Analysis of Real-Time Face-Verification Methods for Surveillance Applications
In the last decade, face-recognition and -verification methods based on deep learning have increasingly used deeper and more complex architectures to obtain state-of-the-art (SOTA) accuracy. Hence, these architectures are limited to powerful devices that can handle heavy computational resources. Con...
Ausführliche Beschreibung
Autor*in: |
Filiberto Perez-Montes [verfasserIn] Jesus Olivares-Mercado [verfasserIn] Gabriel Sanchez-Perez [verfasserIn] Gibran Benitez-Garcia [verfasserIn] Lidia Prudente-Tixteco [verfasserIn] Osvaldo Lopez-Garcia [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of Imaging - MDPI AG, 2016, 9(2023), 2, p 21 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2023 ; number:2, p 21 |
Links: |
---|
DOI / URN: |
10.3390/jimaging9020021 |
---|
Katalog-ID: |
DOAJ08024372X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ08024372X | ||
003 | DE-627 | ||
005 | 20240413062753.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230310s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/jimaging9020021 |2 doi | |
035 | |a (DE-627)DOAJ08024372X | ||
035 | |a (DE-599)DOAJ359c091212754b2c94abab98aee5e1a5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TR1-1050 | |
050 | 0 | |a R858-859.7 | |
050 | 0 | |a QA75.5-76.95 | |
100 | 0 | |a Filiberto Perez-Montes |e verfasserin |4 aut | |
245 | 1 | 0 | |a Analysis of Real-Time Face-Verification Methods for Surveillance Applications |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In the last decade, face-recognition and -verification methods based on deep learning have increasingly used deeper and more complex architectures to obtain state-of-the-art (SOTA) accuracy. Hence, these architectures are limited to powerful devices that can handle heavy computational resources. Conversely, lightweight and efficient methods have recently been proposed to achieve real-time performance on limited devices and embedded systems. However, real-time face-verification methods struggle with problems usually solved by their heavy counterparts—for example, illumination changes, occlusions, face rotation, and distance to the subject. These challenges are strongly related to surveillance applications that deal with low-resolution face images under unconstrained conditions. Therefore, this paper compares three SOTA real-time face-verification methods for coping with specific problems in surveillance applications. To this end, we created an evaluation subset from two available datasets consisting of 3000 face images presenting face rotation and low-resolution problems. We defined five groups of face rotation with five levels of resolutions that can appear in common surveillance scenarios. With our evaluation subset, we methodically evaluated the face-verification accuracy of MobileFaceNet, EfficientNet-B0, and GhostNet. Furthermore, we also evaluated them with conventional datasets, such as Cross-Pose LFW and QMUL-SurvFace. When examining the experimental results of the three mentioned datasets, we found that EfficientNet-B0 could deal with both surveillance problems, but MobileFaceNet was better at handling extreme face rotation over 80 degrees. | ||
650 | 4 | |a face verification | |
650 | 4 | |a lightweight face recognition | |
650 | 4 | |a video surveillance | |
650 | 4 | |a MobileFaceNet | |
650 | 4 | |a EfficientNet | |
650 | 4 | |a GhostNet | |
653 | 0 | |a Photography | |
653 | 0 | |a Computer applications to medicine. Medical informatics | |
653 | 0 | |a Electronic computers. Computer science | |
700 | 0 | |a Jesus Olivares-Mercado |e verfasserin |4 aut | |
700 | 0 | |a Gabriel Sanchez-Perez |e verfasserin |4 aut | |
700 | 0 | |a Gibran Benitez-Garcia |e verfasserin |4 aut | |
700 | 0 | |a Lidia Prudente-Tixteco |e verfasserin |4 aut | |
700 | 0 | |a Osvaldo Lopez-Garcia |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Imaging |d MDPI AG, 2016 |g 9(2023), 2, p 21 |w (DE-627)827607911 |w (DE-600)2824270-1 |x 2313433X |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2023 |g number:2, p 21 |
856 | 4 | 0 | |u https://doi.org/10.3390/jimaging9020021 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/359c091212754b2c94abab98aee5e1a5 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2313-433X/9/2/21 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2313-433X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2023 |e 2, p 21 |
author_variant |
f p m fpm j o m jom g s p gsp g b g gbg l p t lpt o l g olg |
---|---|
matchkey_str |
article:2313433X:2023----::nlssfelieaeeiiainehdfruvi |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TR |
publishDate |
2023 |
allfields |
10.3390/jimaging9020021 doi (DE-627)DOAJ08024372X (DE-599)DOAJ359c091212754b2c94abab98aee5e1a5 DE-627 ger DE-627 rakwb eng TR1-1050 R858-859.7 QA75.5-76.95 Filiberto Perez-Montes verfasserin aut Analysis of Real-Time Face-Verification Methods for Surveillance Applications 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the last decade, face-recognition and -verification methods based on deep learning have increasingly used deeper and more complex architectures to obtain state-of-the-art (SOTA) accuracy. Hence, these architectures are limited to powerful devices that can handle heavy computational resources. Conversely, lightweight and efficient methods have recently been proposed to achieve real-time performance on limited devices and embedded systems. However, real-time face-verification methods struggle with problems usually solved by their heavy counterparts—for example, illumination changes, occlusions, face rotation, and distance to the subject. These challenges are strongly related to surveillance applications that deal with low-resolution face images under unconstrained conditions. Therefore, this paper compares three SOTA real-time face-verification methods for coping with specific problems in surveillance applications. To this end, we created an evaluation subset from two available datasets consisting of 3000 face images presenting face rotation and low-resolution problems. We defined five groups of face rotation with five levels of resolutions that can appear in common surveillance scenarios. With our evaluation subset, we methodically evaluated the face-verification accuracy of MobileFaceNet, EfficientNet-B0, and GhostNet. Furthermore, we also evaluated them with conventional datasets, such as Cross-Pose LFW and QMUL-SurvFace. When examining the experimental results of the three mentioned datasets, we found that EfficientNet-B0 could deal with both surveillance problems, but MobileFaceNet was better at handling extreme face rotation over 80 degrees. face verification lightweight face recognition video surveillance MobileFaceNet EfficientNet GhostNet Photography Computer applications to medicine. Medical informatics Electronic computers. Computer science Jesus Olivares-Mercado verfasserin aut Gabriel Sanchez-Perez verfasserin aut Gibran Benitez-Garcia verfasserin aut Lidia Prudente-Tixteco verfasserin aut Osvaldo Lopez-Garcia verfasserin aut In Journal of Imaging MDPI AG, 2016 9(2023), 2, p 21 (DE-627)827607911 (DE-600)2824270-1 2313433X nnns volume:9 year:2023 number:2, p 21 https://doi.org/10.3390/jimaging9020021 kostenfrei https://doaj.org/article/359c091212754b2c94abab98aee5e1a5 kostenfrei https://www.mdpi.com/2313-433X/9/2/21 kostenfrei https://doaj.org/toc/2313-433X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2023 2, p 21 |
spelling |
10.3390/jimaging9020021 doi (DE-627)DOAJ08024372X (DE-599)DOAJ359c091212754b2c94abab98aee5e1a5 DE-627 ger DE-627 rakwb eng TR1-1050 R858-859.7 QA75.5-76.95 Filiberto Perez-Montes verfasserin aut Analysis of Real-Time Face-Verification Methods for Surveillance Applications 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the last decade, face-recognition and -verification methods based on deep learning have increasingly used deeper and more complex architectures to obtain state-of-the-art (SOTA) accuracy. Hence, these architectures are limited to powerful devices that can handle heavy computational resources. Conversely, lightweight and efficient methods have recently been proposed to achieve real-time performance on limited devices and embedded systems. However, real-time face-verification methods struggle with problems usually solved by their heavy counterparts—for example, illumination changes, occlusions, face rotation, and distance to the subject. These challenges are strongly related to surveillance applications that deal with low-resolution face images under unconstrained conditions. Therefore, this paper compares three SOTA real-time face-verification methods for coping with specific problems in surveillance applications. To this end, we created an evaluation subset from two available datasets consisting of 3000 face images presenting face rotation and low-resolution problems. We defined five groups of face rotation with five levels of resolutions that can appear in common surveillance scenarios. With our evaluation subset, we methodically evaluated the face-verification accuracy of MobileFaceNet, EfficientNet-B0, and GhostNet. Furthermore, we also evaluated them with conventional datasets, such as Cross-Pose LFW and QMUL-SurvFace. When examining the experimental results of the three mentioned datasets, we found that EfficientNet-B0 could deal with both surveillance problems, but MobileFaceNet was better at handling extreme face rotation over 80 degrees. face verification lightweight face recognition video surveillance MobileFaceNet EfficientNet GhostNet Photography Computer applications to medicine. Medical informatics Electronic computers. Computer science Jesus Olivares-Mercado verfasserin aut Gabriel Sanchez-Perez verfasserin aut Gibran Benitez-Garcia verfasserin aut Lidia Prudente-Tixteco verfasserin aut Osvaldo Lopez-Garcia verfasserin aut In Journal of Imaging MDPI AG, 2016 9(2023), 2, p 21 (DE-627)827607911 (DE-600)2824270-1 2313433X nnns volume:9 year:2023 number:2, p 21 https://doi.org/10.3390/jimaging9020021 kostenfrei https://doaj.org/article/359c091212754b2c94abab98aee5e1a5 kostenfrei https://www.mdpi.com/2313-433X/9/2/21 kostenfrei https://doaj.org/toc/2313-433X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2023 2, p 21 |
allfields_unstemmed |
10.3390/jimaging9020021 doi (DE-627)DOAJ08024372X (DE-599)DOAJ359c091212754b2c94abab98aee5e1a5 DE-627 ger DE-627 rakwb eng TR1-1050 R858-859.7 QA75.5-76.95 Filiberto Perez-Montes verfasserin aut Analysis of Real-Time Face-Verification Methods for Surveillance Applications 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the last decade, face-recognition and -verification methods based on deep learning have increasingly used deeper and more complex architectures to obtain state-of-the-art (SOTA) accuracy. Hence, these architectures are limited to powerful devices that can handle heavy computational resources. Conversely, lightweight and efficient methods have recently been proposed to achieve real-time performance on limited devices and embedded systems. However, real-time face-verification methods struggle with problems usually solved by their heavy counterparts—for example, illumination changes, occlusions, face rotation, and distance to the subject. These challenges are strongly related to surveillance applications that deal with low-resolution face images under unconstrained conditions. Therefore, this paper compares three SOTA real-time face-verification methods for coping with specific problems in surveillance applications. To this end, we created an evaluation subset from two available datasets consisting of 3000 face images presenting face rotation and low-resolution problems. We defined five groups of face rotation with five levels of resolutions that can appear in common surveillance scenarios. With our evaluation subset, we methodically evaluated the face-verification accuracy of MobileFaceNet, EfficientNet-B0, and GhostNet. Furthermore, we also evaluated them with conventional datasets, such as Cross-Pose LFW and QMUL-SurvFace. When examining the experimental results of the three mentioned datasets, we found that EfficientNet-B0 could deal with both surveillance problems, but MobileFaceNet was better at handling extreme face rotation over 80 degrees. face verification lightweight face recognition video surveillance MobileFaceNet EfficientNet GhostNet Photography Computer applications to medicine. Medical informatics Electronic computers. Computer science Jesus Olivares-Mercado verfasserin aut Gabriel Sanchez-Perez verfasserin aut Gibran Benitez-Garcia verfasserin aut Lidia Prudente-Tixteco verfasserin aut Osvaldo Lopez-Garcia verfasserin aut In Journal of Imaging MDPI AG, 2016 9(2023), 2, p 21 (DE-627)827607911 (DE-600)2824270-1 2313433X nnns volume:9 year:2023 number:2, p 21 https://doi.org/10.3390/jimaging9020021 kostenfrei https://doaj.org/article/359c091212754b2c94abab98aee5e1a5 kostenfrei https://www.mdpi.com/2313-433X/9/2/21 kostenfrei https://doaj.org/toc/2313-433X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2023 2, p 21 |
allfieldsGer |
10.3390/jimaging9020021 doi (DE-627)DOAJ08024372X (DE-599)DOAJ359c091212754b2c94abab98aee5e1a5 DE-627 ger DE-627 rakwb eng TR1-1050 R858-859.7 QA75.5-76.95 Filiberto Perez-Montes verfasserin aut Analysis of Real-Time Face-Verification Methods for Surveillance Applications 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the last decade, face-recognition and -verification methods based on deep learning have increasingly used deeper and more complex architectures to obtain state-of-the-art (SOTA) accuracy. Hence, these architectures are limited to powerful devices that can handle heavy computational resources. Conversely, lightweight and efficient methods have recently been proposed to achieve real-time performance on limited devices and embedded systems. However, real-time face-verification methods struggle with problems usually solved by their heavy counterparts—for example, illumination changes, occlusions, face rotation, and distance to the subject. These challenges are strongly related to surveillance applications that deal with low-resolution face images under unconstrained conditions. Therefore, this paper compares three SOTA real-time face-verification methods for coping with specific problems in surveillance applications. To this end, we created an evaluation subset from two available datasets consisting of 3000 face images presenting face rotation and low-resolution problems. We defined five groups of face rotation with five levels of resolutions that can appear in common surveillance scenarios. With our evaluation subset, we methodically evaluated the face-verification accuracy of MobileFaceNet, EfficientNet-B0, and GhostNet. Furthermore, we also evaluated them with conventional datasets, such as Cross-Pose LFW and QMUL-SurvFace. When examining the experimental results of the three mentioned datasets, we found that EfficientNet-B0 could deal with both surveillance problems, but MobileFaceNet was better at handling extreme face rotation over 80 degrees. face verification lightweight face recognition video surveillance MobileFaceNet EfficientNet GhostNet Photography Computer applications to medicine. Medical informatics Electronic computers. Computer science Jesus Olivares-Mercado verfasserin aut Gabriel Sanchez-Perez verfasserin aut Gibran Benitez-Garcia verfasserin aut Lidia Prudente-Tixteco verfasserin aut Osvaldo Lopez-Garcia verfasserin aut In Journal of Imaging MDPI AG, 2016 9(2023), 2, p 21 (DE-627)827607911 (DE-600)2824270-1 2313433X nnns volume:9 year:2023 number:2, p 21 https://doi.org/10.3390/jimaging9020021 kostenfrei https://doaj.org/article/359c091212754b2c94abab98aee5e1a5 kostenfrei https://www.mdpi.com/2313-433X/9/2/21 kostenfrei https://doaj.org/toc/2313-433X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2023 2, p 21 |
allfieldsSound |
10.3390/jimaging9020021 doi (DE-627)DOAJ08024372X (DE-599)DOAJ359c091212754b2c94abab98aee5e1a5 DE-627 ger DE-627 rakwb eng TR1-1050 R858-859.7 QA75.5-76.95 Filiberto Perez-Montes verfasserin aut Analysis of Real-Time Face-Verification Methods for Surveillance Applications 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In the last decade, face-recognition and -verification methods based on deep learning have increasingly used deeper and more complex architectures to obtain state-of-the-art (SOTA) accuracy. Hence, these architectures are limited to powerful devices that can handle heavy computational resources. Conversely, lightweight and efficient methods have recently been proposed to achieve real-time performance on limited devices and embedded systems. However, real-time face-verification methods struggle with problems usually solved by their heavy counterparts—for example, illumination changes, occlusions, face rotation, and distance to the subject. These challenges are strongly related to surveillance applications that deal with low-resolution face images under unconstrained conditions. Therefore, this paper compares three SOTA real-time face-verification methods for coping with specific problems in surveillance applications. To this end, we created an evaluation subset from two available datasets consisting of 3000 face images presenting face rotation and low-resolution problems. We defined five groups of face rotation with five levels of resolutions that can appear in common surveillance scenarios. With our evaluation subset, we methodically evaluated the face-verification accuracy of MobileFaceNet, EfficientNet-B0, and GhostNet. Furthermore, we also evaluated them with conventional datasets, such as Cross-Pose LFW and QMUL-SurvFace. When examining the experimental results of the three mentioned datasets, we found that EfficientNet-B0 could deal with both surveillance problems, but MobileFaceNet was better at handling extreme face rotation over 80 degrees. face verification lightweight face recognition video surveillance MobileFaceNet EfficientNet GhostNet Photography Computer applications to medicine. Medical informatics Electronic computers. Computer science Jesus Olivares-Mercado verfasserin aut Gabriel Sanchez-Perez verfasserin aut Gibran Benitez-Garcia verfasserin aut Lidia Prudente-Tixteco verfasserin aut Osvaldo Lopez-Garcia verfasserin aut In Journal of Imaging MDPI AG, 2016 9(2023), 2, p 21 (DE-627)827607911 (DE-600)2824270-1 2313433X nnns volume:9 year:2023 number:2, p 21 https://doi.org/10.3390/jimaging9020021 kostenfrei https://doaj.org/article/359c091212754b2c94abab98aee5e1a5 kostenfrei https://www.mdpi.com/2313-433X/9/2/21 kostenfrei https://doaj.org/toc/2313-433X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2023 2, p 21 |
language |
English |
source |
In Journal of Imaging 9(2023), 2, p 21 volume:9 year:2023 number:2, p 21 |
sourceStr |
In Journal of Imaging 9(2023), 2, p 21 volume:9 year:2023 number:2, p 21 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
face verification lightweight face recognition video surveillance MobileFaceNet EfficientNet GhostNet Photography Computer applications to medicine. Medical informatics Electronic computers. Computer science |
isfreeaccess_bool |
true |
container_title |
Journal of Imaging |
authorswithroles_txt_mv |
Filiberto Perez-Montes @@aut@@ Jesus Olivares-Mercado @@aut@@ Gabriel Sanchez-Perez @@aut@@ Gibran Benitez-Garcia @@aut@@ Lidia Prudente-Tixteco @@aut@@ Osvaldo Lopez-Garcia @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
827607911 |
id |
DOAJ08024372X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ08024372X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413062753.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/jimaging9020021</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ08024372X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ359c091212754b2c94abab98aee5e1a5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TR1-1050</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R858-859.7</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA75.5-76.95</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Filiberto Perez-Montes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of Real-Time Face-Verification Methods for Surveillance Applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the last decade, face-recognition and -verification methods based on deep learning have increasingly used deeper and more complex architectures to obtain state-of-the-art (SOTA) accuracy. Hence, these architectures are limited to powerful devices that can handle heavy computational resources. Conversely, lightweight and efficient methods have recently been proposed to achieve real-time performance on limited devices and embedded systems. However, real-time face-verification methods struggle with problems usually solved by their heavy counterparts—for example, illumination changes, occlusions, face rotation, and distance to the subject. These challenges are strongly related to surveillance applications that deal with low-resolution face images under unconstrained conditions. Therefore, this paper compares three SOTA real-time face-verification methods for coping with specific problems in surveillance applications. To this end, we created an evaluation subset from two available datasets consisting of 3000 face images presenting face rotation and low-resolution problems. We defined five groups of face rotation with five levels of resolutions that can appear in common surveillance scenarios. With our evaluation subset, we methodically evaluated the face-verification accuracy of MobileFaceNet, EfficientNet-B0, and GhostNet. Furthermore, we also evaluated them with conventional datasets, such as Cross-Pose LFW and QMUL-SurvFace. When examining the experimental results of the three mentioned datasets, we found that EfficientNet-B0 could deal with both surveillance problems, but MobileFaceNet was better at handling extreme face rotation over 80 degrees.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">face verification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lightweight face recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">video surveillance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MobileFaceNet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">EfficientNet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GhostNet</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Photography</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer applications to medicine. Medical informatics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic computers. Computer science</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jesus Olivares-Mercado</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gabriel Sanchez-Perez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gibran Benitez-Garcia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lidia Prudente-Tixteco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Osvaldo Lopez-Garcia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Imaging</subfield><subfield code="d">MDPI AG, 2016</subfield><subfield code="g">9(2023), 2, p 21</subfield><subfield code="w">(DE-627)827607911</subfield><subfield code="w">(DE-600)2824270-1</subfield><subfield code="x">2313433X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:2, p 21</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/jimaging9020021</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/359c091212754b2c94abab98aee5e1a5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2313-433X/9/2/21</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2313-433X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2023</subfield><subfield code="e">2, p 21</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Filiberto Perez-Montes |
spellingShingle |
Filiberto Perez-Montes misc TR1-1050 misc R858-859.7 misc QA75.5-76.95 misc face verification misc lightweight face recognition misc video surveillance misc MobileFaceNet misc EfficientNet misc GhostNet misc Photography misc Computer applications to medicine. Medical informatics misc Electronic computers. Computer science Analysis of Real-Time Face-Verification Methods for Surveillance Applications |
authorStr |
Filiberto Perez-Montes |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)827607911 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TR1-1050 |
illustrated |
Not Illustrated |
issn |
2313433X |
topic_title |
TR1-1050 R858-859.7 QA75.5-76.95 Analysis of Real-Time Face-Verification Methods for Surveillance Applications face verification lightweight face recognition video surveillance MobileFaceNet EfficientNet GhostNet |
topic |
misc TR1-1050 misc R858-859.7 misc QA75.5-76.95 misc face verification misc lightweight face recognition misc video surveillance misc MobileFaceNet misc EfficientNet misc GhostNet misc Photography misc Computer applications to medicine. Medical informatics misc Electronic computers. Computer science |
topic_unstemmed |
misc TR1-1050 misc R858-859.7 misc QA75.5-76.95 misc face verification misc lightweight face recognition misc video surveillance misc MobileFaceNet misc EfficientNet misc GhostNet misc Photography misc Computer applications to medicine. Medical informatics misc Electronic computers. Computer science |
topic_browse |
misc TR1-1050 misc R858-859.7 misc QA75.5-76.95 misc face verification misc lightweight face recognition misc video surveillance misc MobileFaceNet misc EfficientNet misc GhostNet misc Photography misc Computer applications to medicine. Medical informatics misc Electronic computers. Computer science |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Imaging |
hierarchy_parent_id |
827607911 |
hierarchy_top_title |
Journal of Imaging |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)827607911 (DE-600)2824270-1 |
title |
Analysis of Real-Time Face-Verification Methods for Surveillance Applications |
ctrlnum |
(DE-627)DOAJ08024372X (DE-599)DOAJ359c091212754b2c94abab98aee5e1a5 |
title_full |
Analysis of Real-Time Face-Verification Methods for Surveillance Applications |
author_sort |
Filiberto Perez-Montes |
journal |
Journal of Imaging |
journalStr |
Journal of Imaging |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Filiberto Perez-Montes Jesus Olivares-Mercado Gabriel Sanchez-Perez Gibran Benitez-Garcia Lidia Prudente-Tixteco Osvaldo Lopez-Garcia |
container_volume |
9 |
class |
TR1-1050 R858-859.7 QA75.5-76.95 |
format_se |
Elektronische Aufsätze |
author-letter |
Filiberto Perez-Montes |
doi_str_mv |
10.3390/jimaging9020021 |
author2-role |
verfasserin |
title_sort |
analysis of real-time face-verification methods for surveillance applications |
callnumber |
TR1-1050 |
title_auth |
Analysis of Real-Time Face-Verification Methods for Surveillance Applications |
abstract |
In the last decade, face-recognition and -verification methods based on deep learning have increasingly used deeper and more complex architectures to obtain state-of-the-art (SOTA) accuracy. Hence, these architectures are limited to powerful devices that can handle heavy computational resources. Conversely, lightweight and efficient methods have recently been proposed to achieve real-time performance on limited devices and embedded systems. However, real-time face-verification methods struggle with problems usually solved by their heavy counterparts—for example, illumination changes, occlusions, face rotation, and distance to the subject. These challenges are strongly related to surveillance applications that deal with low-resolution face images under unconstrained conditions. Therefore, this paper compares three SOTA real-time face-verification methods for coping with specific problems in surveillance applications. To this end, we created an evaluation subset from two available datasets consisting of 3000 face images presenting face rotation and low-resolution problems. We defined five groups of face rotation with five levels of resolutions that can appear in common surveillance scenarios. With our evaluation subset, we methodically evaluated the face-verification accuracy of MobileFaceNet, EfficientNet-B0, and GhostNet. Furthermore, we also evaluated them with conventional datasets, such as Cross-Pose LFW and QMUL-SurvFace. When examining the experimental results of the three mentioned datasets, we found that EfficientNet-B0 could deal with both surveillance problems, but MobileFaceNet was better at handling extreme face rotation over 80 degrees. |
abstractGer |
In the last decade, face-recognition and -verification methods based on deep learning have increasingly used deeper and more complex architectures to obtain state-of-the-art (SOTA) accuracy. Hence, these architectures are limited to powerful devices that can handle heavy computational resources. Conversely, lightweight and efficient methods have recently been proposed to achieve real-time performance on limited devices and embedded systems. However, real-time face-verification methods struggle with problems usually solved by their heavy counterparts—for example, illumination changes, occlusions, face rotation, and distance to the subject. These challenges are strongly related to surveillance applications that deal with low-resolution face images under unconstrained conditions. Therefore, this paper compares three SOTA real-time face-verification methods for coping with specific problems in surveillance applications. To this end, we created an evaluation subset from two available datasets consisting of 3000 face images presenting face rotation and low-resolution problems. We defined five groups of face rotation with five levels of resolutions that can appear in common surveillance scenarios. With our evaluation subset, we methodically evaluated the face-verification accuracy of MobileFaceNet, EfficientNet-B0, and GhostNet. Furthermore, we also evaluated them with conventional datasets, such as Cross-Pose LFW and QMUL-SurvFace. When examining the experimental results of the three mentioned datasets, we found that EfficientNet-B0 could deal with both surveillance problems, but MobileFaceNet was better at handling extreme face rotation over 80 degrees. |
abstract_unstemmed |
In the last decade, face-recognition and -verification methods based on deep learning have increasingly used deeper and more complex architectures to obtain state-of-the-art (SOTA) accuracy. Hence, these architectures are limited to powerful devices that can handle heavy computational resources. Conversely, lightweight and efficient methods have recently been proposed to achieve real-time performance on limited devices and embedded systems. However, real-time face-verification methods struggle with problems usually solved by their heavy counterparts—for example, illumination changes, occlusions, face rotation, and distance to the subject. These challenges are strongly related to surveillance applications that deal with low-resolution face images under unconstrained conditions. Therefore, this paper compares three SOTA real-time face-verification methods for coping with specific problems in surveillance applications. To this end, we created an evaluation subset from two available datasets consisting of 3000 face images presenting face rotation and low-resolution problems. We defined five groups of face rotation with five levels of resolutions that can appear in common surveillance scenarios. With our evaluation subset, we methodically evaluated the face-verification accuracy of MobileFaceNet, EfficientNet-B0, and GhostNet. Furthermore, we also evaluated them with conventional datasets, such as Cross-Pose LFW and QMUL-SurvFace. When examining the experimental results of the three mentioned datasets, we found that EfficientNet-B0 could deal with both surveillance problems, but MobileFaceNet was better at handling extreme face rotation over 80 degrees. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2, p 21 |
title_short |
Analysis of Real-Time Face-Verification Methods for Surveillance Applications |
url |
https://doi.org/10.3390/jimaging9020021 https://doaj.org/article/359c091212754b2c94abab98aee5e1a5 https://www.mdpi.com/2313-433X/9/2/21 https://doaj.org/toc/2313-433X |
remote_bool |
true |
author2 |
Jesus Olivares-Mercado Gabriel Sanchez-Perez Gibran Benitez-Garcia Lidia Prudente-Tixteco Osvaldo Lopez-Garcia |
author2Str |
Jesus Olivares-Mercado Gabriel Sanchez-Perez Gibran Benitez-Garcia Lidia Prudente-Tixteco Osvaldo Lopez-Garcia |
ppnlink |
827607911 |
callnumber-subject |
TR - Photography |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/jimaging9020021 |
callnumber-a |
TR1-1050 |
up_date |
2024-07-03T13:35:28.934Z |
_version_ |
1803565115835940864 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ08024372X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413062753.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/jimaging9020021</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ08024372X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ359c091212754b2c94abab98aee5e1a5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TR1-1050</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R858-859.7</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA75.5-76.95</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Filiberto Perez-Montes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of Real-Time Face-Verification Methods for Surveillance Applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the last decade, face-recognition and -verification methods based on deep learning have increasingly used deeper and more complex architectures to obtain state-of-the-art (SOTA) accuracy. Hence, these architectures are limited to powerful devices that can handle heavy computational resources. Conversely, lightweight and efficient methods have recently been proposed to achieve real-time performance on limited devices and embedded systems. However, real-time face-verification methods struggle with problems usually solved by their heavy counterparts—for example, illumination changes, occlusions, face rotation, and distance to the subject. These challenges are strongly related to surveillance applications that deal with low-resolution face images under unconstrained conditions. Therefore, this paper compares three SOTA real-time face-verification methods for coping with specific problems in surveillance applications. To this end, we created an evaluation subset from two available datasets consisting of 3000 face images presenting face rotation and low-resolution problems. We defined five groups of face rotation with five levels of resolutions that can appear in common surveillance scenarios. With our evaluation subset, we methodically evaluated the face-verification accuracy of MobileFaceNet, EfficientNet-B0, and GhostNet. Furthermore, we also evaluated them with conventional datasets, such as Cross-Pose LFW and QMUL-SurvFace. When examining the experimental results of the three mentioned datasets, we found that EfficientNet-B0 could deal with both surveillance problems, but MobileFaceNet was better at handling extreme face rotation over 80 degrees.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">face verification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lightweight face recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">video surveillance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MobileFaceNet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">EfficientNet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GhostNet</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Photography</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer applications to medicine. Medical informatics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic computers. Computer science</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jesus Olivares-Mercado</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gabriel Sanchez-Perez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gibran Benitez-Garcia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lidia Prudente-Tixteco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Osvaldo Lopez-Garcia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Imaging</subfield><subfield code="d">MDPI AG, 2016</subfield><subfield code="g">9(2023), 2, p 21</subfield><subfield code="w">(DE-627)827607911</subfield><subfield code="w">(DE-600)2824270-1</subfield><subfield code="x">2313433X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:2, p 21</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/jimaging9020021</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/359c091212754b2c94abab98aee5e1a5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2313-433X/9/2/21</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2313-433X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2023</subfield><subfield code="e">2, p 21</subfield></datafield></record></collection>
|
score |
7.4014435 |