Time-Course Transcriptome Profiling Reveals Differential Resistance Responses of Tomato to a Phytotoxic Effector of the Pathogenic Oomycete <i<Phytophthora cactorum</i<
Blight caused by <i<Phytophthora</i< pathogens has a devastating impact on crop production. <i<Phytophthora</i< species secrete an array of effectors, such as <i<Phytophthora cactorum</i<-<i<Fragaria</i< (PcF)/small cysteine-rich (SCR) phytotoxic prote...
Ausführliche Beschreibung
Autor*in: |
Xue Zhou [verfasserIn] Ke Wen [verfasserIn] Shen-Xin Huang [verfasserIn] Yi Lu [verfasserIn] Yang Liu [verfasserIn] Jing-Hao Jin [verfasserIn] Shiv D. Kale [verfasserIn] Xiao-Ren Chen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Plants - MDPI AG, 2013, 12(2023), 4, p 883 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2023 ; number:4, p 883 |
Links: |
---|
DOI / URN: |
10.3390/plants12040883 |
---|
Katalog-ID: |
DOAJ079996248 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ079996248 | ||
003 | DE-627 | ||
005 | 20240413061612.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230310s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/plants12040883 |2 doi | |
035 | |a (DE-627)DOAJ079996248 | ||
035 | |a (DE-599)DOAJ147c5aa35f064dbab94a3b101a559d33 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QK1-989 | |
100 | 0 | |a Xue Zhou |e verfasserin |4 aut | |
245 | 1 | 0 | |a Time-Course Transcriptome Profiling Reveals Differential Resistance Responses of Tomato to a Phytotoxic Effector of the Pathogenic Oomycete <i<Phytophthora cactorum</i< |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Blight caused by <i<Phytophthora</i< pathogens has a devastating impact on crop production. <i<Phytophthora</i< species secrete an array of effectors, such as <i<Phytophthora cactorum</i<-<i<Fragaria</i< (PcF)/small cysteine-rich (SCR) phytotoxic proteins, to facilitate their infections. Understanding host responses to such proteins is essential to developing next-generation crop resistance. Our previous work identified a small, 8.1 kDa protein, SCR96, as an important virulence factor in <i<Phytophthora cactorum</i<. Host responses to SCR96 remain obscure. Here, we analyzed the effect of SCR96 on the resistance of tomato treated with this recombinant protein purified from yeast cells. A temporal transcriptome analysis of tomato leaves infiltrated with 500 nM SCR96 for 0, 3, 6, and 12 h was performed using RNA-Seq. In total, 36,779 genes, including 2704 novel ones, were detected, of which 32,640 (88.7%) were annotated. As a whole, 5929 non-redundant genes were found to be significantly co-upregulated in SCR96-treated leaves (3, 6, 12 h) compared to the control (0 h). The combination of annotation, enrichment, and clustering analyses showed significant changes in expression beginning at 3 h after treatment in genes associated with defense and metabolism pathways, as well as temporal transcriptional accumulation patterns. Noticeably, the expression levels of resistance-related genes encoding receptor-like kinases/proteins, resistance proteins, mitogen-activated protein kinases (MAPKs), transcription factors, pathogenesis-related proteins, and transport proteins were significantly affected by SCR96. Quantitative reverse transcription PCR (qRT-PCR) validated the transcript changes in the 12 selected genes. Our analysis provides novel information that can help delineate the molecular mechanism and components of plant responses to effectors, which will be useful for the development of resistant crops. | ||
650 | 4 | |a tomato | |
650 | 4 | |a transcriptome | |
650 | 4 | |a <i<Phytophthora cactorum</i< | |
650 | 4 | |a small cysteine-rich protein | |
650 | 4 | |a phytotoxicity | |
650 | 4 | |a defense response | |
653 | 0 | |a Botany | |
700 | 0 | |a Ke Wen |e verfasserin |4 aut | |
700 | 0 | |a Shen-Xin Huang |e verfasserin |4 aut | |
700 | 0 | |a Yi Lu |e verfasserin |4 aut | |
700 | 0 | |a Yang Liu |e verfasserin |4 aut | |
700 | 0 | |a Jing-Hao Jin |e verfasserin |4 aut | |
700 | 0 | |a Shiv D. Kale |e verfasserin |4 aut | |
700 | 0 | |a Xiao-Ren Chen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Plants |d MDPI AG, 2013 |g 12(2023), 4, p 883 |w (DE-627)737288345 |w (DE-600)2704341-1 |x 22237747 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2023 |g number:4, p 883 |
856 | 4 | 0 | |u https://doi.org/10.3390/plants12040883 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/147c5aa35f064dbab94a3b101a559d33 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2223-7747/12/4/883 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2223-7747 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2023 |e 4, p 883 |
author_variant |
x z xz k w kw s x h sxh y l yl y l yl j h j jhj s d k sdk x r c xrc |
---|---|
matchkey_str |
article:22237747:2023----::ieorerncitmpoiigeeldfeetarssacrsossfoaoopyooiefcooteah |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QK |
publishDate |
2023 |
allfields |
10.3390/plants12040883 doi (DE-627)DOAJ079996248 (DE-599)DOAJ147c5aa35f064dbab94a3b101a559d33 DE-627 ger DE-627 rakwb eng QK1-989 Xue Zhou verfasserin aut Time-Course Transcriptome Profiling Reveals Differential Resistance Responses of Tomato to a Phytotoxic Effector of the Pathogenic Oomycete <i<Phytophthora cactorum</i< 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Blight caused by <i<Phytophthora</i< pathogens has a devastating impact on crop production. <i<Phytophthora</i< species secrete an array of effectors, such as <i<Phytophthora cactorum</i<-<i<Fragaria</i< (PcF)/small cysteine-rich (SCR) phytotoxic proteins, to facilitate their infections. Understanding host responses to such proteins is essential to developing next-generation crop resistance. Our previous work identified a small, 8.1 kDa protein, SCR96, as an important virulence factor in <i<Phytophthora cactorum</i<. Host responses to SCR96 remain obscure. Here, we analyzed the effect of SCR96 on the resistance of tomato treated with this recombinant protein purified from yeast cells. A temporal transcriptome analysis of tomato leaves infiltrated with 500 nM SCR96 for 0, 3, 6, and 12 h was performed using RNA-Seq. In total, 36,779 genes, including 2704 novel ones, were detected, of which 32,640 (88.7%) were annotated. As a whole, 5929 non-redundant genes were found to be significantly co-upregulated in SCR96-treated leaves (3, 6, 12 h) compared to the control (0 h). The combination of annotation, enrichment, and clustering analyses showed significant changes in expression beginning at 3 h after treatment in genes associated with defense and metabolism pathways, as well as temporal transcriptional accumulation patterns. Noticeably, the expression levels of resistance-related genes encoding receptor-like kinases/proteins, resistance proteins, mitogen-activated protein kinases (MAPKs), transcription factors, pathogenesis-related proteins, and transport proteins were significantly affected by SCR96. Quantitative reverse transcription PCR (qRT-PCR) validated the transcript changes in the 12 selected genes. Our analysis provides novel information that can help delineate the molecular mechanism and components of plant responses to effectors, which will be useful for the development of resistant crops. tomato transcriptome <i<Phytophthora cactorum</i< small cysteine-rich protein phytotoxicity defense response Botany Ke Wen verfasserin aut Shen-Xin Huang verfasserin aut Yi Lu verfasserin aut Yang Liu verfasserin aut Jing-Hao Jin verfasserin aut Shiv D. Kale verfasserin aut Xiao-Ren Chen verfasserin aut In Plants MDPI AG, 2013 12(2023), 4, p 883 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:12 year:2023 number:4, p 883 https://doi.org/10.3390/plants12040883 kostenfrei https://doaj.org/article/147c5aa35f064dbab94a3b101a559d33 kostenfrei https://www.mdpi.com/2223-7747/12/4/883 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 4, p 883 |
spelling |
10.3390/plants12040883 doi (DE-627)DOAJ079996248 (DE-599)DOAJ147c5aa35f064dbab94a3b101a559d33 DE-627 ger DE-627 rakwb eng QK1-989 Xue Zhou verfasserin aut Time-Course Transcriptome Profiling Reveals Differential Resistance Responses of Tomato to a Phytotoxic Effector of the Pathogenic Oomycete <i<Phytophthora cactorum</i< 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Blight caused by <i<Phytophthora</i< pathogens has a devastating impact on crop production. <i<Phytophthora</i< species secrete an array of effectors, such as <i<Phytophthora cactorum</i<-<i<Fragaria</i< (PcF)/small cysteine-rich (SCR) phytotoxic proteins, to facilitate their infections. Understanding host responses to such proteins is essential to developing next-generation crop resistance. Our previous work identified a small, 8.1 kDa protein, SCR96, as an important virulence factor in <i<Phytophthora cactorum</i<. Host responses to SCR96 remain obscure. Here, we analyzed the effect of SCR96 on the resistance of tomato treated with this recombinant protein purified from yeast cells. A temporal transcriptome analysis of tomato leaves infiltrated with 500 nM SCR96 for 0, 3, 6, and 12 h was performed using RNA-Seq. In total, 36,779 genes, including 2704 novel ones, were detected, of which 32,640 (88.7%) were annotated. As a whole, 5929 non-redundant genes were found to be significantly co-upregulated in SCR96-treated leaves (3, 6, 12 h) compared to the control (0 h). The combination of annotation, enrichment, and clustering analyses showed significant changes in expression beginning at 3 h after treatment in genes associated with defense and metabolism pathways, as well as temporal transcriptional accumulation patterns. Noticeably, the expression levels of resistance-related genes encoding receptor-like kinases/proteins, resistance proteins, mitogen-activated protein kinases (MAPKs), transcription factors, pathogenesis-related proteins, and transport proteins were significantly affected by SCR96. Quantitative reverse transcription PCR (qRT-PCR) validated the transcript changes in the 12 selected genes. Our analysis provides novel information that can help delineate the molecular mechanism and components of plant responses to effectors, which will be useful for the development of resistant crops. tomato transcriptome <i<Phytophthora cactorum</i< small cysteine-rich protein phytotoxicity defense response Botany Ke Wen verfasserin aut Shen-Xin Huang verfasserin aut Yi Lu verfasserin aut Yang Liu verfasserin aut Jing-Hao Jin verfasserin aut Shiv D. Kale verfasserin aut Xiao-Ren Chen verfasserin aut In Plants MDPI AG, 2013 12(2023), 4, p 883 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:12 year:2023 number:4, p 883 https://doi.org/10.3390/plants12040883 kostenfrei https://doaj.org/article/147c5aa35f064dbab94a3b101a559d33 kostenfrei https://www.mdpi.com/2223-7747/12/4/883 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 4, p 883 |
allfields_unstemmed |
10.3390/plants12040883 doi (DE-627)DOAJ079996248 (DE-599)DOAJ147c5aa35f064dbab94a3b101a559d33 DE-627 ger DE-627 rakwb eng QK1-989 Xue Zhou verfasserin aut Time-Course Transcriptome Profiling Reveals Differential Resistance Responses of Tomato to a Phytotoxic Effector of the Pathogenic Oomycete <i<Phytophthora cactorum</i< 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Blight caused by <i<Phytophthora</i< pathogens has a devastating impact on crop production. <i<Phytophthora</i< species secrete an array of effectors, such as <i<Phytophthora cactorum</i<-<i<Fragaria</i< (PcF)/small cysteine-rich (SCR) phytotoxic proteins, to facilitate their infections. Understanding host responses to such proteins is essential to developing next-generation crop resistance. Our previous work identified a small, 8.1 kDa protein, SCR96, as an important virulence factor in <i<Phytophthora cactorum</i<. Host responses to SCR96 remain obscure. Here, we analyzed the effect of SCR96 on the resistance of tomato treated with this recombinant protein purified from yeast cells. A temporal transcriptome analysis of tomato leaves infiltrated with 500 nM SCR96 for 0, 3, 6, and 12 h was performed using RNA-Seq. In total, 36,779 genes, including 2704 novel ones, were detected, of which 32,640 (88.7%) were annotated. As a whole, 5929 non-redundant genes were found to be significantly co-upregulated in SCR96-treated leaves (3, 6, 12 h) compared to the control (0 h). The combination of annotation, enrichment, and clustering analyses showed significant changes in expression beginning at 3 h after treatment in genes associated with defense and metabolism pathways, as well as temporal transcriptional accumulation patterns. Noticeably, the expression levels of resistance-related genes encoding receptor-like kinases/proteins, resistance proteins, mitogen-activated protein kinases (MAPKs), transcription factors, pathogenesis-related proteins, and transport proteins were significantly affected by SCR96. Quantitative reverse transcription PCR (qRT-PCR) validated the transcript changes in the 12 selected genes. Our analysis provides novel information that can help delineate the molecular mechanism and components of plant responses to effectors, which will be useful for the development of resistant crops. tomato transcriptome <i<Phytophthora cactorum</i< small cysteine-rich protein phytotoxicity defense response Botany Ke Wen verfasserin aut Shen-Xin Huang verfasserin aut Yi Lu verfasserin aut Yang Liu verfasserin aut Jing-Hao Jin verfasserin aut Shiv D. Kale verfasserin aut Xiao-Ren Chen verfasserin aut In Plants MDPI AG, 2013 12(2023), 4, p 883 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:12 year:2023 number:4, p 883 https://doi.org/10.3390/plants12040883 kostenfrei https://doaj.org/article/147c5aa35f064dbab94a3b101a559d33 kostenfrei https://www.mdpi.com/2223-7747/12/4/883 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 4, p 883 |
allfieldsGer |
10.3390/plants12040883 doi (DE-627)DOAJ079996248 (DE-599)DOAJ147c5aa35f064dbab94a3b101a559d33 DE-627 ger DE-627 rakwb eng QK1-989 Xue Zhou verfasserin aut Time-Course Transcriptome Profiling Reveals Differential Resistance Responses of Tomato to a Phytotoxic Effector of the Pathogenic Oomycete <i<Phytophthora cactorum</i< 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Blight caused by <i<Phytophthora</i< pathogens has a devastating impact on crop production. <i<Phytophthora</i< species secrete an array of effectors, such as <i<Phytophthora cactorum</i<-<i<Fragaria</i< (PcF)/small cysteine-rich (SCR) phytotoxic proteins, to facilitate their infections. Understanding host responses to such proteins is essential to developing next-generation crop resistance. Our previous work identified a small, 8.1 kDa protein, SCR96, as an important virulence factor in <i<Phytophthora cactorum</i<. Host responses to SCR96 remain obscure. Here, we analyzed the effect of SCR96 on the resistance of tomato treated with this recombinant protein purified from yeast cells. A temporal transcriptome analysis of tomato leaves infiltrated with 500 nM SCR96 for 0, 3, 6, and 12 h was performed using RNA-Seq. In total, 36,779 genes, including 2704 novel ones, were detected, of which 32,640 (88.7%) were annotated. As a whole, 5929 non-redundant genes were found to be significantly co-upregulated in SCR96-treated leaves (3, 6, 12 h) compared to the control (0 h). The combination of annotation, enrichment, and clustering analyses showed significant changes in expression beginning at 3 h after treatment in genes associated with defense and metabolism pathways, as well as temporal transcriptional accumulation patterns. Noticeably, the expression levels of resistance-related genes encoding receptor-like kinases/proteins, resistance proteins, mitogen-activated protein kinases (MAPKs), transcription factors, pathogenesis-related proteins, and transport proteins were significantly affected by SCR96. Quantitative reverse transcription PCR (qRT-PCR) validated the transcript changes in the 12 selected genes. Our analysis provides novel information that can help delineate the molecular mechanism and components of plant responses to effectors, which will be useful for the development of resistant crops. tomato transcriptome <i<Phytophthora cactorum</i< small cysteine-rich protein phytotoxicity defense response Botany Ke Wen verfasserin aut Shen-Xin Huang verfasserin aut Yi Lu verfasserin aut Yang Liu verfasserin aut Jing-Hao Jin verfasserin aut Shiv D. Kale verfasserin aut Xiao-Ren Chen verfasserin aut In Plants MDPI AG, 2013 12(2023), 4, p 883 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:12 year:2023 number:4, p 883 https://doi.org/10.3390/plants12040883 kostenfrei https://doaj.org/article/147c5aa35f064dbab94a3b101a559d33 kostenfrei https://www.mdpi.com/2223-7747/12/4/883 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 4, p 883 |
allfieldsSound |
10.3390/plants12040883 doi (DE-627)DOAJ079996248 (DE-599)DOAJ147c5aa35f064dbab94a3b101a559d33 DE-627 ger DE-627 rakwb eng QK1-989 Xue Zhou verfasserin aut Time-Course Transcriptome Profiling Reveals Differential Resistance Responses of Tomato to a Phytotoxic Effector of the Pathogenic Oomycete <i<Phytophthora cactorum</i< 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Blight caused by <i<Phytophthora</i< pathogens has a devastating impact on crop production. <i<Phytophthora</i< species secrete an array of effectors, such as <i<Phytophthora cactorum</i<-<i<Fragaria</i< (PcF)/small cysteine-rich (SCR) phytotoxic proteins, to facilitate their infections. Understanding host responses to such proteins is essential to developing next-generation crop resistance. Our previous work identified a small, 8.1 kDa protein, SCR96, as an important virulence factor in <i<Phytophthora cactorum</i<. Host responses to SCR96 remain obscure. Here, we analyzed the effect of SCR96 on the resistance of tomato treated with this recombinant protein purified from yeast cells. A temporal transcriptome analysis of tomato leaves infiltrated with 500 nM SCR96 for 0, 3, 6, and 12 h was performed using RNA-Seq. In total, 36,779 genes, including 2704 novel ones, were detected, of which 32,640 (88.7%) were annotated. As a whole, 5929 non-redundant genes were found to be significantly co-upregulated in SCR96-treated leaves (3, 6, 12 h) compared to the control (0 h). The combination of annotation, enrichment, and clustering analyses showed significant changes in expression beginning at 3 h after treatment in genes associated with defense and metabolism pathways, as well as temporal transcriptional accumulation patterns. Noticeably, the expression levels of resistance-related genes encoding receptor-like kinases/proteins, resistance proteins, mitogen-activated protein kinases (MAPKs), transcription factors, pathogenesis-related proteins, and transport proteins were significantly affected by SCR96. Quantitative reverse transcription PCR (qRT-PCR) validated the transcript changes in the 12 selected genes. Our analysis provides novel information that can help delineate the molecular mechanism and components of plant responses to effectors, which will be useful for the development of resistant crops. tomato transcriptome <i<Phytophthora cactorum</i< small cysteine-rich protein phytotoxicity defense response Botany Ke Wen verfasserin aut Shen-Xin Huang verfasserin aut Yi Lu verfasserin aut Yang Liu verfasserin aut Jing-Hao Jin verfasserin aut Shiv D. Kale verfasserin aut Xiao-Ren Chen verfasserin aut In Plants MDPI AG, 2013 12(2023), 4, p 883 (DE-627)737288345 (DE-600)2704341-1 22237747 nnns volume:12 year:2023 number:4, p 883 https://doi.org/10.3390/plants12040883 kostenfrei https://doaj.org/article/147c5aa35f064dbab94a3b101a559d33 kostenfrei https://www.mdpi.com/2223-7747/12/4/883 kostenfrei https://doaj.org/toc/2223-7747 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 4, p 883 |
language |
English |
source |
In Plants 12(2023), 4, p 883 volume:12 year:2023 number:4, p 883 |
sourceStr |
In Plants 12(2023), 4, p 883 volume:12 year:2023 number:4, p 883 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
tomato transcriptome <i<Phytophthora cactorum</i< small cysteine-rich protein phytotoxicity defense response Botany |
isfreeaccess_bool |
true |
container_title |
Plants |
authorswithroles_txt_mv |
Xue Zhou @@aut@@ Ke Wen @@aut@@ Shen-Xin Huang @@aut@@ Yi Lu @@aut@@ Yang Liu @@aut@@ Jing-Hao Jin @@aut@@ Shiv D. Kale @@aut@@ Xiao-Ren Chen @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
737288345 |
id |
DOAJ079996248 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ079996248</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413061612.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/plants12040883</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ079996248</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ147c5aa35f064dbab94a3b101a559d33</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK1-989</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xue Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Time-Course Transcriptome Profiling Reveals Differential Resistance Responses of Tomato to a Phytotoxic Effector of the Pathogenic Oomycete <i<Phytophthora cactorum</i<</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Blight caused by <i<Phytophthora</i< pathogens has a devastating impact on crop production. <i<Phytophthora</i< species secrete an array of effectors, such as <i<Phytophthora cactorum</i<-<i<Fragaria</i< (PcF)/small cysteine-rich (SCR) phytotoxic proteins, to facilitate their infections. Understanding host responses to such proteins is essential to developing next-generation crop resistance. Our previous work identified a small, 8.1 kDa protein, SCR96, as an important virulence factor in <i<Phytophthora cactorum</i<. Host responses to SCR96 remain obscure. Here, we analyzed the effect of SCR96 on the resistance of tomato treated with this recombinant protein purified from yeast cells. A temporal transcriptome analysis of tomato leaves infiltrated with 500 nM SCR96 for 0, 3, 6, and 12 h was performed using RNA-Seq. In total, 36,779 genes, including 2704 novel ones, were detected, of which 32,640 (88.7%) were annotated. As a whole, 5929 non-redundant genes were found to be significantly co-upregulated in SCR96-treated leaves (3, 6, 12 h) compared to the control (0 h). The combination of annotation, enrichment, and clustering analyses showed significant changes in expression beginning at 3 h after treatment in genes associated with defense and metabolism pathways, as well as temporal transcriptional accumulation patterns. Noticeably, the expression levels of resistance-related genes encoding receptor-like kinases/proteins, resistance proteins, mitogen-activated protein kinases (MAPKs), transcription factors, pathogenesis-related proteins, and transport proteins were significantly affected by SCR96. Quantitative reverse transcription PCR (qRT-PCR) validated the transcript changes in the 12 selected genes. Our analysis provides novel information that can help delineate the molecular mechanism and components of plant responses to effectors, which will be useful for the development of resistant crops.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tomato</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transcriptome</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Phytophthora cactorum</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">small cysteine-rich protein</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phytotoxicity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">defense response</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Botany</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ke Wen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shen-Xin Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yi Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yang Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jing-Hao Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shiv D. Kale</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiao-Ren Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Plants</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">12(2023), 4, p 883</subfield><subfield code="w">(DE-627)737288345</subfield><subfield code="w">(DE-600)2704341-1</subfield><subfield code="x">22237747</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:4, p 883</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/plants12040883</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/147c5aa35f064dbab94a3b101a559d33</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2223-7747/12/4/883</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2223-7747</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2023</subfield><subfield code="e">4, p 883</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Xue Zhou |
spellingShingle |
Xue Zhou misc QK1-989 misc tomato misc transcriptome misc <i<Phytophthora cactorum</i< misc small cysteine-rich protein misc phytotoxicity misc defense response misc Botany Time-Course Transcriptome Profiling Reveals Differential Resistance Responses of Tomato to a Phytotoxic Effector of the Pathogenic Oomycete <i<Phytophthora cactorum</i< |
authorStr |
Xue Zhou |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737288345 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QK1-989 |
illustrated |
Not Illustrated |
issn |
22237747 |
topic_title |
QK1-989 Time-Course Transcriptome Profiling Reveals Differential Resistance Responses of Tomato to a Phytotoxic Effector of the Pathogenic Oomycete <i<Phytophthora cactorum</i< tomato transcriptome <i<Phytophthora cactorum</i< small cysteine-rich protein phytotoxicity defense response |
topic |
misc QK1-989 misc tomato misc transcriptome misc <i<Phytophthora cactorum</i< misc small cysteine-rich protein misc phytotoxicity misc defense response misc Botany |
topic_unstemmed |
misc QK1-989 misc tomato misc transcriptome misc <i<Phytophthora cactorum</i< misc small cysteine-rich protein misc phytotoxicity misc defense response misc Botany |
topic_browse |
misc QK1-989 misc tomato misc transcriptome misc <i<Phytophthora cactorum</i< misc small cysteine-rich protein misc phytotoxicity misc defense response misc Botany |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Plants |
hierarchy_parent_id |
737288345 |
hierarchy_top_title |
Plants |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737288345 (DE-600)2704341-1 |
title |
Time-Course Transcriptome Profiling Reveals Differential Resistance Responses of Tomato to a Phytotoxic Effector of the Pathogenic Oomycete <i<Phytophthora cactorum</i< |
ctrlnum |
(DE-627)DOAJ079996248 (DE-599)DOAJ147c5aa35f064dbab94a3b101a559d33 |
title_full |
Time-Course Transcriptome Profiling Reveals Differential Resistance Responses of Tomato to a Phytotoxic Effector of the Pathogenic Oomycete <i<Phytophthora cactorum</i< |
author_sort |
Xue Zhou |
journal |
Plants |
journalStr |
Plants |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Xue Zhou Ke Wen Shen-Xin Huang Yi Lu Yang Liu Jing-Hao Jin Shiv D. Kale Xiao-Ren Chen |
container_volume |
12 |
class |
QK1-989 |
format_se |
Elektronische Aufsätze |
author-letter |
Xue Zhou |
doi_str_mv |
10.3390/plants12040883 |
author2-role |
verfasserin |
title_sort |
time-course transcriptome profiling reveals differential resistance responses of tomato to a phytotoxic effector of the pathogenic oomycete <i<phytophthora cactorum</i< |
callnumber |
QK1-989 |
title_auth |
Time-Course Transcriptome Profiling Reveals Differential Resistance Responses of Tomato to a Phytotoxic Effector of the Pathogenic Oomycete <i<Phytophthora cactorum</i< |
abstract |
Blight caused by <i<Phytophthora</i< pathogens has a devastating impact on crop production. <i<Phytophthora</i< species secrete an array of effectors, such as <i<Phytophthora cactorum</i<-<i<Fragaria</i< (PcF)/small cysteine-rich (SCR) phytotoxic proteins, to facilitate their infections. Understanding host responses to such proteins is essential to developing next-generation crop resistance. Our previous work identified a small, 8.1 kDa protein, SCR96, as an important virulence factor in <i<Phytophthora cactorum</i<. Host responses to SCR96 remain obscure. Here, we analyzed the effect of SCR96 on the resistance of tomato treated with this recombinant protein purified from yeast cells. A temporal transcriptome analysis of tomato leaves infiltrated with 500 nM SCR96 for 0, 3, 6, and 12 h was performed using RNA-Seq. In total, 36,779 genes, including 2704 novel ones, were detected, of which 32,640 (88.7%) were annotated. As a whole, 5929 non-redundant genes were found to be significantly co-upregulated in SCR96-treated leaves (3, 6, 12 h) compared to the control (0 h). The combination of annotation, enrichment, and clustering analyses showed significant changes in expression beginning at 3 h after treatment in genes associated with defense and metabolism pathways, as well as temporal transcriptional accumulation patterns. Noticeably, the expression levels of resistance-related genes encoding receptor-like kinases/proteins, resistance proteins, mitogen-activated protein kinases (MAPKs), transcription factors, pathogenesis-related proteins, and transport proteins were significantly affected by SCR96. Quantitative reverse transcription PCR (qRT-PCR) validated the transcript changes in the 12 selected genes. Our analysis provides novel information that can help delineate the molecular mechanism and components of plant responses to effectors, which will be useful for the development of resistant crops. |
abstractGer |
Blight caused by <i<Phytophthora</i< pathogens has a devastating impact on crop production. <i<Phytophthora</i< species secrete an array of effectors, such as <i<Phytophthora cactorum</i<-<i<Fragaria</i< (PcF)/small cysteine-rich (SCR) phytotoxic proteins, to facilitate their infections. Understanding host responses to such proteins is essential to developing next-generation crop resistance. Our previous work identified a small, 8.1 kDa protein, SCR96, as an important virulence factor in <i<Phytophthora cactorum</i<. Host responses to SCR96 remain obscure. Here, we analyzed the effect of SCR96 on the resistance of tomato treated with this recombinant protein purified from yeast cells. A temporal transcriptome analysis of tomato leaves infiltrated with 500 nM SCR96 for 0, 3, 6, and 12 h was performed using RNA-Seq. In total, 36,779 genes, including 2704 novel ones, were detected, of which 32,640 (88.7%) were annotated. As a whole, 5929 non-redundant genes were found to be significantly co-upregulated in SCR96-treated leaves (3, 6, 12 h) compared to the control (0 h). The combination of annotation, enrichment, and clustering analyses showed significant changes in expression beginning at 3 h after treatment in genes associated with defense and metabolism pathways, as well as temporal transcriptional accumulation patterns. Noticeably, the expression levels of resistance-related genes encoding receptor-like kinases/proteins, resistance proteins, mitogen-activated protein kinases (MAPKs), transcription factors, pathogenesis-related proteins, and transport proteins were significantly affected by SCR96. Quantitative reverse transcription PCR (qRT-PCR) validated the transcript changes in the 12 selected genes. Our analysis provides novel information that can help delineate the molecular mechanism and components of plant responses to effectors, which will be useful for the development of resistant crops. |
abstract_unstemmed |
Blight caused by <i<Phytophthora</i< pathogens has a devastating impact on crop production. <i<Phytophthora</i< species secrete an array of effectors, such as <i<Phytophthora cactorum</i<-<i<Fragaria</i< (PcF)/small cysteine-rich (SCR) phytotoxic proteins, to facilitate their infections. Understanding host responses to such proteins is essential to developing next-generation crop resistance. Our previous work identified a small, 8.1 kDa protein, SCR96, as an important virulence factor in <i<Phytophthora cactorum</i<. Host responses to SCR96 remain obscure. Here, we analyzed the effect of SCR96 on the resistance of tomato treated with this recombinant protein purified from yeast cells. A temporal transcriptome analysis of tomato leaves infiltrated with 500 nM SCR96 for 0, 3, 6, and 12 h was performed using RNA-Seq. In total, 36,779 genes, including 2704 novel ones, were detected, of which 32,640 (88.7%) were annotated. As a whole, 5929 non-redundant genes were found to be significantly co-upregulated in SCR96-treated leaves (3, 6, 12 h) compared to the control (0 h). The combination of annotation, enrichment, and clustering analyses showed significant changes in expression beginning at 3 h after treatment in genes associated with defense and metabolism pathways, as well as temporal transcriptional accumulation patterns. Noticeably, the expression levels of resistance-related genes encoding receptor-like kinases/proteins, resistance proteins, mitogen-activated protein kinases (MAPKs), transcription factors, pathogenesis-related proteins, and transport proteins were significantly affected by SCR96. Quantitative reverse transcription PCR (qRT-PCR) validated the transcript changes in the 12 selected genes. Our analysis provides novel information that can help delineate the molecular mechanism and components of plant responses to effectors, which will be useful for the development of resistant crops. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4, p 883 |
title_short |
Time-Course Transcriptome Profiling Reveals Differential Resistance Responses of Tomato to a Phytotoxic Effector of the Pathogenic Oomycete <i<Phytophthora cactorum</i< |
url |
https://doi.org/10.3390/plants12040883 https://doaj.org/article/147c5aa35f064dbab94a3b101a559d33 https://www.mdpi.com/2223-7747/12/4/883 https://doaj.org/toc/2223-7747 |
remote_bool |
true |
author2 |
Ke Wen Shen-Xin Huang Yi Lu Yang Liu Jing-Hao Jin Shiv D. Kale Xiao-Ren Chen |
author2Str |
Ke Wen Shen-Xin Huang Yi Lu Yang Liu Jing-Hao Jin Shiv D. Kale Xiao-Ren Chen |
ppnlink |
737288345 |
callnumber-subject |
QK - Botany |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/plants12040883 |
callnumber-a |
QK1-989 |
up_date |
2024-07-04T01:39:33.517Z |
_version_ |
1803610670779858944 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ079996248</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413061612.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/plants12040883</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ079996248</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ147c5aa35f064dbab94a3b101a559d33</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK1-989</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xue Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Time-Course Transcriptome Profiling Reveals Differential Resistance Responses of Tomato to a Phytotoxic Effector of the Pathogenic Oomycete <i<Phytophthora cactorum</i<</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Blight caused by <i<Phytophthora</i< pathogens has a devastating impact on crop production. <i<Phytophthora</i< species secrete an array of effectors, such as <i<Phytophthora cactorum</i<-<i<Fragaria</i< (PcF)/small cysteine-rich (SCR) phytotoxic proteins, to facilitate their infections. Understanding host responses to such proteins is essential to developing next-generation crop resistance. Our previous work identified a small, 8.1 kDa protein, SCR96, as an important virulence factor in <i<Phytophthora cactorum</i<. Host responses to SCR96 remain obscure. Here, we analyzed the effect of SCR96 on the resistance of tomato treated with this recombinant protein purified from yeast cells. A temporal transcriptome analysis of tomato leaves infiltrated with 500 nM SCR96 for 0, 3, 6, and 12 h was performed using RNA-Seq. In total, 36,779 genes, including 2704 novel ones, were detected, of which 32,640 (88.7%) were annotated. As a whole, 5929 non-redundant genes were found to be significantly co-upregulated in SCR96-treated leaves (3, 6, 12 h) compared to the control (0 h). The combination of annotation, enrichment, and clustering analyses showed significant changes in expression beginning at 3 h after treatment in genes associated with defense and metabolism pathways, as well as temporal transcriptional accumulation patterns. Noticeably, the expression levels of resistance-related genes encoding receptor-like kinases/proteins, resistance proteins, mitogen-activated protein kinases (MAPKs), transcription factors, pathogenesis-related proteins, and transport proteins were significantly affected by SCR96. Quantitative reverse transcription PCR (qRT-PCR) validated the transcript changes in the 12 selected genes. Our analysis provides novel information that can help delineate the molecular mechanism and components of plant responses to effectors, which will be useful for the development of resistant crops.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tomato</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transcriptome</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<Phytophthora cactorum</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">small cysteine-rich protein</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phytotoxicity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">defense response</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Botany</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ke Wen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shen-Xin Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yi Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yang Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jing-Hao Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shiv D. Kale</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiao-Ren Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Plants</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">12(2023), 4, p 883</subfield><subfield code="w">(DE-627)737288345</subfield><subfield code="w">(DE-600)2704341-1</subfield><subfield code="x">22237747</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:4, p 883</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/plants12040883</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/147c5aa35f064dbab94a3b101a559d33</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2223-7747/12/4/883</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2223-7747</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2023</subfield><subfield code="e">4, p 883</subfield></datafield></record></collection>
|
score |
7.401745 |