems Gardner’s equation tensor product of Banach spaces Mathematics Sharifa Al-Sharif verfasserin aut Ameerah AlJarrah verfasserin aut In Symmetry MDPI AG, 2009 15(2023), 2, p 440 (DE-627)610604112 (DE-600)2518382-5 20738994 nnns volume:15 year:2023 number:2, p 440 https://doi.org/10.3390/sym15020440 kostenfrei https://doaj.org/article/25cf01a678e14c1aa924c757d9f64b0f kostenfrei https://www.mdpi.com/2073-8994/15/2/440 kostenfrei https://doaj.org/toc/2073-8994 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 2, p 440 |
allfieldsSound |
10.3390/sym15020440 doi (DE-627)DOAJ079962858 (DE-599)DOAJ25cf01a678e14c1aa924c757d9f64b0f DE-627 ger DE-627 rakwb eng QA1-939 Mohammad Al-Khaleel verfasserin aut Atomic Solution for Certain Gardner Equation 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a new technique using a tensor product is presented in order to provide exact solutions to some certain fractional differential equations. Particularly, the well-known third order Gardner’s equation, which is also known in some contexts as KdV-mKdV, of the fractional type. This type of equations plays an important role in modeling many symmetric and asymmetric problems. Moreover, the existence of an atomic solution using a tensor product technique for certain second order equations has been proved. inverse problems Gardner’s equation tensor product of Banach spaces Mathematics Sharifa Al-Sharif verfasserin aut Ameerah AlJarrah verfasserin aut In Symmetry MDPI AG, 2009 15(2023), 2, p 440 (DE-627)610604112 (DE-600)2518382-5 20738994 nnns volume:15 year:2023 number:2, p 440 https://doi.org/10.3390/sym15020440 kostenfrei https://doaj.org/article/25cf01a678e14c1aa924c757d9f64b0f kostenfrei https://www.mdpi.com/2073-8994/15/2/440 kostenfrei https://doaj.org/toc/2073-8994 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2023 2, p 440 |
language |
English |
source |
In Symmetry 15(2023), 2, p 440 volume:15 year:2023 number:2, p 440 |
sourceStr |
In Symmetry 15(2023), 2, p 440 volume:15 year:2023 number:2, p 440 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
inverse problems Gardner’s equation tensor product of Banach spaces Mathematics |
isfreeaccess_bool |
true |
container_title |
Symmetry |
authorswithroles_txt_mv |
Mohammad Al-Khaleel @@aut@@ Sharifa Al-Sharif @@aut@@ Ameerah AlJarrah @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
610604112 |
id |
DOAJ079962858 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ079962858</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413061053.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/sym15020440</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ079962858</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ25cf01a678e14c1aa924c757d9f64b0f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mohammad Al-Khaleel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Atomic Solution for Certain Gardner Equation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a new technique using a tensor product is presented in order to provide exact solutions to some certain fractional differential equations. Particularly, the well-known third order Gardner’s equation, which is also known in some contexts as KdV-mKdV, of the fractional type. This type of equations plays an important role in modeling many symmetric and asymmetric problems. Moreover, the existence of an atomic solution using a tensor product technique for certain second order equations has been proved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inverse problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gardner’s equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tensor product of Banach spaces</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sharifa Al-Sharif</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ameerah AlJarrah</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Symmetry</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">15(2023), 2, p 440</subfield><subfield code="w">(DE-627)610604112</subfield><subfield code="w">(DE-600)2518382-5</subfield><subfield code="x">20738994</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:2, p 440</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/sym15020440</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/25cf01a678e14c1aa924c757d9f64b0f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-8994/15/2/440</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-8994</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2023</subfield><subfield code="e">2, p 440</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Mohammad Al-Khaleel |
spellingShingle |
Mohammad Al-Khaleel misc QA1-939 misc inverse problems misc Gardner’s equation misc tensor product of Banach spaces misc Mathematics Atomic Solution for Certain Gardner Equation |
authorStr |
Mohammad Al-Khaleel |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)610604112 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
20738994 |
topic_title |
QA1-939 Atomic Solution for Certain Gardner Equation inverse problems Gardner’s equation tensor product of Banach spaces |
topic |
misc QA1-939 misc inverse problems misc Gardner’s equation misc tensor product of Banach spaces misc Mathematics |
topic_unstemmed |
misc QA1-939 misc inverse problems misc Gardner’s equation misc tensor product of Banach spaces misc Mathematics |
topic_browse |
misc QA1-939 misc inverse problems misc Gardner’s equation misc tensor product of Banach spaces misc Mathematics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Symmetry |
hierarchy_parent_id |
610604112 |
hierarchy_top_title |
Symmetry |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)610604112 (DE-600)2518382-5 |
title |
Atomic Solution for Certain Gardner Equation |
ctrlnum |
(DE-627)DOAJ079962858 (DE-599)DOAJ25cf01a678e14c1aa924c757d9f64b0f |
title_full |
Atomic Solution for Certain Gardner Equation |
author_sort |
Mohammad Al-Khaleel |
journal |
Symmetry |
journalStr |
Symmetry |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Mohammad Al-Khaleel Sharifa Al-Sharif Ameerah AlJarrah |
container_volume |
15 |
class |
QA1-939 |
format_se |
Elektronische Aufsätze |
author-letter |
Mohammad Al-Khaleel |
doi_str_mv |
10.3390/sym15020440 |
author2-role |
verfasserin |
title_sort |
atomic solution for certain gardner equation |
callnumber |
QA1-939 |
title_auth |
Atomic Solution for Certain Gardner Equation |
abstract |
In this paper, a new technique using a tensor product is presented in order to provide exact solutions to some certain fractional differential equations. Particularly, the well-known third order Gardner’s equation, which is also known in some contexts as KdV-mKdV, of the fractional type. This type of equations plays an important role in modeling many symmetric and asymmetric problems. Moreover, the existence of an atomic solution using a tensor product technique for certain second order equations has been proved. |
abstractGer |
In this paper, a new technique using a tensor product is presented in order to provide exact solutions to some certain fractional differential equations. Particularly, the well-known third order Gardner’s equation, which is also known in some contexts as KdV-mKdV, of the fractional type. This type of equations plays an important role in modeling many symmetric and asymmetric problems. Moreover, the existence of an atomic solution using a tensor product technique for certain second order equations has been proved. |
abstract_unstemmed |
In this paper, a new technique using a tensor product is presented in order to provide exact solutions to some certain fractional differential equations. Particularly, the well-known third order Gardner’s equation, which is also known in some contexts as KdV-mKdV, of the fractional type. This type of equations plays an important role in modeling many symmetric and asymmetric problems. Moreover, the existence of an atomic solution using a tensor product technique for certain second order equations has been proved. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2, p 440 |
title_short |
Atomic Solution for Certain Gardner Equation |
url |
https://doi.org/10.3390/sym15020440 https://doaj.org/article/25cf01a678e14c1aa924c757d9f64b0f https://www.mdpi.com/2073-8994/15/2/440 https://doaj.org/toc/2073-8994 |
remote_bool |
true |
author2 |
Sharifa Al-Sharif Ameerah AlJarrah |
author2Str |
Sharifa Al-Sharif Ameerah AlJarrah |
ppnlink |
610604112 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/sym15020440 |
callnumber-a |
QA1-939 |
up_date |
2024-07-04T01:31:46.001Z |
_version_ |
1803610180553801729 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ079962858</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413061053.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/sym15020440</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ079962858</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ25cf01a678e14c1aa924c757d9f64b0f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mohammad Al-Khaleel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Atomic Solution for Certain Gardner Equation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a new technique using a tensor product is presented in order to provide exact solutions to some certain fractional differential equations. Particularly, the well-known third order Gardner’s equation, which is also known in some contexts as KdV-mKdV, of the fractional type. This type of equations plays an important role in modeling many symmetric and asymmetric problems. Moreover, the existence of an atomic solution using a tensor product technique for certain second order equations has been proved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inverse problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gardner’s equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tensor product of Banach spaces</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sharifa Al-Sharif</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ameerah AlJarrah</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Symmetry</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">15(2023), 2, p 440</subfield><subfield code="w">(DE-627)610604112</subfield><subfield code="w">(DE-600)2518382-5</subfield><subfield code="x">20738994</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:2, p 440</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/sym15020440</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/25cf01a678e14c1aa924c757d9f64b0f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-8994/15/2/440</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-8994</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2023</subfield><subfield code="e">2, p 440</subfield></datafield></record></collection>
|
score |
7.4006424 |