The Combined Effect of Polygenic Risk Score and Prostate Health Index in Chinese Men Undergoing Prostate Biopsy
To date, the combined effect of polygenic risk score (PRS) and prostate health index (<i<phi</i<) on PCa diagnosis in men undergoing prostate biopsy has never been investigated. A total of 3166 patients who underwent initial prostate biopsy in three tertiary medical centers from August 2...
Ausführliche Beschreibung
Autor*in: |
Xiaohao Ruan [verfasserIn] Da Huang [verfasserIn] Jingyi Huang [verfasserIn] Jinlun Huang [verfasserIn] Yongle Zhan [verfasserIn] Yishuo Wu [verfasserIn] Qiang Ding [verfasserIn] Danfeng Xu [verfasserIn] Haowen Jiang [verfasserIn] Wei Xue [verfasserIn] Rong Na [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of Clinical Medicine - MDPI AG, 2013, 12(2023), 4, p 1343 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2023 ; number:4, p 1343 |
Links: |
---|
DOI / URN: |
10.3390/jcm12041343 |
---|
Katalog-ID: |
DOAJ080248519 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ080248519 | ||
003 | DE-627 | ||
005 | 20240413062849.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230310s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/jcm12041343 |2 doi | |
035 | |a (DE-627)DOAJ080248519 | ||
035 | |a (DE-599)DOAJ6dc8ebdb946d42248ad56dadacc340d0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Xiaohao Ruan |e verfasserin |4 aut | |
245 | 1 | 4 | |a The Combined Effect of Polygenic Risk Score and Prostate Health Index in Chinese Men Undergoing Prostate Biopsy |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a To date, the combined effect of polygenic risk score (PRS) and prostate health index (<i<phi</i<) on PCa diagnosis in men undergoing prostate biopsy has never been investigated. A total of 3166 patients who underwent initial prostate biopsy in three tertiary medical centers from August 2013 to March 2019 were included. PRS was calculated on the basis of the genotype of 102 reported East-Asian-specific risk variants. It was then evaluated in the univariable or multivariable logistic regression models that were internally validated using repeated 10-fold cross-validation. Discriminative performance was assessed by area under the receiver operating curve (AUC) and net reclassification improvement (NRI) index. Compared with men in the first quintile of age and family history adjusted PRS, those in the second, third, fourth, and fifth quintiles were 1.86 (odds ratio, 95% confidence interval (CI): 1.34–2.56), 2.07 (95%CI: 1.50–2.84), 3.26 (95%CI: 2.36–4.48), and 5.06 (95%CI: 3.68–6.97) times as likely to develop PCa (all <i<p</i< < 0.001). Adjustment for other clinical parameters yielded similar results. Among patients with prostate-specific antigen (PSA) at 2–10 ng/mL or 2–20 ng/mL, PRS still had an observable ability to differentiate PCa in the group of prostate health index (<i<phi</i<) at 27–36 (<i<P</i<<sub<trend</sub< < 0.05) or <36 (<i<P</i<<sub<trend</sub< ≤ 0.001). Notably, men with moderate <i<phi</i< (27–36) but highest PRS (top 20% percentile) would have a comparable risk of PCa (positive rate: 26.7% or 31.3%) than men with high <i<phi</i< (<36) but lowest PRS (bottom 20% percentile positive rate: 27.4% or 34.2%). The combined model of PRS, <i<phi</i<, and other clinical risk factors provided significantly better performance (AUC: 0.904, 95%CI: 0.887–0.921) than models without PRS. Adding PRS to clinical risk models could provide significant net benefit (NRI, from 8.6% to 27.6%), especially in those early onset patients (NRI, from 29.2% to 44.9%). PRS may provide additional predictive value over <i<phi</i< for PCa. The combination of PRS and <i<phi</i< that effectively captured both clinical and genetic PCa risk is clinically practical, even in patients with gray-zone PSA. | ||
650 | 4 | |a polygenic risk score | |
650 | 4 | |a prostate biopsy | |
650 | 4 | |a prostate cancer | |
650 | 4 | |a prostate health index | |
650 | 4 | |a prostate-specific antigen | |
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
700 | 0 | |a Da Huang |e verfasserin |4 aut | |
700 | 0 | |a Jingyi Huang |e verfasserin |4 aut | |
700 | 0 | |a Jinlun Huang |e verfasserin |4 aut | |
700 | 0 | |a Yongle Zhan |e verfasserin |4 aut | |
700 | 0 | |a Yishuo Wu |e verfasserin |4 aut | |
700 | 0 | |a Qiang Ding |e verfasserin |4 aut | |
700 | 0 | |a Danfeng Xu |e verfasserin |4 aut | |
700 | 0 | |a Haowen Jiang |e verfasserin |4 aut | |
700 | 0 | |a Wei Xue |e verfasserin |4 aut | |
700 | 0 | |a Rong Na |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Clinical Medicine |d MDPI AG, 2013 |g 12(2023), 4, p 1343 |w (DE-627)718632478 |w (DE-600)2662592-1 |x 20770383 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2023 |g number:4, p 1343 |
856 | 4 | 0 | |u https://doi.org/10.3390/jcm12041343 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/6dc8ebdb946d42248ad56dadacc340d0 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2077-0383/12/4/1343 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2077-0383 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2023 |e 4, p 1343 |
author_variant |
x r xr d h dh j h jh j h jh y z yz y w yw q d qd d x dx h j hj w x wx r n rn |
---|---|
matchkey_str |
article:20770383:2023----::hcmieefcoplgncikcradrsaeelhneiciee |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.3390/jcm12041343 doi (DE-627)DOAJ080248519 (DE-599)DOAJ6dc8ebdb946d42248ad56dadacc340d0 DE-627 ger DE-627 rakwb eng Xiaohao Ruan verfasserin aut The Combined Effect of Polygenic Risk Score and Prostate Health Index in Chinese Men Undergoing Prostate Biopsy 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To date, the combined effect of polygenic risk score (PRS) and prostate health index (<i<phi</i<) on PCa diagnosis in men undergoing prostate biopsy has never been investigated. A total of 3166 patients who underwent initial prostate biopsy in three tertiary medical centers from August 2013 to March 2019 were included. PRS was calculated on the basis of the genotype of 102 reported East-Asian-specific risk variants. It was then evaluated in the univariable or multivariable logistic regression models that were internally validated using repeated 10-fold cross-validation. Discriminative performance was assessed by area under the receiver operating curve (AUC) and net reclassification improvement (NRI) index. Compared with men in the first quintile of age and family history adjusted PRS, those in the second, third, fourth, and fifth quintiles were 1.86 (odds ratio, 95% confidence interval (CI): 1.34–2.56), 2.07 (95%CI: 1.50–2.84), 3.26 (95%CI: 2.36–4.48), and 5.06 (95%CI: 3.68–6.97) times as likely to develop PCa (all <i<p</i< < 0.001). Adjustment for other clinical parameters yielded similar results. Among patients with prostate-specific antigen (PSA) at 2–10 ng/mL or 2–20 ng/mL, PRS still had an observable ability to differentiate PCa in the group of prostate health index (<i<phi</i<) at 27–36 (<i<P</i<<sub<trend</sub< < 0.05) or <36 (<i<P</i<<sub<trend</sub< ≤ 0.001). Notably, men with moderate <i<phi</i< (27–36) but highest PRS (top 20% percentile) would have a comparable risk of PCa (positive rate: 26.7% or 31.3%) than men with high <i<phi</i< (<36) but lowest PRS (bottom 20% percentile positive rate: 27.4% or 34.2%). The combined model of PRS, <i<phi</i<, and other clinical risk factors provided significantly better performance (AUC: 0.904, 95%CI: 0.887–0.921) than models without PRS. Adding PRS to clinical risk models could provide significant net benefit (NRI, from 8.6% to 27.6%), especially in those early onset patients (NRI, from 29.2% to 44.9%). PRS may provide additional predictive value over <i<phi</i< for PCa. The combination of PRS and <i<phi</i< that effectively captured both clinical and genetic PCa risk is clinically practical, even in patients with gray-zone PSA. polygenic risk score prostate biopsy prostate cancer prostate health index prostate-specific antigen Medicine R Da Huang verfasserin aut Jingyi Huang verfasserin aut Jinlun Huang verfasserin aut Yongle Zhan verfasserin aut Yishuo Wu verfasserin aut Qiang Ding verfasserin aut Danfeng Xu verfasserin aut Haowen Jiang verfasserin aut Wei Xue verfasserin aut Rong Na verfasserin aut In Journal of Clinical Medicine MDPI AG, 2013 12(2023), 4, p 1343 (DE-627)718632478 (DE-600)2662592-1 20770383 nnns volume:12 year:2023 number:4, p 1343 https://doi.org/10.3390/jcm12041343 kostenfrei https://doaj.org/article/6dc8ebdb946d42248ad56dadacc340d0 kostenfrei https://www.mdpi.com/2077-0383/12/4/1343 kostenfrei https://doaj.org/toc/2077-0383 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 4, p 1343 |
spelling |
10.3390/jcm12041343 doi (DE-627)DOAJ080248519 (DE-599)DOAJ6dc8ebdb946d42248ad56dadacc340d0 DE-627 ger DE-627 rakwb eng Xiaohao Ruan verfasserin aut The Combined Effect of Polygenic Risk Score and Prostate Health Index in Chinese Men Undergoing Prostate Biopsy 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To date, the combined effect of polygenic risk score (PRS) and prostate health index (<i<phi</i<) on PCa diagnosis in men undergoing prostate biopsy has never been investigated. A total of 3166 patients who underwent initial prostate biopsy in three tertiary medical centers from August 2013 to March 2019 were included. PRS was calculated on the basis of the genotype of 102 reported East-Asian-specific risk variants. It was then evaluated in the univariable or multivariable logistic regression models that were internally validated using repeated 10-fold cross-validation. Discriminative performance was assessed by area under the receiver operating curve (AUC) and net reclassification improvement (NRI) index. Compared with men in the first quintile of age and family history adjusted PRS, those in the second, third, fourth, and fifth quintiles were 1.86 (odds ratio, 95% confidence interval (CI): 1.34–2.56), 2.07 (95%CI: 1.50–2.84), 3.26 (95%CI: 2.36–4.48), and 5.06 (95%CI: 3.68–6.97) times as likely to develop PCa (all <i<p</i< < 0.001). Adjustment for other clinical parameters yielded similar results. Among patients with prostate-specific antigen (PSA) at 2–10 ng/mL or 2–20 ng/mL, PRS still had an observable ability to differentiate PCa in the group of prostate health index (<i<phi</i<) at 27–36 (<i<P</i<<sub<trend</sub< < 0.05) or <36 (<i<P</i<<sub<trend</sub< ≤ 0.001). Notably, men with moderate <i<phi</i< (27–36) but highest PRS (top 20% percentile) would have a comparable risk of PCa (positive rate: 26.7% or 31.3%) than men with high <i<phi</i< (<36) but lowest PRS (bottom 20% percentile positive rate: 27.4% or 34.2%). The combined model of PRS, <i<phi</i<, and other clinical risk factors provided significantly better performance (AUC: 0.904, 95%CI: 0.887–0.921) than models without PRS. Adding PRS to clinical risk models could provide significant net benefit (NRI, from 8.6% to 27.6%), especially in those early onset patients (NRI, from 29.2% to 44.9%). PRS may provide additional predictive value over <i<phi</i< for PCa. The combination of PRS and <i<phi</i< that effectively captured both clinical and genetic PCa risk is clinically practical, even in patients with gray-zone PSA. polygenic risk score prostate biopsy prostate cancer prostate health index prostate-specific antigen Medicine R Da Huang verfasserin aut Jingyi Huang verfasserin aut Jinlun Huang verfasserin aut Yongle Zhan verfasserin aut Yishuo Wu verfasserin aut Qiang Ding verfasserin aut Danfeng Xu verfasserin aut Haowen Jiang verfasserin aut Wei Xue verfasserin aut Rong Na verfasserin aut In Journal of Clinical Medicine MDPI AG, 2013 12(2023), 4, p 1343 (DE-627)718632478 (DE-600)2662592-1 20770383 nnns volume:12 year:2023 number:4, p 1343 https://doi.org/10.3390/jcm12041343 kostenfrei https://doaj.org/article/6dc8ebdb946d42248ad56dadacc340d0 kostenfrei https://www.mdpi.com/2077-0383/12/4/1343 kostenfrei https://doaj.org/toc/2077-0383 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 4, p 1343 |
allfields_unstemmed |
10.3390/jcm12041343 doi (DE-627)DOAJ080248519 (DE-599)DOAJ6dc8ebdb946d42248ad56dadacc340d0 DE-627 ger DE-627 rakwb eng Xiaohao Ruan verfasserin aut The Combined Effect of Polygenic Risk Score and Prostate Health Index in Chinese Men Undergoing Prostate Biopsy 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To date, the combined effect of polygenic risk score (PRS) and prostate health index (<i<phi</i<) on PCa diagnosis in men undergoing prostate biopsy has never been investigated. A total of 3166 patients who underwent initial prostate biopsy in three tertiary medical centers from August 2013 to March 2019 were included. PRS was calculated on the basis of the genotype of 102 reported East-Asian-specific risk variants. It was then evaluated in the univariable or multivariable logistic regression models that were internally validated using repeated 10-fold cross-validation. Discriminative performance was assessed by area under the receiver operating curve (AUC) and net reclassification improvement (NRI) index. Compared with men in the first quintile of age and family history adjusted PRS, those in the second, third, fourth, and fifth quintiles were 1.86 (odds ratio, 95% confidence interval (CI): 1.34–2.56), 2.07 (95%CI: 1.50–2.84), 3.26 (95%CI: 2.36–4.48), and 5.06 (95%CI: 3.68–6.97) times as likely to develop PCa (all <i<p</i< < 0.001). Adjustment for other clinical parameters yielded similar results. Among patients with prostate-specific antigen (PSA) at 2–10 ng/mL or 2–20 ng/mL, PRS still had an observable ability to differentiate PCa in the group of prostate health index (<i<phi</i<) at 27–36 (<i<P</i<<sub<trend</sub< < 0.05) or <36 (<i<P</i<<sub<trend</sub< ≤ 0.001). Notably, men with moderate <i<phi</i< (27–36) but highest PRS (top 20% percentile) would have a comparable risk of PCa (positive rate: 26.7% or 31.3%) than men with high <i<phi</i< (<36) but lowest PRS (bottom 20% percentile positive rate: 27.4% or 34.2%). The combined model of PRS, <i<phi</i<, and other clinical risk factors provided significantly better performance (AUC: 0.904, 95%CI: 0.887–0.921) than models without PRS. Adding PRS to clinical risk models could provide significant net benefit (NRI, from 8.6% to 27.6%), especially in those early onset patients (NRI, from 29.2% to 44.9%). PRS may provide additional predictive value over <i<phi</i< for PCa. The combination of PRS and <i<phi</i< that effectively captured both clinical and genetic PCa risk is clinically practical, even in patients with gray-zone PSA. polygenic risk score prostate biopsy prostate cancer prostate health index prostate-specific antigen Medicine R Da Huang verfasserin aut Jingyi Huang verfasserin aut Jinlun Huang verfasserin aut Yongle Zhan verfasserin aut Yishuo Wu verfasserin aut Qiang Ding verfasserin aut Danfeng Xu verfasserin aut Haowen Jiang verfasserin aut Wei Xue verfasserin aut Rong Na verfasserin aut In Journal of Clinical Medicine MDPI AG, 2013 12(2023), 4, p 1343 (DE-627)718632478 (DE-600)2662592-1 20770383 nnns volume:12 year:2023 number:4, p 1343 https://doi.org/10.3390/jcm12041343 kostenfrei https://doaj.org/article/6dc8ebdb946d42248ad56dadacc340d0 kostenfrei https://www.mdpi.com/2077-0383/12/4/1343 kostenfrei https://doaj.org/toc/2077-0383 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 4, p 1343 |
allfieldsGer |
10.3390/jcm12041343 doi (DE-627)DOAJ080248519 (DE-599)DOAJ6dc8ebdb946d42248ad56dadacc340d0 DE-627 ger DE-627 rakwb eng Xiaohao Ruan verfasserin aut The Combined Effect of Polygenic Risk Score and Prostate Health Index in Chinese Men Undergoing Prostate Biopsy 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To date, the combined effect of polygenic risk score (PRS) and prostate health index (<i<phi</i<) on PCa diagnosis in men undergoing prostate biopsy has never been investigated. A total of 3166 patients who underwent initial prostate biopsy in three tertiary medical centers from August 2013 to March 2019 were included. PRS was calculated on the basis of the genotype of 102 reported East-Asian-specific risk variants. It was then evaluated in the univariable or multivariable logistic regression models that were internally validated using repeated 10-fold cross-validation. Discriminative performance was assessed by area under the receiver operating curve (AUC) and net reclassification improvement (NRI) index. Compared with men in the first quintile of age and family history adjusted PRS, those in the second, third, fourth, and fifth quintiles were 1.86 (odds ratio, 95% confidence interval (CI): 1.34–2.56), 2.07 (95%CI: 1.50–2.84), 3.26 (95%CI: 2.36–4.48), and 5.06 (95%CI: 3.68–6.97) times as likely to develop PCa (all <i<p</i< < 0.001). Adjustment for other clinical parameters yielded similar results. Among patients with prostate-specific antigen (PSA) at 2–10 ng/mL or 2–20 ng/mL, PRS still had an observable ability to differentiate PCa in the group of prostate health index (<i<phi</i<) at 27–36 (<i<P</i<<sub<trend</sub< < 0.05) or <36 (<i<P</i<<sub<trend</sub< ≤ 0.001). Notably, men with moderate <i<phi</i< (27–36) but highest PRS (top 20% percentile) would have a comparable risk of PCa (positive rate: 26.7% or 31.3%) than men with high <i<phi</i< (<36) but lowest PRS (bottom 20% percentile positive rate: 27.4% or 34.2%). The combined model of PRS, <i<phi</i<, and other clinical risk factors provided significantly better performance (AUC: 0.904, 95%CI: 0.887–0.921) than models without PRS. Adding PRS to clinical risk models could provide significant net benefit (NRI, from 8.6% to 27.6%), especially in those early onset patients (NRI, from 29.2% to 44.9%). PRS may provide additional predictive value over <i<phi</i< for PCa. The combination of PRS and <i<phi</i< that effectively captured both clinical and genetic PCa risk is clinically practical, even in patients with gray-zone PSA. polygenic risk score prostate biopsy prostate cancer prostate health index prostate-specific antigen Medicine R Da Huang verfasserin aut Jingyi Huang verfasserin aut Jinlun Huang verfasserin aut Yongle Zhan verfasserin aut Yishuo Wu verfasserin aut Qiang Ding verfasserin aut Danfeng Xu verfasserin aut Haowen Jiang verfasserin aut Wei Xue verfasserin aut Rong Na verfasserin aut In Journal of Clinical Medicine MDPI AG, 2013 12(2023), 4, p 1343 (DE-627)718632478 (DE-600)2662592-1 20770383 nnns volume:12 year:2023 number:4, p 1343 https://doi.org/10.3390/jcm12041343 kostenfrei https://doaj.org/article/6dc8ebdb946d42248ad56dadacc340d0 kostenfrei https://www.mdpi.com/2077-0383/12/4/1343 kostenfrei https://doaj.org/toc/2077-0383 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 4, p 1343 |
allfieldsSound |
10.3390/jcm12041343 doi (DE-627)DOAJ080248519 (DE-599)DOAJ6dc8ebdb946d42248ad56dadacc340d0 DE-627 ger DE-627 rakwb eng Xiaohao Ruan verfasserin aut The Combined Effect of Polygenic Risk Score and Prostate Health Index in Chinese Men Undergoing Prostate Biopsy 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To date, the combined effect of polygenic risk score (PRS) and prostate health index (<i<phi</i<) on PCa diagnosis in men undergoing prostate biopsy has never been investigated. A total of 3166 patients who underwent initial prostate biopsy in three tertiary medical centers from August 2013 to March 2019 were included. PRS was calculated on the basis of the genotype of 102 reported East-Asian-specific risk variants. It was then evaluated in the univariable or multivariable logistic regression models that were internally validated using repeated 10-fold cross-validation. Discriminative performance was assessed by area under the receiver operating curve (AUC) and net reclassification improvement (NRI) index. Compared with men in the first quintile of age and family history adjusted PRS, those in the second, third, fourth, and fifth quintiles were 1.86 (odds ratio, 95% confidence interval (CI): 1.34–2.56), 2.07 (95%CI: 1.50–2.84), 3.26 (95%CI: 2.36–4.48), and 5.06 (95%CI: 3.68–6.97) times as likely to develop PCa (all <i<p</i< < 0.001). Adjustment for other clinical parameters yielded similar results. Among patients with prostate-specific antigen (PSA) at 2–10 ng/mL or 2–20 ng/mL, PRS still had an observable ability to differentiate PCa in the group of prostate health index (<i<phi</i<) at 27–36 (<i<P</i<<sub<trend</sub< < 0.05) or <36 (<i<P</i<<sub<trend</sub< ≤ 0.001). Notably, men with moderate <i<phi</i< (27–36) but highest PRS (top 20% percentile) would have a comparable risk of PCa (positive rate: 26.7% or 31.3%) than men with high <i<phi</i< (<36) but lowest PRS (bottom 20% percentile positive rate: 27.4% or 34.2%). The combined model of PRS, <i<phi</i<, and other clinical risk factors provided significantly better performance (AUC: 0.904, 95%CI: 0.887–0.921) than models without PRS. Adding PRS to clinical risk models could provide significant net benefit (NRI, from 8.6% to 27.6%), especially in those early onset patients (NRI, from 29.2% to 44.9%). PRS may provide additional predictive value over <i<phi</i< for PCa. The combination of PRS and <i<phi</i< that effectively captured both clinical and genetic PCa risk is clinically practical, even in patients with gray-zone PSA. polygenic risk score prostate biopsy prostate cancer prostate health index prostate-specific antigen Medicine R Da Huang verfasserin aut Jingyi Huang verfasserin aut Jinlun Huang verfasserin aut Yongle Zhan verfasserin aut Yishuo Wu verfasserin aut Qiang Ding verfasserin aut Danfeng Xu verfasserin aut Haowen Jiang verfasserin aut Wei Xue verfasserin aut Rong Na verfasserin aut In Journal of Clinical Medicine MDPI AG, 2013 12(2023), 4, p 1343 (DE-627)718632478 (DE-600)2662592-1 20770383 nnns volume:12 year:2023 number:4, p 1343 https://doi.org/10.3390/jcm12041343 kostenfrei https://doaj.org/article/6dc8ebdb946d42248ad56dadacc340d0 kostenfrei https://www.mdpi.com/2077-0383/12/4/1343 kostenfrei https://doaj.org/toc/2077-0383 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 4, p 1343 |
language |
English |
source |
In Journal of Clinical Medicine 12(2023), 4, p 1343 volume:12 year:2023 number:4, p 1343 |
sourceStr |
In Journal of Clinical Medicine 12(2023), 4, p 1343 volume:12 year:2023 number:4, p 1343 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
polygenic risk score prostate biopsy prostate cancer prostate health index prostate-specific antigen Medicine R |
isfreeaccess_bool |
true |
container_title |
Journal of Clinical Medicine |
authorswithroles_txt_mv |
Xiaohao Ruan @@aut@@ Da Huang @@aut@@ Jingyi Huang @@aut@@ Jinlun Huang @@aut@@ Yongle Zhan @@aut@@ Yishuo Wu @@aut@@ Qiang Ding @@aut@@ Danfeng Xu @@aut@@ Haowen Jiang @@aut@@ Wei Xue @@aut@@ Rong Na @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
718632478 |
id |
DOAJ080248519 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ080248519</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413062849.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/jcm12041343</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ080248519</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6dc8ebdb946d42248ad56dadacc340d0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiaohao Ruan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Combined Effect of Polygenic Risk Score and Prostate Health Index in Chinese Men Undergoing Prostate Biopsy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To date, the combined effect of polygenic risk score (PRS) and prostate health index (<i<phi</i<) on PCa diagnosis in men undergoing prostate biopsy has never been investigated. A total of 3166 patients who underwent initial prostate biopsy in three tertiary medical centers from August 2013 to March 2019 were included. PRS was calculated on the basis of the genotype of 102 reported East-Asian-specific risk variants. It was then evaluated in the univariable or multivariable logistic regression models that were internally validated using repeated 10-fold cross-validation. Discriminative performance was assessed by area under the receiver operating curve (AUC) and net reclassification improvement (NRI) index. Compared with men in the first quintile of age and family history adjusted PRS, those in the second, third, fourth, and fifth quintiles were 1.86 (odds ratio, 95% confidence interval (CI): 1.34–2.56), 2.07 (95%CI: 1.50–2.84), 3.26 (95%CI: 2.36–4.48), and 5.06 (95%CI: 3.68–6.97) times as likely to develop PCa (all <i<p</i< < 0.001). Adjustment for other clinical parameters yielded similar results. Among patients with prostate-specific antigen (PSA) at 2–10 ng/mL or 2–20 ng/mL, PRS still had an observable ability to differentiate PCa in the group of prostate health index (<i<phi</i<) at 27–36 (<i<P</i<<sub<trend</sub< < 0.05) or <36 (<i<P</i<<sub<trend</sub< ≤ 0.001). Notably, men with moderate <i<phi</i< (27–36) but highest PRS (top 20% percentile) would have a comparable risk of PCa (positive rate: 26.7% or 31.3%) than men with high <i<phi</i< (<36) but lowest PRS (bottom 20% percentile positive rate: 27.4% or 34.2%). The combined model of PRS, <i<phi</i<, and other clinical risk factors provided significantly better performance (AUC: 0.904, 95%CI: 0.887–0.921) than models without PRS. Adding PRS to clinical risk models could provide significant net benefit (NRI, from 8.6% to 27.6%), especially in those early onset patients (NRI, from 29.2% to 44.9%). PRS may provide additional predictive value over <i<phi</i< for PCa. The combination of PRS and <i<phi</i< that effectively captured both clinical and genetic PCa risk is clinically practical, even in patients with gray-zone PSA.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polygenic risk score</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">prostate biopsy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">prostate cancer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">prostate health index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">prostate-specific antigen</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Da Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingyi Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinlun Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yongle Zhan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yishuo Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qiang Ding</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Danfeng Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haowen Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Xue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rong Na</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Clinical Medicine</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">12(2023), 4, p 1343</subfield><subfield code="w">(DE-627)718632478</subfield><subfield code="w">(DE-600)2662592-1</subfield><subfield code="x">20770383</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:4, p 1343</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/jcm12041343</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6dc8ebdb946d42248ad56dadacc340d0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2077-0383/12/4/1343</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2077-0383</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2023</subfield><subfield code="e">4, p 1343</subfield></datafield></record></collection>
|
author |
Xiaohao Ruan |
spellingShingle |
Xiaohao Ruan misc polygenic risk score misc prostate biopsy misc prostate cancer misc prostate health index misc prostate-specific antigen misc Medicine misc R The Combined Effect of Polygenic Risk Score and Prostate Health Index in Chinese Men Undergoing Prostate Biopsy |
authorStr |
Xiaohao Ruan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718632478 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
20770383 |
topic_title |
The Combined Effect of Polygenic Risk Score and Prostate Health Index in Chinese Men Undergoing Prostate Biopsy polygenic risk score prostate biopsy prostate cancer prostate health index prostate-specific antigen |
topic |
misc polygenic risk score misc prostate biopsy misc prostate cancer misc prostate health index misc prostate-specific antigen misc Medicine misc R |
topic_unstemmed |
misc polygenic risk score misc prostate biopsy misc prostate cancer misc prostate health index misc prostate-specific antigen misc Medicine misc R |
topic_browse |
misc polygenic risk score misc prostate biopsy misc prostate cancer misc prostate health index misc prostate-specific antigen misc Medicine misc R |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Clinical Medicine |
hierarchy_parent_id |
718632478 |
hierarchy_top_title |
Journal of Clinical Medicine |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718632478 (DE-600)2662592-1 |
title |
The Combined Effect of Polygenic Risk Score and Prostate Health Index in Chinese Men Undergoing Prostate Biopsy |
ctrlnum |
(DE-627)DOAJ080248519 (DE-599)DOAJ6dc8ebdb946d42248ad56dadacc340d0 |
title_full |
The Combined Effect of Polygenic Risk Score and Prostate Health Index in Chinese Men Undergoing Prostate Biopsy |
author_sort |
Xiaohao Ruan |
journal |
Journal of Clinical Medicine |
journalStr |
Journal of Clinical Medicine |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Xiaohao Ruan Da Huang Jingyi Huang Jinlun Huang Yongle Zhan Yishuo Wu Qiang Ding Danfeng Xu Haowen Jiang Wei Xue Rong Na |
container_volume |
12 |
format_se |
Elektronische Aufsätze |
author-letter |
Xiaohao Ruan |
doi_str_mv |
10.3390/jcm12041343 |
author2-role |
verfasserin |
title_sort |
combined effect of polygenic risk score and prostate health index in chinese men undergoing prostate biopsy |
title_auth |
The Combined Effect of Polygenic Risk Score and Prostate Health Index in Chinese Men Undergoing Prostate Biopsy |
abstract |
To date, the combined effect of polygenic risk score (PRS) and prostate health index (<i<phi</i<) on PCa diagnosis in men undergoing prostate biopsy has never been investigated. A total of 3166 patients who underwent initial prostate biopsy in three tertiary medical centers from August 2013 to March 2019 were included. PRS was calculated on the basis of the genotype of 102 reported East-Asian-specific risk variants. It was then evaluated in the univariable or multivariable logistic regression models that were internally validated using repeated 10-fold cross-validation. Discriminative performance was assessed by area under the receiver operating curve (AUC) and net reclassification improvement (NRI) index. Compared with men in the first quintile of age and family history adjusted PRS, those in the second, third, fourth, and fifth quintiles were 1.86 (odds ratio, 95% confidence interval (CI): 1.34–2.56), 2.07 (95%CI: 1.50–2.84), 3.26 (95%CI: 2.36–4.48), and 5.06 (95%CI: 3.68–6.97) times as likely to develop PCa (all <i<p</i< < 0.001). Adjustment for other clinical parameters yielded similar results. Among patients with prostate-specific antigen (PSA) at 2–10 ng/mL or 2–20 ng/mL, PRS still had an observable ability to differentiate PCa in the group of prostate health index (<i<phi</i<) at 27–36 (<i<P</i<<sub<trend</sub< < 0.05) or <36 (<i<P</i<<sub<trend</sub< ≤ 0.001). Notably, men with moderate <i<phi</i< (27–36) but highest PRS (top 20% percentile) would have a comparable risk of PCa (positive rate: 26.7% or 31.3%) than men with high <i<phi</i< (<36) but lowest PRS (bottom 20% percentile positive rate: 27.4% or 34.2%). The combined model of PRS, <i<phi</i<, and other clinical risk factors provided significantly better performance (AUC: 0.904, 95%CI: 0.887–0.921) than models without PRS. Adding PRS to clinical risk models could provide significant net benefit (NRI, from 8.6% to 27.6%), especially in those early onset patients (NRI, from 29.2% to 44.9%). PRS may provide additional predictive value over <i<phi</i< for PCa. The combination of PRS and <i<phi</i< that effectively captured both clinical and genetic PCa risk is clinically practical, even in patients with gray-zone PSA. |
abstractGer |
To date, the combined effect of polygenic risk score (PRS) and prostate health index (<i<phi</i<) on PCa diagnosis in men undergoing prostate biopsy has never been investigated. A total of 3166 patients who underwent initial prostate biopsy in three tertiary medical centers from August 2013 to March 2019 were included. PRS was calculated on the basis of the genotype of 102 reported East-Asian-specific risk variants. It was then evaluated in the univariable or multivariable logistic regression models that were internally validated using repeated 10-fold cross-validation. Discriminative performance was assessed by area under the receiver operating curve (AUC) and net reclassification improvement (NRI) index. Compared with men in the first quintile of age and family history adjusted PRS, those in the second, third, fourth, and fifth quintiles were 1.86 (odds ratio, 95% confidence interval (CI): 1.34–2.56), 2.07 (95%CI: 1.50–2.84), 3.26 (95%CI: 2.36–4.48), and 5.06 (95%CI: 3.68–6.97) times as likely to develop PCa (all <i<p</i< < 0.001). Adjustment for other clinical parameters yielded similar results. Among patients with prostate-specific antigen (PSA) at 2–10 ng/mL or 2–20 ng/mL, PRS still had an observable ability to differentiate PCa in the group of prostate health index (<i<phi</i<) at 27–36 (<i<P</i<<sub<trend</sub< < 0.05) or <36 (<i<P</i<<sub<trend</sub< ≤ 0.001). Notably, men with moderate <i<phi</i< (27–36) but highest PRS (top 20% percentile) would have a comparable risk of PCa (positive rate: 26.7% or 31.3%) than men with high <i<phi</i< (<36) but lowest PRS (bottom 20% percentile positive rate: 27.4% or 34.2%). The combined model of PRS, <i<phi</i<, and other clinical risk factors provided significantly better performance (AUC: 0.904, 95%CI: 0.887–0.921) than models without PRS. Adding PRS to clinical risk models could provide significant net benefit (NRI, from 8.6% to 27.6%), especially in those early onset patients (NRI, from 29.2% to 44.9%). PRS may provide additional predictive value over <i<phi</i< for PCa. The combination of PRS and <i<phi</i< that effectively captured both clinical and genetic PCa risk is clinically practical, even in patients with gray-zone PSA. |
abstract_unstemmed |
To date, the combined effect of polygenic risk score (PRS) and prostate health index (<i<phi</i<) on PCa diagnosis in men undergoing prostate biopsy has never been investigated. A total of 3166 patients who underwent initial prostate biopsy in three tertiary medical centers from August 2013 to March 2019 were included. PRS was calculated on the basis of the genotype of 102 reported East-Asian-specific risk variants. It was then evaluated in the univariable or multivariable logistic regression models that were internally validated using repeated 10-fold cross-validation. Discriminative performance was assessed by area under the receiver operating curve (AUC) and net reclassification improvement (NRI) index. Compared with men in the first quintile of age and family history adjusted PRS, those in the second, third, fourth, and fifth quintiles were 1.86 (odds ratio, 95% confidence interval (CI): 1.34–2.56), 2.07 (95%CI: 1.50–2.84), 3.26 (95%CI: 2.36–4.48), and 5.06 (95%CI: 3.68–6.97) times as likely to develop PCa (all <i<p</i< < 0.001). Adjustment for other clinical parameters yielded similar results. Among patients with prostate-specific antigen (PSA) at 2–10 ng/mL or 2–20 ng/mL, PRS still had an observable ability to differentiate PCa in the group of prostate health index (<i<phi</i<) at 27–36 (<i<P</i<<sub<trend</sub< < 0.05) or <36 (<i<P</i<<sub<trend</sub< ≤ 0.001). Notably, men with moderate <i<phi</i< (27–36) but highest PRS (top 20% percentile) would have a comparable risk of PCa (positive rate: 26.7% or 31.3%) than men with high <i<phi</i< (<36) but lowest PRS (bottom 20% percentile positive rate: 27.4% or 34.2%). The combined model of PRS, <i<phi</i<, and other clinical risk factors provided significantly better performance (AUC: 0.904, 95%CI: 0.887–0.921) than models without PRS. Adding PRS to clinical risk models could provide significant net benefit (NRI, from 8.6% to 27.6%), especially in those early onset patients (NRI, from 29.2% to 44.9%). PRS may provide additional predictive value over <i<phi</i< for PCa. The combination of PRS and <i<phi</i< that effectively captured both clinical and genetic PCa risk is clinically practical, even in patients with gray-zone PSA. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4, p 1343 |
title_short |
The Combined Effect of Polygenic Risk Score and Prostate Health Index in Chinese Men Undergoing Prostate Biopsy |
url |
https://doi.org/10.3390/jcm12041343 https://doaj.org/article/6dc8ebdb946d42248ad56dadacc340d0 https://www.mdpi.com/2077-0383/12/4/1343 https://doaj.org/toc/2077-0383 |
remote_bool |
true |
author2 |
Da Huang Jingyi Huang Jinlun Huang Yongle Zhan Yishuo Wu Qiang Ding Danfeng Xu Haowen Jiang Wei Xue Rong Na |
author2Str |
Da Huang Jingyi Huang Jinlun Huang Yongle Zhan Yishuo Wu Qiang Ding Danfeng Xu Haowen Jiang Wei Xue Rong Na |
ppnlink |
718632478 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/jcm12041343 |
up_date |
2024-07-03T13:37:18.682Z |
_version_ |
1803565230916108288 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ080248519</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413062849.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/jcm12041343</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ080248519</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6dc8ebdb946d42248ad56dadacc340d0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiaohao Ruan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Combined Effect of Polygenic Risk Score and Prostate Health Index in Chinese Men Undergoing Prostate Biopsy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To date, the combined effect of polygenic risk score (PRS) and prostate health index (<i<phi</i<) on PCa diagnosis in men undergoing prostate biopsy has never been investigated. A total of 3166 patients who underwent initial prostate biopsy in three tertiary medical centers from August 2013 to March 2019 were included. PRS was calculated on the basis of the genotype of 102 reported East-Asian-specific risk variants. It was then evaluated in the univariable or multivariable logistic regression models that were internally validated using repeated 10-fold cross-validation. Discriminative performance was assessed by area under the receiver operating curve (AUC) and net reclassification improvement (NRI) index. Compared with men in the first quintile of age and family history adjusted PRS, those in the second, third, fourth, and fifth quintiles were 1.86 (odds ratio, 95% confidence interval (CI): 1.34–2.56), 2.07 (95%CI: 1.50–2.84), 3.26 (95%CI: 2.36–4.48), and 5.06 (95%CI: 3.68–6.97) times as likely to develop PCa (all <i<p</i< < 0.001). Adjustment for other clinical parameters yielded similar results. Among patients with prostate-specific antigen (PSA) at 2–10 ng/mL or 2–20 ng/mL, PRS still had an observable ability to differentiate PCa in the group of prostate health index (<i<phi</i<) at 27–36 (<i<P</i<<sub<trend</sub< < 0.05) or <36 (<i<P</i<<sub<trend</sub< ≤ 0.001). Notably, men with moderate <i<phi</i< (27–36) but highest PRS (top 20% percentile) would have a comparable risk of PCa (positive rate: 26.7% or 31.3%) than men with high <i<phi</i< (<36) but lowest PRS (bottom 20% percentile positive rate: 27.4% or 34.2%). The combined model of PRS, <i<phi</i<, and other clinical risk factors provided significantly better performance (AUC: 0.904, 95%CI: 0.887–0.921) than models without PRS. Adding PRS to clinical risk models could provide significant net benefit (NRI, from 8.6% to 27.6%), especially in those early onset patients (NRI, from 29.2% to 44.9%). PRS may provide additional predictive value over <i<phi</i< for PCa. The combination of PRS and <i<phi</i< that effectively captured both clinical and genetic PCa risk is clinically practical, even in patients with gray-zone PSA.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polygenic risk score</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">prostate biopsy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">prostate cancer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">prostate health index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">prostate-specific antigen</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Da Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingyi Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinlun Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yongle Zhan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yishuo Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qiang Ding</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Danfeng Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haowen Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Xue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Rong Na</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Clinical Medicine</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">12(2023), 4, p 1343</subfield><subfield code="w">(DE-627)718632478</subfield><subfield code="w">(DE-600)2662592-1</subfield><subfield code="x">20770383</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:4, p 1343</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/jcm12041343</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6dc8ebdb946d42248ad56dadacc340d0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2077-0383/12/4/1343</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2077-0383</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2023</subfield><subfield code="e">4, p 1343</subfield></datafield></record></collection>
|
score |
7.401187 |