Innovative Inertial Response Imitation and Rotor Speed Recovery Control Scheme for a DFIG
This paper proposes an innovative inertial response imitation (IRI) and rotor speed recovery (RSR) control scheme of a doubly-fed induction generator (DFIG, Type 3 wind turbine generator) to provide better frequency support response and RSR services for a high wind power penetrated electric power gr...
Ausführliche Beschreibung
Autor*in: |
Xiaocen Xue [verfasserIn] Jiejie Huang [verfasserIn] Shun Sang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Electronics - MDPI AG, 2013, 12(2023), 4, p 1029 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2023 ; number:4, p 1029 |
Links: |
---|
DOI / URN: |
10.3390/electronics12041029 |
---|
Katalog-ID: |
DOAJ08030348X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ08030348X | ||
003 | DE-627 | ||
005 | 20240413063636.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230310s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/electronics12041029 |2 doi | |
035 | |a (DE-627)DOAJ08030348X | ||
035 | |a (DE-599)DOAJd9215874a3f6408289c1081ad49a956d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK7800-8360 | |
100 | 0 | |a Xiaocen Xue |e verfasserin |4 aut | |
245 | 1 | 0 | |a Innovative Inertial Response Imitation and Rotor Speed Recovery Control Scheme for a DFIG |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper proposes an innovative inertial response imitation (IRI) and rotor speed recovery (RSR) control scheme of a doubly-fed induction generator (DFIG, Type 3 wind turbine generator) to provide better frequency support response and RSR services for a high wind power penetrated electric power grid. To achieve the first benefit, the coupling relationship between the control coefficient of DFIGs and the frequency deviation was established by using the exponential function so that the control coefficient becomes large with the increasing frequency deviations and sizes of disturbance. After supporting the system frequency, the exponential function was employed to schedule the dynamic control coefficient to alleviate the negative effects of RSR on the instantaneous system frequency. The benefits of the proposed IIR and RSR strategy were investigated in a test system under various scenarios of sizes of disturbance and wind speed conditions. Test results clearly demonstrate that the proposed IIR and RSR strategy is capable of boosting the maximum system frequency excursion and reducing the negative influences on the system frequency during the speed recovery period. | ||
650 | 4 | |a inertial response imitation | |
650 | 4 | |a DFIG | |
650 | 4 | |a various disturbances | |
650 | 4 | |a frequency support | |
650 | 4 | |a rotor speed recovery | |
653 | 0 | |a Electronics | |
700 | 0 | |a Jiejie Huang |e verfasserin |4 aut | |
700 | 0 | |a Shun Sang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Electronics |d MDPI AG, 2013 |g 12(2023), 4, p 1029 |w (DE-627)718626478 |w (DE-600)2662127-7 |x 20799292 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2023 |g number:4, p 1029 |
856 | 4 | 0 | |u https://doi.org/10.3390/electronics12041029 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/d9215874a3f6408289c1081ad49a956d |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2079-9292/12/4/1029 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2079-9292 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2023 |e 4, p 1029 |
author_variant |
x x xx j h jh s s ss |
---|---|
matchkey_str |
article:20799292:2023----::noaienrilepnemttoadoosedeoey |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TK |
publishDate |
2023 |
allfields |
10.3390/electronics12041029 doi (DE-627)DOAJ08030348X (DE-599)DOAJd9215874a3f6408289c1081ad49a956d DE-627 ger DE-627 rakwb eng TK7800-8360 Xiaocen Xue verfasserin aut Innovative Inertial Response Imitation and Rotor Speed Recovery Control Scheme for a DFIG 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper proposes an innovative inertial response imitation (IRI) and rotor speed recovery (RSR) control scheme of a doubly-fed induction generator (DFIG, Type 3 wind turbine generator) to provide better frequency support response and RSR services for a high wind power penetrated electric power grid. To achieve the first benefit, the coupling relationship between the control coefficient of DFIGs and the frequency deviation was established by using the exponential function so that the control coefficient becomes large with the increasing frequency deviations and sizes of disturbance. After supporting the system frequency, the exponential function was employed to schedule the dynamic control coefficient to alleviate the negative effects of RSR on the instantaneous system frequency. The benefits of the proposed IIR and RSR strategy were investigated in a test system under various scenarios of sizes of disturbance and wind speed conditions. Test results clearly demonstrate that the proposed IIR and RSR strategy is capable of boosting the maximum system frequency excursion and reducing the negative influences on the system frequency during the speed recovery period. inertial response imitation DFIG various disturbances frequency support rotor speed recovery Electronics Jiejie Huang verfasserin aut Shun Sang verfasserin aut In Electronics MDPI AG, 2013 12(2023), 4, p 1029 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:12 year:2023 number:4, p 1029 https://doi.org/10.3390/electronics12041029 kostenfrei https://doaj.org/article/d9215874a3f6408289c1081ad49a956d kostenfrei https://www.mdpi.com/2079-9292/12/4/1029 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 4, p 1029 |
spelling |
10.3390/electronics12041029 doi (DE-627)DOAJ08030348X (DE-599)DOAJd9215874a3f6408289c1081ad49a956d DE-627 ger DE-627 rakwb eng TK7800-8360 Xiaocen Xue verfasserin aut Innovative Inertial Response Imitation and Rotor Speed Recovery Control Scheme for a DFIG 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper proposes an innovative inertial response imitation (IRI) and rotor speed recovery (RSR) control scheme of a doubly-fed induction generator (DFIG, Type 3 wind turbine generator) to provide better frequency support response and RSR services for a high wind power penetrated electric power grid. To achieve the first benefit, the coupling relationship between the control coefficient of DFIGs and the frequency deviation was established by using the exponential function so that the control coefficient becomes large with the increasing frequency deviations and sizes of disturbance. After supporting the system frequency, the exponential function was employed to schedule the dynamic control coefficient to alleviate the negative effects of RSR on the instantaneous system frequency. The benefits of the proposed IIR and RSR strategy were investigated in a test system under various scenarios of sizes of disturbance and wind speed conditions. Test results clearly demonstrate that the proposed IIR and RSR strategy is capable of boosting the maximum system frequency excursion and reducing the negative influences on the system frequency during the speed recovery period. inertial response imitation DFIG various disturbances frequency support rotor speed recovery Electronics Jiejie Huang verfasserin aut Shun Sang verfasserin aut In Electronics MDPI AG, 2013 12(2023), 4, p 1029 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:12 year:2023 number:4, p 1029 https://doi.org/10.3390/electronics12041029 kostenfrei https://doaj.org/article/d9215874a3f6408289c1081ad49a956d kostenfrei https://www.mdpi.com/2079-9292/12/4/1029 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 4, p 1029 |
allfields_unstemmed |
10.3390/electronics12041029 doi (DE-627)DOAJ08030348X (DE-599)DOAJd9215874a3f6408289c1081ad49a956d DE-627 ger DE-627 rakwb eng TK7800-8360 Xiaocen Xue verfasserin aut Innovative Inertial Response Imitation and Rotor Speed Recovery Control Scheme for a DFIG 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper proposes an innovative inertial response imitation (IRI) and rotor speed recovery (RSR) control scheme of a doubly-fed induction generator (DFIG, Type 3 wind turbine generator) to provide better frequency support response and RSR services for a high wind power penetrated electric power grid. To achieve the first benefit, the coupling relationship between the control coefficient of DFIGs and the frequency deviation was established by using the exponential function so that the control coefficient becomes large with the increasing frequency deviations and sizes of disturbance. After supporting the system frequency, the exponential function was employed to schedule the dynamic control coefficient to alleviate the negative effects of RSR on the instantaneous system frequency. The benefits of the proposed IIR and RSR strategy were investigated in a test system under various scenarios of sizes of disturbance and wind speed conditions. Test results clearly demonstrate that the proposed IIR and RSR strategy is capable of boosting the maximum system frequency excursion and reducing the negative influences on the system frequency during the speed recovery period. inertial response imitation DFIG various disturbances frequency support rotor speed recovery Electronics Jiejie Huang verfasserin aut Shun Sang verfasserin aut In Electronics MDPI AG, 2013 12(2023), 4, p 1029 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:12 year:2023 number:4, p 1029 https://doi.org/10.3390/electronics12041029 kostenfrei https://doaj.org/article/d9215874a3f6408289c1081ad49a956d kostenfrei https://www.mdpi.com/2079-9292/12/4/1029 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 4, p 1029 |
allfieldsGer |
10.3390/electronics12041029 doi (DE-627)DOAJ08030348X (DE-599)DOAJd9215874a3f6408289c1081ad49a956d DE-627 ger DE-627 rakwb eng TK7800-8360 Xiaocen Xue verfasserin aut Innovative Inertial Response Imitation and Rotor Speed Recovery Control Scheme for a DFIG 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper proposes an innovative inertial response imitation (IRI) and rotor speed recovery (RSR) control scheme of a doubly-fed induction generator (DFIG, Type 3 wind turbine generator) to provide better frequency support response and RSR services for a high wind power penetrated electric power grid. To achieve the first benefit, the coupling relationship between the control coefficient of DFIGs and the frequency deviation was established by using the exponential function so that the control coefficient becomes large with the increasing frequency deviations and sizes of disturbance. After supporting the system frequency, the exponential function was employed to schedule the dynamic control coefficient to alleviate the negative effects of RSR on the instantaneous system frequency. The benefits of the proposed IIR and RSR strategy were investigated in a test system under various scenarios of sizes of disturbance and wind speed conditions. Test results clearly demonstrate that the proposed IIR and RSR strategy is capable of boosting the maximum system frequency excursion and reducing the negative influences on the system frequency during the speed recovery period. inertial response imitation DFIG various disturbances frequency support rotor speed recovery Electronics Jiejie Huang verfasserin aut Shun Sang verfasserin aut In Electronics MDPI AG, 2013 12(2023), 4, p 1029 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:12 year:2023 number:4, p 1029 https://doi.org/10.3390/electronics12041029 kostenfrei https://doaj.org/article/d9215874a3f6408289c1081ad49a956d kostenfrei https://www.mdpi.com/2079-9292/12/4/1029 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 4, p 1029 |
allfieldsSound |
10.3390/electronics12041029 doi (DE-627)DOAJ08030348X (DE-599)DOAJd9215874a3f6408289c1081ad49a956d DE-627 ger DE-627 rakwb eng TK7800-8360 Xiaocen Xue verfasserin aut Innovative Inertial Response Imitation and Rotor Speed Recovery Control Scheme for a DFIG 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper proposes an innovative inertial response imitation (IRI) and rotor speed recovery (RSR) control scheme of a doubly-fed induction generator (DFIG, Type 3 wind turbine generator) to provide better frequency support response and RSR services for a high wind power penetrated electric power grid. To achieve the first benefit, the coupling relationship between the control coefficient of DFIGs and the frequency deviation was established by using the exponential function so that the control coefficient becomes large with the increasing frequency deviations and sizes of disturbance. After supporting the system frequency, the exponential function was employed to schedule the dynamic control coefficient to alleviate the negative effects of RSR on the instantaneous system frequency. The benefits of the proposed IIR and RSR strategy were investigated in a test system under various scenarios of sizes of disturbance and wind speed conditions. Test results clearly demonstrate that the proposed IIR and RSR strategy is capable of boosting the maximum system frequency excursion and reducing the negative influences on the system frequency during the speed recovery period. inertial response imitation DFIG various disturbances frequency support rotor speed recovery Electronics Jiejie Huang verfasserin aut Shun Sang verfasserin aut In Electronics MDPI AG, 2013 12(2023), 4, p 1029 (DE-627)718626478 (DE-600)2662127-7 20799292 nnns volume:12 year:2023 number:4, p 1029 https://doi.org/10.3390/electronics12041029 kostenfrei https://doaj.org/article/d9215874a3f6408289c1081ad49a956d kostenfrei https://www.mdpi.com/2079-9292/12/4/1029 kostenfrei https://doaj.org/toc/2079-9292 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 4, p 1029 |
language |
English |
source |
In Electronics 12(2023), 4, p 1029 volume:12 year:2023 number:4, p 1029 |
sourceStr |
In Electronics 12(2023), 4, p 1029 volume:12 year:2023 number:4, p 1029 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
inertial response imitation DFIG various disturbances frequency support rotor speed recovery Electronics |
isfreeaccess_bool |
true |
container_title |
Electronics |
authorswithroles_txt_mv |
Xiaocen Xue @@aut@@ Jiejie Huang @@aut@@ Shun Sang @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
718626478 |
id |
DOAJ08030348X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ08030348X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413063636.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/electronics12041029</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ08030348X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd9215874a3f6408289c1081ad49a956d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7800-8360</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiaocen Xue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Innovative Inertial Response Imitation and Rotor Speed Recovery Control Scheme for a DFIG</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper proposes an innovative inertial response imitation (IRI) and rotor speed recovery (RSR) control scheme of a doubly-fed induction generator (DFIG, Type 3 wind turbine generator) to provide better frequency support response and RSR services for a high wind power penetrated electric power grid. To achieve the first benefit, the coupling relationship between the control coefficient of DFIGs and the frequency deviation was established by using the exponential function so that the control coefficient becomes large with the increasing frequency deviations and sizes of disturbance. After supporting the system frequency, the exponential function was employed to schedule the dynamic control coefficient to alleviate the negative effects of RSR on the instantaneous system frequency. The benefits of the proposed IIR and RSR strategy were investigated in a test system under various scenarios of sizes of disturbance and wind speed conditions. Test results clearly demonstrate that the proposed IIR and RSR strategy is capable of boosting the maximum system frequency excursion and reducing the negative influences on the system frequency during the speed recovery period.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inertial response imitation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DFIG</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">various disturbances</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency support</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rotor speed recovery</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiejie Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shun Sang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Electronics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">12(2023), 4, p 1029</subfield><subfield code="w">(DE-627)718626478</subfield><subfield code="w">(DE-600)2662127-7</subfield><subfield code="x">20799292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:4, p 1029</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/electronics12041029</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d9215874a3f6408289c1081ad49a956d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-9292/12/4/1029</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-9292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2023</subfield><subfield code="e">4, p 1029</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Xiaocen Xue |
spellingShingle |
Xiaocen Xue misc TK7800-8360 misc inertial response imitation misc DFIG misc various disturbances misc frequency support misc rotor speed recovery misc Electronics Innovative Inertial Response Imitation and Rotor Speed Recovery Control Scheme for a DFIG |
authorStr |
Xiaocen Xue |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718626478 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK7800-8360 |
illustrated |
Not Illustrated |
issn |
20799292 |
topic_title |
TK7800-8360 Innovative Inertial Response Imitation and Rotor Speed Recovery Control Scheme for a DFIG inertial response imitation DFIG various disturbances frequency support rotor speed recovery |
topic |
misc TK7800-8360 misc inertial response imitation misc DFIG misc various disturbances misc frequency support misc rotor speed recovery misc Electronics |
topic_unstemmed |
misc TK7800-8360 misc inertial response imitation misc DFIG misc various disturbances misc frequency support misc rotor speed recovery misc Electronics |
topic_browse |
misc TK7800-8360 misc inertial response imitation misc DFIG misc various disturbances misc frequency support misc rotor speed recovery misc Electronics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Electronics |
hierarchy_parent_id |
718626478 |
hierarchy_top_title |
Electronics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718626478 (DE-600)2662127-7 |
title |
Innovative Inertial Response Imitation and Rotor Speed Recovery Control Scheme for a DFIG |
ctrlnum |
(DE-627)DOAJ08030348X (DE-599)DOAJd9215874a3f6408289c1081ad49a956d |
title_full |
Innovative Inertial Response Imitation and Rotor Speed Recovery Control Scheme for a DFIG |
author_sort |
Xiaocen Xue |
journal |
Electronics |
journalStr |
Electronics |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Xiaocen Xue Jiejie Huang Shun Sang |
container_volume |
12 |
class |
TK7800-8360 |
format_se |
Elektronische Aufsätze |
author-letter |
Xiaocen Xue |
doi_str_mv |
10.3390/electronics12041029 |
author2-role |
verfasserin |
title_sort |
innovative inertial response imitation and rotor speed recovery control scheme for a dfig |
callnumber |
TK7800-8360 |
title_auth |
Innovative Inertial Response Imitation and Rotor Speed Recovery Control Scheme for a DFIG |
abstract |
This paper proposes an innovative inertial response imitation (IRI) and rotor speed recovery (RSR) control scheme of a doubly-fed induction generator (DFIG, Type 3 wind turbine generator) to provide better frequency support response and RSR services for a high wind power penetrated electric power grid. To achieve the first benefit, the coupling relationship between the control coefficient of DFIGs and the frequency deviation was established by using the exponential function so that the control coefficient becomes large with the increasing frequency deviations and sizes of disturbance. After supporting the system frequency, the exponential function was employed to schedule the dynamic control coefficient to alleviate the negative effects of RSR on the instantaneous system frequency. The benefits of the proposed IIR and RSR strategy were investigated in a test system under various scenarios of sizes of disturbance and wind speed conditions. Test results clearly demonstrate that the proposed IIR and RSR strategy is capable of boosting the maximum system frequency excursion and reducing the negative influences on the system frequency during the speed recovery period. |
abstractGer |
This paper proposes an innovative inertial response imitation (IRI) and rotor speed recovery (RSR) control scheme of a doubly-fed induction generator (DFIG, Type 3 wind turbine generator) to provide better frequency support response and RSR services for a high wind power penetrated electric power grid. To achieve the first benefit, the coupling relationship between the control coefficient of DFIGs and the frequency deviation was established by using the exponential function so that the control coefficient becomes large with the increasing frequency deviations and sizes of disturbance. After supporting the system frequency, the exponential function was employed to schedule the dynamic control coefficient to alleviate the negative effects of RSR on the instantaneous system frequency. The benefits of the proposed IIR and RSR strategy were investigated in a test system under various scenarios of sizes of disturbance and wind speed conditions. Test results clearly demonstrate that the proposed IIR and RSR strategy is capable of boosting the maximum system frequency excursion and reducing the negative influences on the system frequency during the speed recovery period. |
abstract_unstemmed |
This paper proposes an innovative inertial response imitation (IRI) and rotor speed recovery (RSR) control scheme of a doubly-fed induction generator (DFIG, Type 3 wind turbine generator) to provide better frequency support response and RSR services for a high wind power penetrated electric power grid. To achieve the first benefit, the coupling relationship between the control coefficient of DFIGs and the frequency deviation was established by using the exponential function so that the control coefficient becomes large with the increasing frequency deviations and sizes of disturbance. After supporting the system frequency, the exponential function was employed to schedule the dynamic control coefficient to alleviate the negative effects of RSR on the instantaneous system frequency. The benefits of the proposed IIR and RSR strategy were investigated in a test system under various scenarios of sizes of disturbance and wind speed conditions. Test results clearly demonstrate that the proposed IIR and RSR strategy is capable of boosting the maximum system frequency excursion and reducing the negative influences on the system frequency during the speed recovery period. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4, p 1029 |
title_short |
Innovative Inertial Response Imitation and Rotor Speed Recovery Control Scheme for a DFIG |
url |
https://doi.org/10.3390/electronics12041029 https://doaj.org/article/d9215874a3f6408289c1081ad49a956d https://www.mdpi.com/2079-9292/12/4/1029 https://doaj.org/toc/2079-9292 |
remote_bool |
true |
author2 |
Jiejie Huang Shun Sang |
author2Str |
Jiejie Huang Shun Sang |
ppnlink |
718626478 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/electronics12041029 |
callnumber-a |
TK7800-8360 |
up_date |
2024-07-03T13:56:37.138Z |
_version_ |
1803566445644218368 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ08030348X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413063636.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/electronics12041029</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ08030348X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd9215874a3f6408289c1081ad49a956d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7800-8360</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiaocen Xue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Innovative Inertial Response Imitation and Rotor Speed Recovery Control Scheme for a DFIG</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper proposes an innovative inertial response imitation (IRI) and rotor speed recovery (RSR) control scheme of a doubly-fed induction generator (DFIG, Type 3 wind turbine generator) to provide better frequency support response and RSR services for a high wind power penetrated electric power grid. To achieve the first benefit, the coupling relationship between the control coefficient of DFIGs and the frequency deviation was established by using the exponential function so that the control coefficient becomes large with the increasing frequency deviations and sizes of disturbance. After supporting the system frequency, the exponential function was employed to schedule the dynamic control coefficient to alleviate the negative effects of RSR on the instantaneous system frequency. The benefits of the proposed IIR and RSR strategy were investigated in a test system under various scenarios of sizes of disturbance and wind speed conditions. Test results clearly demonstrate that the proposed IIR and RSR strategy is capable of boosting the maximum system frequency excursion and reducing the negative influences on the system frequency during the speed recovery period.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inertial response imitation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DFIG</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">various disturbances</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency support</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rotor speed recovery</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiejie Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shun Sang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Electronics</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">12(2023), 4, p 1029</subfield><subfield code="w">(DE-627)718626478</subfield><subfield code="w">(DE-600)2662127-7</subfield><subfield code="x">20799292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:4, p 1029</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/electronics12041029</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d9215874a3f6408289c1081ad49a956d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-9292/12/4/1029</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-9292</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2023</subfield><subfield code="e">4, p 1029</subfield></datafield></record></collection>
|
score |
7.3996277 |