3D Multi-Modality Medical Imaging: Combining Anatomical and Infrared Thermal Images for 3D Reconstruction
Medical thermography provides an overview of the human body with two-dimensional (2D) information that assists the identification of temperature changes, based on the analysis of surface distribution. However, this approach lacks spatial depth information, which can be enhanced by adding multiple im...
Ausführliche Beschreibung
Autor*in: |
Mauren Abreu de Souza [verfasserIn] Daoana Carolaine Alka Cordeiro [verfasserIn] Jonathan de Oliveira [verfasserIn] Mateus Ferro Antunes de Oliveira [verfasserIn] Beatriz Leandro Bonafini [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Sensors - MDPI AG, 2003, 23(2023), 3, p 1610 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2023 ; number:3, p 1610 |
Links: |
---|
DOI / URN: |
10.3390/s23031610 |
---|
Katalog-ID: |
DOAJ080590500 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ080590500 | ||
003 | DE-627 | ||
005 | 20240413065211.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230310s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/s23031610 |2 doi | |
035 | |a (DE-627)DOAJ080590500 | ||
035 | |a (DE-599)DOAJec97133ed3054106b08210637101b43b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
100 | 0 | |a Mauren Abreu de Souza |e verfasserin |4 aut | |
245 | 1 | 0 | |a 3D Multi-Modality Medical Imaging: Combining Anatomical and Infrared Thermal Images for 3D Reconstruction |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Medical thermography provides an overview of the human body with two-dimensional (2D) information that assists the identification of temperature changes, based on the analysis of surface distribution. However, this approach lacks spatial depth information, which can be enhanced by adding multiple images or three-dimensional (3D) systems. Therefore, the methodology applied for this paper generates a 3D point cloud (from thermal infrared images), a 3D geometry model (from CT images), and the segmented inner anatomical structures. Thus, the following computational processing was employed: Structure from Motion (SfM), image registration, and alignment (affine transformation) between the 3D models obtained to combine and unify them. This paper presents the 3D reconstruction and visualization of the respective geometry of the neck/bust and inner anatomical structures (thyroid, trachea, veins, and arteries). Additionally, it shows the whole 3D thermal geometry in different anatomical sections (i.e., coronal, sagittal, and axial), allowing it to be further examined by a medical team, improving pathological assessments. The generation of 3D thermal anatomy models allows for a combined visualization, i.e., functional and anatomical images of the neck region, achieving encouraging results. These 3D models bring correlation of the inner and outer regions, which could improve biomedical applications and future diagnosis with such a methodology. | ||
650 | 4 | |a 3D thermo-scan | |
650 | 4 | |a 3D models | |
650 | 4 | |a 3D reconstruction | |
650 | 4 | |a 3D visualization | |
650 | 4 | |a infrared images | |
650 | 4 | |a anatomy images | |
653 | 0 | |a Chemical technology | |
700 | 0 | |a Daoana Carolaine Alka Cordeiro |e verfasserin |4 aut | |
700 | 0 | |a Jonathan de Oliveira |e verfasserin |4 aut | |
700 | 0 | |a Mateus Ferro Antunes de Oliveira |e verfasserin |4 aut | |
700 | 0 | |a Beatriz Leandro Bonafini |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sensors |d MDPI AG, 2003 |g 23(2023), 3, p 1610 |w (DE-627)331640910 |w (DE-600)2052857-7 |x 14248220 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2023 |g number:3, p 1610 |
856 | 4 | 0 | |u https://doi.org/10.3390/s23031610 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/ec97133ed3054106b08210637101b43b |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1424-8220/23/3/1610 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1424-8220 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 23 |j 2023 |e 3, p 1610 |
author_variant |
m a d s mads d c a c dcac j d o jdo m f a d o mfado b l b blb |
---|---|
matchkey_str |
article:14248220:2023----::dutmdltmdclmgncmiigntmclnifaeteml |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TP |
publishDate |
2023 |
allfields |
10.3390/s23031610 doi (DE-627)DOAJ080590500 (DE-599)DOAJec97133ed3054106b08210637101b43b DE-627 ger DE-627 rakwb eng TP1-1185 Mauren Abreu de Souza verfasserin aut 3D Multi-Modality Medical Imaging: Combining Anatomical and Infrared Thermal Images for 3D Reconstruction 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Medical thermography provides an overview of the human body with two-dimensional (2D) information that assists the identification of temperature changes, based on the analysis of surface distribution. However, this approach lacks spatial depth information, which can be enhanced by adding multiple images or three-dimensional (3D) systems. Therefore, the methodology applied for this paper generates a 3D point cloud (from thermal infrared images), a 3D geometry model (from CT images), and the segmented inner anatomical structures. Thus, the following computational processing was employed: Structure from Motion (SfM), image registration, and alignment (affine transformation) between the 3D models obtained to combine and unify them. This paper presents the 3D reconstruction and visualization of the respective geometry of the neck/bust and inner anatomical structures (thyroid, trachea, veins, and arteries). Additionally, it shows the whole 3D thermal geometry in different anatomical sections (i.e., coronal, sagittal, and axial), allowing it to be further examined by a medical team, improving pathological assessments. The generation of 3D thermal anatomy models allows for a combined visualization, i.e., functional and anatomical images of the neck region, achieving encouraging results. These 3D models bring correlation of the inner and outer regions, which could improve biomedical applications and future diagnosis with such a methodology. 3D thermo-scan 3D models 3D reconstruction 3D visualization infrared images anatomy images Chemical technology Daoana Carolaine Alka Cordeiro verfasserin aut Jonathan de Oliveira verfasserin aut Mateus Ferro Antunes de Oliveira verfasserin aut Beatriz Leandro Bonafini verfasserin aut In Sensors MDPI AG, 2003 23(2023), 3, p 1610 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:23 year:2023 number:3, p 1610 https://doi.org/10.3390/s23031610 kostenfrei https://doaj.org/article/ec97133ed3054106b08210637101b43b kostenfrei https://www.mdpi.com/1424-8220/23/3/1610 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 3, p 1610 |
spelling |
10.3390/s23031610 doi (DE-627)DOAJ080590500 (DE-599)DOAJec97133ed3054106b08210637101b43b DE-627 ger DE-627 rakwb eng TP1-1185 Mauren Abreu de Souza verfasserin aut 3D Multi-Modality Medical Imaging: Combining Anatomical and Infrared Thermal Images for 3D Reconstruction 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Medical thermography provides an overview of the human body with two-dimensional (2D) information that assists the identification of temperature changes, based on the analysis of surface distribution. However, this approach lacks spatial depth information, which can be enhanced by adding multiple images or three-dimensional (3D) systems. Therefore, the methodology applied for this paper generates a 3D point cloud (from thermal infrared images), a 3D geometry model (from CT images), and the segmented inner anatomical structures. Thus, the following computational processing was employed: Structure from Motion (SfM), image registration, and alignment (affine transformation) between the 3D models obtained to combine and unify them. This paper presents the 3D reconstruction and visualization of the respective geometry of the neck/bust and inner anatomical structures (thyroid, trachea, veins, and arteries). Additionally, it shows the whole 3D thermal geometry in different anatomical sections (i.e., coronal, sagittal, and axial), allowing it to be further examined by a medical team, improving pathological assessments. The generation of 3D thermal anatomy models allows for a combined visualization, i.e., functional and anatomical images of the neck region, achieving encouraging results. These 3D models bring correlation of the inner and outer regions, which could improve biomedical applications and future diagnosis with such a methodology. 3D thermo-scan 3D models 3D reconstruction 3D visualization infrared images anatomy images Chemical technology Daoana Carolaine Alka Cordeiro verfasserin aut Jonathan de Oliveira verfasserin aut Mateus Ferro Antunes de Oliveira verfasserin aut Beatriz Leandro Bonafini verfasserin aut In Sensors MDPI AG, 2003 23(2023), 3, p 1610 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:23 year:2023 number:3, p 1610 https://doi.org/10.3390/s23031610 kostenfrei https://doaj.org/article/ec97133ed3054106b08210637101b43b kostenfrei https://www.mdpi.com/1424-8220/23/3/1610 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 3, p 1610 |
allfields_unstemmed |
10.3390/s23031610 doi (DE-627)DOAJ080590500 (DE-599)DOAJec97133ed3054106b08210637101b43b DE-627 ger DE-627 rakwb eng TP1-1185 Mauren Abreu de Souza verfasserin aut 3D Multi-Modality Medical Imaging: Combining Anatomical and Infrared Thermal Images for 3D Reconstruction 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Medical thermography provides an overview of the human body with two-dimensional (2D) information that assists the identification of temperature changes, based on the analysis of surface distribution. However, this approach lacks spatial depth information, which can be enhanced by adding multiple images or three-dimensional (3D) systems. Therefore, the methodology applied for this paper generates a 3D point cloud (from thermal infrared images), a 3D geometry model (from CT images), and the segmented inner anatomical structures. Thus, the following computational processing was employed: Structure from Motion (SfM), image registration, and alignment (affine transformation) between the 3D models obtained to combine and unify them. This paper presents the 3D reconstruction and visualization of the respective geometry of the neck/bust and inner anatomical structures (thyroid, trachea, veins, and arteries). Additionally, it shows the whole 3D thermal geometry in different anatomical sections (i.e., coronal, sagittal, and axial), allowing it to be further examined by a medical team, improving pathological assessments. The generation of 3D thermal anatomy models allows for a combined visualization, i.e., functional and anatomical images of the neck region, achieving encouraging results. These 3D models bring correlation of the inner and outer regions, which could improve biomedical applications and future diagnosis with such a methodology. 3D thermo-scan 3D models 3D reconstruction 3D visualization infrared images anatomy images Chemical technology Daoana Carolaine Alka Cordeiro verfasserin aut Jonathan de Oliveira verfasserin aut Mateus Ferro Antunes de Oliveira verfasserin aut Beatriz Leandro Bonafini verfasserin aut In Sensors MDPI AG, 2003 23(2023), 3, p 1610 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:23 year:2023 number:3, p 1610 https://doi.org/10.3390/s23031610 kostenfrei https://doaj.org/article/ec97133ed3054106b08210637101b43b kostenfrei https://www.mdpi.com/1424-8220/23/3/1610 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 3, p 1610 |
allfieldsGer |
10.3390/s23031610 doi (DE-627)DOAJ080590500 (DE-599)DOAJec97133ed3054106b08210637101b43b DE-627 ger DE-627 rakwb eng TP1-1185 Mauren Abreu de Souza verfasserin aut 3D Multi-Modality Medical Imaging: Combining Anatomical and Infrared Thermal Images for 3D Reconstruction 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Medical thermography provides an overview of the human body with two-dimensional (2D) information that assists the identification of temperature changes, based on the analysis of surface distribution. However, this approach lacks spatial depth information, which can be enhanced by adding multiple images or three-dimensional (3D) systems. Therefore, the methodology applied for this paper generates a 3D point cloud (from thermal infrared images), a 3D geometry model (from CT images), and the segmented inner anatomical structures. Thus, the following computational processing was employed: Structure from Motion (SfM), image registration, and alignment (affine transformation) between the 3D models obtained to combine and unify them. This paper presents the 3D reconstruction and visualization of the respective geometry of the neck/bust and inner anatomical structures (thyroid, trachea, veins, and arteries). Additionally, it shows the whole 3D thermal geometry in different anatomical sections (i.e., coronal, sagittal, and axial), allowing it to be further examined by a medical team, improving pathological assessments. The generation of 3D thermal anatomy models allows for a combined visualization, i.e., functional and anatomical images of the neck region, achieving encouraging results. These 3D models bring correlation of the inner and outer regions, which could improve biomedical applications and future diagnosis with such a methodology. 3D thermo-scan 3D models 3D reconstruction 3D visualization infrared images anatomy images Chemical technology Daoana Carolaine Alka Cordeiro verfasserin aut Jonathan de Oliveira verfasserin aut Mateus Ferro Antunes de Oliveira verfasserin aut Beatriz Leandro Bonafini verfasserin aut In Sensors MDPI AG, 2003 23(2023), 3, p 1610 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:23 year:2023 number:3, p 1610 https://doi.org/10.3390/s23031610 kostenfrei https://doaj.org/article/ec97133ed3054106b08210637101b43b kostenfrei https://www.mdpi.com/1424-8220/23/3/1610 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 3, p 1610 |
allfieldsSound |
10.3390/s23031610 doi (DE-627)DOAJ080590500 (DE-599)DOAJec97133ed3054106b08210637101b43b DE-627 ger DE-627 rakwb eng TP1-1185 Mauren Abreu de Souza verfasserin aut 3D Multi-Modality Medical Imaging: Combining Anatomical and Infrared Thermal Images for 3D Reconstruction 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Medical thermography provides an overview of the human body with two-dimensional (2D) information that assists the identification of temperature changes, based on the analysis of surface distribution. However, this approach lacks spatial depth information, which can be enhanced by adding multiple images or three-dimensional (3D) systems. Therefore, the methodology applied for this paper generates a 3D point cloud (from thermal infrared images), a 3D geometry model (from CT images), and the segmented inner anatomical structures. Thus, the following computational processing was employed: Structure from Motion (SfM), image registration, and alignment (affine transformation) between the 3D models obtained to combine and unify them. This paper presents the 3D reconstruction and visualization of the respective geometry of the neck/bust and inner anatomical structures (thyroid, trachea, veins, and arteries). Additionally, it shows the whole 3D thermal geometry in different anatomical sections (i.e., coronal, sagittal, and axial), allowing it to be further examined by a medical team, improving pathological assessments. The generation of 3D thermal anatomy models allows for a combined visualization, i.e., functional and anatomical images of the neck region, achieving encouraging results. These 3D models bring correlation of the inner and outer regions, which could improve biomedical applications and future diagnosis with such a methodology. 3D thermo-scan 3D models 3D reconstruction 3D visualization infrared images anatomy images Chemical technology Daoana Carolaine Alka Cordeiro verfasserin aut Jonathan de Oliveira verfasserin aut Mateus Ferro Antunes de Oliveira verfasserin aut Beatriz Leandro Bonafini verfasserin aut In Sensors MDPI AG, 2003 23(2023), 3, p 1610 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:23 year:2023 number:3, p 1610 https://doi.org/10.3390/s23031610 kostenfrei https://doaj.org/article/ec97133ed3054106b08210637101b43b kostenfrei https://www.mdpi.com/1424-8220/23/3/1610 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 3, p 1610 |
language |
English |
source |
In Sensors 23(2023), 3, p 1610 volume:23 year:2023 number:3, p 1610 |
sourceStr |
In Sensors 23(2023), 3, p 1610 volume:23 year:2023 number:3, p 1610 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
3D thermo-scan 3D models 3D reconstruction 3D visualization infrared images anatomy images Chemical technology |
isfreeaccess_bool |
true |
container_title |
Sensors |
authorswithroles_txt_mv |
Mauren Abreu de Souza @@aut@@ Daoana Carolaine Alka Cordeiro @@aut@@ Jonathan de Oliveira @@aut@@ Mateus Ferro Antunes de Oliveira @@aut@@ Beatriz Leandro Bonafini @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
331640910 |
id |
DOAJ080590500 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ080590500</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413065211.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s23031610</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ080590500</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJec97133ed3054106b08210637101b43b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mauren Abreu de Souza</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">3D Multi-Modality Medical Imaging: Combining Anatomical and Infrared Thermal Images for 3D Reconstruction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Medical thermography provides an overview of the human body with two-dimensional (2D) information that assists the identification of temperature changes, based on the analysis of surface distribution. However, this approach lacks spatial depth information, which can be enhanced by adding multiple images or three-dimensional (3D) systems. Therefore, the methodology applied for this paper generates a 3D point cloud (from thermal infrared images), a 3D geometry model (from CT images), and the segmented inner anatomical structures. Thus, the following computational processing was employed: Structure from Motion (SfM), image registration, and alignment (affine transformation) between the 3D models obtained to combine and unify them. This paper presents the 3D reconstruction and visualization of the respective geometry of the neck/bust and inner anatomical structures (thyroid, trachea, veins, and arteries). Additionally, it shows the whole 3D thermal geometry in different anatomical sections (i.e., coronal, sagittal, and axial), allowing it to be further examined by a medical team, improving pathological assessments. The generation of 3D thermal anatomy models allows for a combined visualization, i.e., functional and anatomical images of the neck region, achieving encouraging results. These 3D models bring correlation of the inner and outer regions, which could improve biomedical applications and future diagnosis with such a methodology.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D thermo-scan</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D reconstruction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D visualization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">infrared images</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">anatomy images</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daoana Carolaine Alka Cordeiro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jonathan de Oliveira</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mateus Ferro Antunes de Oliveira</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Beatriz Leandro Bonafini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">23(2023), 3, p 1610</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3, p 1610</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s23031610</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ec97133ed3054106b08210637101b43b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/23/3/1610</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2023</subfield><subfield code="e">3, p 1610</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Mauren Abreu de Souza |
spellingShingle |
Mauren Abreu de Souza misc TP1-1185 misc 3D thermo-scan misc 3D models misc 3D reconstruction misc 3D visualization misc infrared images misc anatomy images misc Chemical technology 3D Multi-Modality Medical Imaging: Combining Anatomical and Infrared Thermal Images for 3D Reconstruction |
authorStr |
Mauren Abreu de Souza |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)331640910 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
14248220 |
topic_title |
TP1-1185 3D Multi-Modality Medical Imaging: Combining Anatomical and Infrared Thermal Images for 3D Reconstruction 3D thermo-scan 3D models 3D reconstruction 3D visualization infrared images anatomy images |
topic |
misc TP1-1185 misc 3D thermo-scan misc 3D models misc 3D reconstruction misc 3D visualization misc infrared images misc anatomy images misc Chemical technology |
topic_unstemmed |
misc TP1-1185 misc 3D thermo-scan misc 3D models misc 3D reconstruction misc 3D visualization misc infrared images misc anatomy images misc Chemical technology |
topic_browse |
misc TP1-1185 misc 3D thermo-scan misc 3D models misc 3D reconstruction misc 3D visualization misc infrared images misc anatomy images misc Chemical technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sensors |
hierarchy_parent_id |
331640910 |
hierarchy_top_title |
Sensors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)331640910 (DE-600)2052857-7 |
title |
3D Multi-Modality Medical Imaging: Combining Anatomical and Infrared Thermal Images for 3D Reconstruction |
ctrlnum |
(DE-627)DOAJ080590500 (DE-599)DOAJec97133ed3054106b08210637101b43b |
title_full |
3D Multi-Modality Medical Imaging: Combining Anatomical and Infrared Thermal Images for 3D Reconstruction |
author_sort |
Mauren Abreu de Souza |
journal |
Sensors |
journalStr |
Sensors |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Mauren Abreu de Souza Daoana Carolaine Alka Cordeiro Jonathan de Oliveira Mateus Ferro Antunes de Oliveira Beatriz Leandro Bonafini |
container_volume |
23 |
class |
TP1-1185 |
format_se |
Elektronische Aufsätze |
author-letter |
Mauren Abreu de Souza |
doi_str_mv |
10.3390/s23031610 |
author2-role |
verfasserin |
title_sort |
3d multi-modality medical imaging: combining anatomical and infrared thermal images for 3d reconstruction |
callnumber |
TP1-1185 |
title_auth |
3D Multi-Modality Medical Imaging: Combining Anatomical and Infrared Thermal Images for 3D Reconstruction |
abstract |
Medical thermography provides an overview of the human body with two-dimensional (2D) information that assists the identification of temperature changes, based on the analysis of surface distribution. However, this approach lacks spatial depth information, which can be enhanced by adding multiple images or three-dimensional (3D) systems. Therefore, the methodology applied for this paper generates a 3D point cloud (from thermal infrared images), a 3D geometry model (from CT images), and the segmented inner anatomical structures. Thus, the following computational processing was employed: Structure from Motion (SfM), image registration, and alignment (affine transformation) between the 3D models obtained to combine and unify them. This paper presents the 3D reconstruction and visualization of the respective geometry of the neck/bust and inner anatomical structures (thyroid, trachea, veins, and arteries). Additionally, it shows the whole 3D thermal geometry in different anatomical sections (i.e., coronal, sagittal, and axial), allowing it to be further examined by a medical team, improving pathological assessments. The generation of 3D thermal anatomy models allows for a combined visualization, i.e., functional and anatomical images of the neck region, achieving encouraging results. These 3D models bring correlation of the inner and outer regions, which could improve biomedical applications and future diagnosis with such a methodology. |
abstractGer |
Medical thermography provides an overview of the human body with two-dimensional (2D) information that assists the identification of temperature changes, based on the analysis of surface distribution. However, this approach lacks spatial depth information, which can be enhanced by adding multiple images or three-dimensional (3D) systems. Therefore, the methodology applied for this paper generates a 3D point cloud (from thermal infrared images), a 3D geometry model (from CT images), and the segmented inner anatomical structures. Thus, the following computational processing was employed: Structure from Motion (SfM), image registration, and alignment (affine transformation) between the 3D models obtained to combine and unify them. This paper presents the 3D reconstruction and visualization of the respective geometry of the neck/bust and inner anatomical structures (thyroid, trachea, veins, and arteries). Additionally, it shows the whole 3D thermal geometry in different anatomical sections (i.e., coronal, sagittal, and axial), allowing it to be further examined by a medical team, improving pathological assessments. The generation of 3D thermal anatomy models allows for a combined visualization, i.e., functional and anatomical images of the neck region, achieving encouraging results. These 3D models bring correlation of the inner and outer regions, which could improve biomedical applications and future diagnosis with such a methodology. |
abstract_unstemmed |
Medical thermography provides an overview of the human body with two-dimensional (2D) information that assists the identification of temperature changes, based on the analysis of surface distribution. However, this approach lacks spatial depth information, which can be enhanced by adding multiple images or three-dimensional (3D) systems. Therefore, the methodology applied for this paper generates a 3D point cloud (from thermal infrared images), a 3D geometry model (from CT images), and the segmented inner anatomical structures. Thus, the following computational processing was employed: Structure from Motion (SfM), image registration, and alignment (affine transformation) between the 3D models obtained to combine and unify them. This paper presents the 3D reconstruction and visualization of the respective geometry of the neck/bust and inner anatomical structures (thyroid, trachea, veins, and arteries). Additionally, it shows the whole 3D thermal geometry in different anatomical sections (i.e., coronal, sagittal, and axial), allowing it to be further examined by a medical team, improving pathological assessments. The generation of 3D thermal anatomy models allows for a combined visualization, i.e., functional and anatomical images of the neck region, achieving encouraging results. These 3D models bring correlation of the inner and outer regions, which could improve biomedical applications and future diagnosis with such a methodology. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3, p 1610 |
title_short |
3D Multi-Modality Medical Imaging: Combining Anatomical and Infrared Thermal Images for 3D Reconstruction |
url |
https://doi.org/10.3390/s23031610 https://doaj.org/article/ec97133ed3054106b08210637101b43b https://www.mdpi.com/1424-8220/23/3/1610 https://doaj.org/toc/1424-8220 |
remote_bool |
true |
author2 |
Daoana Carolaine Alka Cordeiro Jonathan de Oliveira Mateus Ferro Antunes de Oliveira Beatriz Leandro Bonafini |
author2Str |
Daoana Carolaine Alka Cordeiro Jonathan de Oliveira Mateus Ferro Antunes de Oliveira Beatriz Leandro Bonafini |
ppnlink |
331640910 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/s23031610 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T15:28:00.795Z |
_version_ |
1803572195673243648 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ080590500</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413065211.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s23031610</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ080590500</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJec97133ed3054106b08210637101b43b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mauren Abreu de Souza</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">3D Multi-Modality Medical Imaging: Combining Anatomical and Infrared Thermal Images for 3D Reconstruction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Medical thermography provides an overview of the human body with two-dimensional (2D) information that assists the identification of temperature changes, based on the analysis of surface distribution. However, this approach lacks spatial depth information, which can be enhanced by adding multiple images or three-dimensional (3D) systems. Therefore, the methodology applied for this paper generates a 3D point cloud (from thermal infrared images), a 3D geometry model (from CT images), and the segmented inner anatomical structures. Thus, the following computational processing was employed: Structure from Motion (SfM), image registration, and alignment (affine transformation) between the 3D models obtained to combine and unify them. This paper presents the 3D reconstruction and visualization of the respective geometry of the neck/bust and inner anatomical structures (thyroid, trachea, veins, and arteries). Additionally, it shows the whole 3D thermal geometry in different anatomical sections (i.e., coronal, sagittal, and axial), allowing it to be further examined by a medical team, improving pathological assessments. The generation of 3D thermal anatomy models allows for a combined visualization, i.e., functional and anatomical images of the neck region, achieving encouraging results. These 3D models bring correlation of the inner and outer regions, which could improve biomedical applications and future diagnosis with such a methodology.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D thermo-scan</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D reconstruction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D visualization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">infrared images</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">anatomy images</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Daoana Carolaine Alka Cordeiro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jonathan de Oliveira</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mateus Ferro Antunes de Oliveira</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Beatriz Leandro Bonafini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">23(2023), 3, p 1610</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3, p 1610</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s23031610</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ec97133ed3054106b08210637101b43b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/23/3/1610</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2023</subfield><subfield code="e">3, p 1610</subfield></datafield></record></collection>
|
score |
7.3995247 |