A Quick Simulation Method for Aero-Optical Effects Based on a Density Proxy Model
Aero-optical effects caused by high-speed flow fields will interfere with the transmission of starlight, reduce the accuracy of optical sensors, and affect the application of celestial navigation on hypersonic vehicles. At present, the research of aero-optical effects relies heavily on the flow fiel...
Ausführliche Beschreibung
Autor*in: |
Bo Yang [verfasserIn] He Yu [verfasserIn] Chaofan Liu [verfasserIn] Xiang Wei [verfasserIn] Zichen Fan [verfasserIn] Jun Miao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Sensors - MDPI AG, 2003, 23(2023), 3, p 1646 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2023 ; number:3, p 1646 |
Links: |
---|
DOI / URN: |
10.3390/s23031646 |
---|
Katalog-ID: |
DOAJ080590179 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ080590179 | ||
003 | DE-627 | ||
005 | 20240413065207.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230310s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/s23031646 |2 doi | |
035 | |a (DE-627)DOAJ080590179 | ||
035 | |a (DE-599)DOAJ5efb55378a26405f9b896a1c276c713c | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
100 | 0 | |a Bo Yang |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Quick Simulation Method for Aero-Optical Effects Based on a Density Proxy Model |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Aero-optical effects caused by high-speed flow fields will interfere with the transmission of starlight, reduce the accuracy of optical sensors, and affect the application of celestial navigation on hypersonic vehicles. At present, the research of aero-optical effects relies heavily on the flow field simulation of computational fluid dynamics (CFD), which requires a great deal of computing resources and time, and cannot satisfy the demand of the rapid analysis of aero-optical effects in the engineering design stage. Therefore, a quick simulation method for aero-optical effects based on a density proxy model (DP-AOQS) is proposed in this paper. A proxy model of the turbulent density field is designed to replace the density field in the CFD simulation, and the proxy model is parametrically calibrated to simulate the optical characteristics of the turbulent boundary layer (TBL) in the external flow field of the optical window. The performance of DP-AOQS in the visible light band is verified from the perspectives of density field distribution, optical path difference (OPD), and fuzzy star map. The simulation results show that the method can quickly provide the distortion results of aero-optical effects in different flight conditions on the premise of ensuring the simulation accuracy. The research in this paper provides a new analytical method for the study of aero-optical effects. | ||
650 | 4 | |a celestial navigation | |
650 | 4 | |a aero-optical effects | |
650 | 4 | |a density proxy model | |
650 | 4 | |a optical sensors | |
650 | 4 | |a hypersonic vehicles | |
650 | 4 | |a quick simulation | |
653 | 0 | |a Chemical technology | |
700 | 0 | |a He Yu |e verfasserin |4 aut | |
700 | 0 | |a Chaofan Liu |e verfasserin |4 aut | |
700 | 0 | |a Xiang Wei |e verfasserin |4 aut | |
700 | 0 | |a Zichen Fan |e verfasserin |4 aut | |
700 | 0 | |a Jun Miao |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sensors |d MDPI AG, 2003 |g 23(2023), 3, p 1646 |w (DE-627)331640910 |w (DE-600)2052857-7 |x 14248220 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2023 |g number:3, p 1646 |
856 | 4 | 0 | |u https://doi.org/10.3390/s23031646 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5efb55378a26405f9b896a1c276c713c |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1424-8220/23/3/1646 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1424-8220 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 23 |j 2023 |e 3, p 1646 |
author_variant |
b y by h y hy c l cl x w xw z f zf j m jm |
---|---|
matchkey_str |
article:14248220:2023----::qikiuainehdoarotclfetbsdn |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TP |
publishDate |
2023 |
allfields |
10.3390/s23031646 doi (DE-627)DOAJ080590179 (DE-599)DOAJ5efb55378a26405f9b896a1c276c713c DE-627 ger DE-627 rakwb eng TP1-1185 Bo Yang verfasserin aut A Quick Simulation Method for Aero-Optical Effects Based on a Density Proxy Model 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aero-optical effects caused by high-speed flow fields will interfere with the transmission of starlight, reduce the accuracy of optical sensors, and affect the application of celestial navigation on hypersonic vehicles. At present, the research of aero-optical effects relies heavily on the flow field simulation of computational fluid dynamics (CFD), which requires a great deal of computing resources and time, and cannot satisfy the demand of the rapid analysis of aero-optical effects in the engineering design stage. Therefore, a quick simulation method for aero-optical effects based on a density proxy model (DP-AOQS) is proposed in this paper. A proxy model of the turbulent density field is designed to replace the density field in the CFD simulation, and the proxy model is parametrically calibrated to simulate the optical characteristics of the turbulent boundary layer (TBL) in the external flow field of the optical window. The performance of DP-AOQS in the visible light band is verified from the perspectives of density field distribution, optical path difference (OPD), and fuzzy star map. The simulation results show that the method can quickly provide the distortion results of aero-optical effects in different flight conditions on the premise of ensuring the simulation accuracy. The research in this paper provides a new analytical method for the study of aero-optical effects. celestial navigation aero-optical effects density proxy model optical sensors hypersonic vehicles quick simulation Chemical technology He Yu verfasserin aut Chaofan Liu verfasserin aut Xiang Wei verfasserin aut Zichen Fan verfasserin aut Jun Miao verfasserin aut In Sensors MDPI AG, 2003 23(2023), 3, p 1646 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:23 year:2023 number:3, p 1646 https://doi.org/10.3390/s23031646 kostenfrei https://doaj.org/article/5efb55378a26405f9b896a1c276c713c kostenfrei https://www.mdpi.com/1424-8220/23/3/1646 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 3, p 1646 |
spelling |
10.3390/s23031646 doi (DE-627)DOAJ080590179 (DE-599)DOAJ5efb55378a26405f9b896a1c276c713c DE-627 ger DE-627 rakwb eng TP1-1185 Bo Yang verfasserin aut A Quick Simulation Method for Aero-Optical Effects Based on a Density Proxy Model 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aero-optical effects caused by high-speed flow fields will interfere with the transmission of starlight, reduce the accuracy of optical sensors, and affect the application of celestial navigation on hypersonic vehicles. At present, the research of aero-optical effects relies heavily on the flow field simulation of computational fluid dynamics (CFD), which requires a great deal of computing resources and time, and cannot satisfy the demand of the rapid analysis of aero-optical effects in the engineering design stage. Therefore, a quick simulation method for aero-optical effects based on a density proxy model (DP-AOQS) is proposed in this paper. A proxy model of the turbulent density field is designed to replace the density field in the CFD simulation, and the proxy model is parametrically calibrated to simulate the optical characteristics of the turbulent boundary layer (TBL) in the external flow field of the optical window. The performance of DP-AOQS in the visible light band is verified from the perspectives of density field distribution, optical path difference (OPD), and fuzzy star map. The simulation results show that the method can quickly provide the distortion results of aero-optical effects in different flight conditions on the premise of ensuring the simulation accuracy. The research in this paper provides a new analytical method for the study of aero-optical effects. celestial navigation aero-optical effects density proxy model optical sensors hypersonic vehicles quick simulation Chemical technology He Yu verfasserin aut Chaofan Liu verfasserin aut Xiang Wei verfasserin aut Zichen Fan verfasserin aut Jun Miao verfasserin aut In Sensors MDPI AG, 2003 23(2023), 3, p 1646 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:23 year:2023 number:3, p 1646 https://doi.org/10.3390/s23031646 kostenfrei https://doaj.org/article/5efb55378a26405f9b896a1c276c713c kostenfrei https://www.mdpi.com/1424-8220/23/3/1646 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 3, p 1646 |
allfields_unstemmed |
10.3390/s23031646 doi (DE-627)DOAJ080590179 (DE-599)DOAJ5efb55378a26405f9b896a1c276c713c DE-627 ger DE-627 rakwb eng TP1-1185 Bo Yang verfasserin aut A Quick Simulation Method for Aero-Optical Effects Based on a Density Proxy Model 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aero-optical effects caused by high-speed flow fields will interfere with the transmission of starlight, reduce the accuracy of optical sensors, and affect the application of celestial navigation on hypersonic vehicles. At present, the research of aero-optical effects relies heavily on the flow field simulation of computational fluid dynamics (CFD), which requires a great deal of computing resources and time, and cannot satisfy the demand of the rapid analysis of aero-optical effects in the engineering design stage. Therefore, a quick simulation method for aero-optical effects based on a density proxy model (DP-AOQS) is proposed in this paper. A proxy model of the turbulent density field is designed to replace the density field in the CFD simulation, and the proxy model is parametrically calibrated to simulate the optical characteristics of the turbulent boundary layer (TBL) in the external flow field of the optical window. The performance of DP-AOQS in the visible light band is verified from the perspectives of density field distribution, optical path difference (OPD), and fuzzy star map. The simulation results show that the method can quickly provide the distortion results of aero-optical effects in different flight conditions on the premise of ensuring the simulation accuracy. The research in this paper provides a new analytical method for the study of aero-optical effects. celestial navigation aero-optical effects density proxy model optical sensors hypersonic vehicles quick simulation Chemical technology He Yu verfasserin aut Chaofan Liu verfasserin aut Xiang Wei verfasserin aut Zichen Fan verfasserin aut Jun Miao verfasserin aut In Sensors MDPI AG, 2003 23(2023), 3, p 1646 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:23 year:2023 number:3, p 1646 https://doi.org/10.3390/s23031646 kostenfrei https://doaj.org/article/5efb55378a26405f9b896a1c276c713c kostenfrei https://www.mdpi.com/1424-8220/23/3/1646 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 3, p 1646 |
allfieldsGer |
10.3390/s23031646 doi (DE-627)DOAJ080590179 (DE-599)DOAJ5efb55378a26405f9b896a1c276c713c DE-627 ger DE-627 rakwb eng TP1-1185 Bo Yang verfasserin aut A Quick Simulation Method for Aero-Optical Effects Based on a Density Proxy Model 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aero-optical effects caused by high-speed flow fields will interfere with the transmission of starlight, reduce the accuracy of optical sensors, and affect the application of celestial navigation on hypersonic vehicles. At present, the research of aero-optical effects relies heavily on the flow field simulation of computational fluid dynamics (CFD), which requires a great deal of computing resources and time, and cannot satisfy the demand of the rapid analysis of aero-optical effects in the engineering design stage. Therefore, a quick simulation method for aero-optical effects based on a density proxy model (DP-AOQS) is proposed in this paper. A proxy model of the turbulent density field is designed to replace the density field in the CFD simulation, and the proxy model is parametrically calibrated to simulate the optical characteristics of the turbulent boundary layer (TBL) in the external flow field of the optical window. The performance of DP-AOQS in the visible light band is verified from the perspectives of density field distribution, optical path difference (OPD), and fuzzy star map. The simulation results show that the method can quickly provide the distortion results of aero-optical effects in different flight conditions on the premise of ensuring the simulation accuracy. The research in this paper provides a new analytical method for the study of aero-optical effects. celestial navigation aero-optical effects density proxy model optical sensors hypersonic vehicles quick simulation Chemical technology He Yu verfasserin aut Chaofan Liu verfasserin aut Xiang Wei verfasserin aut Zichen Fan verfasserin aut Jun Miao verfasserin aut In Sensors MDPI AG, 2003 23(2023), 3, p 1646 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:23 year:2023 number:3, p 1646 https://doi.org/10.3390/s23031646 kostenfrei https://doaj.org/article/5efb55378a26405f9b896a1c276c713c kostenfrei https://www.mdpi.com/1424-8220/23/3/1646 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 3, p 1646 |
allfieldsSound |
10.3390/s23031646 doi (DE-627)DOAJ080590179 (DE-599)DOAJ5efb55378a26405f9b896a1c276c713c DE-627 ger DE-627 rakwb eng TP1-1185 Bo Yang verfasserin aut A Quick Simulation Method for Aero-Optical Effects Based on a Density Proxy Model 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aero-optical effects caused by high-speed flow fields will interfere with the transmission of starlight, reduce the accuracy of optical sensors, and affect the application of celestial navigation on hypersonic vehicles. At present, the research of aero-optical effects relies heavily on the flow field simulation of computational fluid dynamics (CFD), which requires a great deal of computing resources and time, and cannot satisfy the demand of the rapid analysis of aero-optical effects in the engineering design stage. Therefore, a quick simulation method for aero-optical effects based on a density proxy model (DP-AOQS) is proposed in this paper. A proxy model of the turbulent density field is designed to replace the density field in the CFD simulation, and the proxy model is parametrically calibrated to simulate the optical characteristics of the turbulent boundary layer (TBL) in the external flow field of the optical window. The performance of DP-AOQS in the visible light band is verified from the perspectives of density field distribution, optical path difference (OPD), and fuzzy star map. The simulation results show that the method can quickly provide the distortion results of aero-optical effects in different flight conditions on the premise of ensuring the simulation accuracy. The research in this paper provides a new analytical method for the study of aero-optical effects. celestial navigation aero-optical effects density proxy model optical sensors hypersonic vehicles quick simulation Chemical technology He Yu verfasserin aut Chaofan Liu verfasserin aut Xiang Wei verfasserin aut Zichen Fan verfasserin aut Jun Miao verfasserin aut In Sensors MDPI AG, 2003 23(2023), 3, p 1646 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:23 year:2023 number:3, p 1646 https://doi.org/10.3390/s23031646 kostenfrei https://doaj.org/article/5efb55378a26405f9b896a1c276c713c kostenfrei https://www.mdpi.com/1424-8220/23/3/1646 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 3, p 1646 |
language |
English |
source |
In Sensors 23(2023), 3, p 1646 volume:23 year:2023 number:3, p 1646 |
sourceStr |
In Sensors 23(2023), 3, p 1646 volume:23 year:2023 number:3, p 1646 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
celestial navigation aero-optical effects density proxy model optical sensors hypersonic vehicles quick simulation Chemical technology |
isfreeaccess_bool |
true |
container_title |
Sensors |
authorswithroles_txt_mv |
Bo Yang @@aut@@ He Yu @@aut@@ Chaofan Liu @@aut@@ Xiang Wei @@aut@@ Zichen Fan @@aut@@ Jun Miao @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
331640910 |
id |
DOAJ080590179 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ080590179</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413065207.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s23031646</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ080590179</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5efb55378a26405f9b896a1c276c713c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Bo Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Quick Simulation Method for Aero-Optical Effects Based on a Density Proxy Model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Aero-optical effects caused by high-speed flow fields will interfere with the transmission of starlight, reduce the accuracy of optical sensors, and affect the application of celestial navigation on hypersonic vehicles. At present, the research of aero-optical effects relies heavily on the flow field simulation of computational fluid dynamics (CFD), which requires a great deal of computing resources and time, and cannot satisfy the demand of the rapid analysis of aero-optical effects in the engineering design stage. Therefore, a quick simulation method for aero-optical effects based on a density proxy model (DP-AOQS) is proposed in this paper. A proxy model of the turbulent density field is designed to replace the density field in the CFD simulation, and the proxy model is parametrically calibrated to simulate the optical characteristics of the turbulent boundary layer (TBL) in the external flow field of the optical window. The performance of DP-AOQS in the visible light band is verified from the perspectives of density field distribution, optical path difference (OPD), and fuzzy star map. The simulation results show that the method can quickly provide the distortion results of aero-optical effects in different flight conditions on the premise of ensuring the simulation accuracy. The research in this paper provides a new analytical method for the study of aero-optical effects.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">celestial navigation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aero-optical effects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">density proxy model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hypersonic vehicles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quick simulation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">He Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chaofan Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiang Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zichen Fan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jun Miao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">23(2023), 3, p 1646</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3, p 1646</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s23031646</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5efb55378a26405f9b896a1c276c713c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/23/3/1646</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2023</subfield><subfield code="e">3, p 1646</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Bo Yang |
spellingShingle |
Bo Yang misc TP1-1185 misc celestial navigation misc aero-optical effects misc density proxy model misc optical sensors misc hypersonic vehicles misc quick simulation misc Chemical technology A Quick Simulation Method for Aero-Optical Effects Based on a Density Proxy Model |
authorStr |
Bo Yang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)331640910 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
14248220 |
topic_title |
TP1-1185 A Quick Simulation Method for Aero-Optical Effects Based on a Density Proxy Model celestial navigation aero-optical effects density proxy model optical sensors hypersonic vehicles quick simulation |
topic |
misc TP1-1185 misc celestial navigation misc aero-optical effects misc density proxy model misc optical sensors misc hypersonic vehicles misc quick simulation misc Chemical technology |
topic_unstemmed |
misc TP1-1185 misc celestial navigation misc aero-optical effects misc density proxy model misc optical sensors misc hypersonic vehicles misc quick simulation misc Chemical technology |
topic_browse |
misc TP1-1185 misc celestial navigation misc aero-optical effects misc density proxy model misc optical sensors misc hypersonic vehicles misc quick simulation misc Chemical technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sensors |
hierarchy_parent_id |
331640910 |
hierarchy_top_title |
Sensors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)331640910 (DE-600)2052857-7 |
title |
A Quick Simulation Method for Aero-Optical Effects Based on a Density Proxy Model |
ctrlnum |
(DE-627)DOAJ080590179 (DE-599)DOAJ5efb55378a26405f9b896a1c276c713c |
title_full |
A Quick Simulation Method for Aero-Optical Effects Based on a Density Proxy Model |
author_sort |
Bo Yang |
journal |
Sensors |
journalStr |
Sensors |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Bo Yang He Yu Chaofan Liu Xiang Wei Zichen Fan Jun Miao |
container_volume |
23 |
class |
TP1-1185 |
format_se |
Elektronische Aufsätze |
author-letter |
Bo Yang |
doi_str_mv |
10.3390/s23031646 |
author2-role |
verfasserin |
title_sort |
quick simulation method for aero-optical effects based on a density proxy model |
callnumber |
TP1-1185 |
title_auth |
A Quick Simulation Method for Aero-Optical Effects Based on a Density Proxy Model |
abstract |
Aero-optical effects caused by high-speed flow fields will interfere with the transmission of starlight, reduce the accuracy of optical sensors, and affect the application of celestial navigation on hypersonic vehicles. At present, the research of aero-optical effects relies heavily on the flow field simulation of computational fluid dynamics (CFD), which requires a great deal of computing resources and time, and cannot satisfy the demand of the rapid analysis of aero-optical effects in the engineering design stage. Therefore, a quick simulation method for aero-optical effects based on a density proxy model (DP-AOQS) is proposed in this paper. A proxy model of the turbulent density field is designed to replace the density field in the CFD simulation, and the proxy model is parametrically calibrated to simulate the optical characteristics of the turbulent boundary layer (TBL) in the external flow field of the optical window. The performance of DP-AOQS in the visible light band is verified from the perspectives of density field distribution, optical path difference (OPD), and fuzzy star map. The simulation results show that the method can quickly provide the distortion results of aero-optical effects in different flight conditions on the premise of ensuring the simulation accuracy. The research in this paper provides a new analytical method for the study of aero-optical effects. |
abstractGer |
Aero-optical effects caused by high-speed flow fields will interfere with the transmission of starlight, reduce the accuracy of optical sensors, and affect the application of celestial navigation on hypersonic vehicles. At present, the research of aero-optical effects relies heavily on the flow field simulation of computational fluid dynamics (CFD), which requires a great deal of computing resources and time, and cannot satisfy the demand of the rapid analysis of aero-optical effects in the engineering design stage. Therefore, a quick simulation method for aero-optical effects based on a density proxy model (DP-AOQS) is proposed in this paper. A proxy model of the turbulent density field is designed to replace the density field in the CFD simulation, and the proxy model is parametrically calibrated to simulate the optical characteristics of the turbulent boundary layer (TBL) in the external flow field of the optical window. The performance of DP-AOQS in the visible light band is verified from the perspectives of density field distribution, optical path difference (OPD), and fuzzy star map. The simulation results show that the method can quickly provide the distortion results of aero-optical effects in different flight conditions on the premise of ensuring the simulation accuracy. The research in this paper provides a new analytical method for the study of aero-optical effects. |
abstract_unstemmed |
Aero-optical effects caused by high-speed flow fields will interfere with the transmission of starlight, reduce the accuracy of optical sensors, and affect the application of celestial navigation on hypersonic vehicles. At present, the research of aero-optical effects relies heavily on the flow field simulation of computational fluid dynamics (CFD), which requires a great deal of computing resources and time, and cannot satisfy the demand of the rapid analysis of aero-optical effects in the engineering design stage. Therefore, a quick simulation method for aero-optical effects based on a density proxy model (DP-AOQS) is proposed in this paper. A proxy model of the turbulent density field is designed to replace the density field in the CFD simulation, and the proxy model is parametrically calibrated to simulate the optical characteristics of the turbulent boundary layer (TBL) in the external flow field of the optical window. The performance of DP-AOQS in the visible light band is verified from the perspectives of density field distribution, optical path difference (OPD), and fuzzy star map. The simulation results show that the method can quickly provide the distortion results of aero-optical effects in different flight conditions on the premise of ensuring the simulation accuracy. The research in this paper provides a new analytical method for the study of aero-optical effects. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3, p 1646 |
title_short |
A Quick Simulation Method for Aero-Optical Effects Based on a Density Proxy Model |
url |
https://doi.org/10.3390/s23031646 https://doaj.org/article/5efb55378a26405f9b896a1c276c713c https://www.mdpi.com/1424-8220/23/3/1646 https://doaj.org/toc/1424-8220 |
remote_bool |
true |
author2 |
He Yu Chaofan Liu Xiang Wei Zichen Fan Jun Miao |
author2Str |
He Yu Chaofan Liu Xiang Wei Zichen Fan Jun Miao |
ppnlink |
331640910 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/s23031646 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T15:27:53.906Z |
_version_ |
1803572188451700736 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ080590179</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413065207.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s23031646</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ080590179</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5efb55378a26405f9b896a1c276c713c</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Bo Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Quick Simulation Method for Aero-Optical Effects Based on a Density Proxy Model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Aero-optical effects caused by high-speed flow fields will interfere with the transmission of starlight, reduce the accuracy of optical sensors, and affect the application of celestial navigation on hypersonic vehicles. At present, the research of aero-optical effects relies heavily on the flow field simulation of computational fluid dynamics (CFD), which requires a great deal of computing resources and time, and cannot satisfy the demand of the rapid analysis of aero-optical effects in the engineering design stage. Therefore, a quick simulation method for aero-optical effects based on a density proxy model (DP-AOQS) is proposed in this paper. A proxy model of the turbulent density field is designed to replace the density field in the CFD simulation, and the proxy model is parametrically calibrated to simulate the optical characteristics of the turbulent boundary layer (TBL) in the external flow field of the optical window. The performance of DP-AOQS in the visible light band is verified from the perspectives of density field distribution, optical path difference (OPD), and fuzzy star map. The simulation results show that the method can quickly provide the distortion results of aero-optical effects in different flight conditions on the premise of ensuring the simulation accuracy. The research in this paper provides a new analytical method for the study of aero-optical effects.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">celestial navigation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aero-optical effects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">density proxy model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hypersonic vehicles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quick simulation</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">He Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chaofan Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiang Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zichen Fan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jun Miao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">23(2023), 3, p 1646</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3, p 1646</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s23031646</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5efb55378a26405f9b896a1c276c713c</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/23/3/1646</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2023</subfield><subfield code="e">3, p 1646</subfield></datafield></record></collection>
|
score |
7.399081 |