The Toxicological Risk Assessment of Dermal Exposure of Patients Exposed to Lead and Cadmium Due to Application of Ointments with Marjoram Herb Extract (<i<Majoranae herbae extractum</i<)
Potential heavy metal impurities (HMI) in pharmaceuticals/pharmaceutical products/drugs based on plant raw materials (e.g., herbs) are an important problem in the pharmaceutical industry; however, there is a lack of scientific articles on the comprehensive toxicological risk assessment of HMI in oin...
Ausführliche Beschreibung
Autor*in: |
Kamil Jurowski [verfasserIn] Mirosław Krośniak [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: International Journal of Environmental Research and Public Health - MDPI AG, 2005, 20(2023), 2701, p 2701 |
---|---|
Übergeordnetes Werk: |
volume:20 ; year:2023 ; number:2701, p 2701 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.3390/ijerph20032701 |
---|
Katalog-ID: |
DOAJ080643574 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ080643574 | ||
003 | DE-627 | ||
005 | 20230310192430.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230310s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/ijerph20032701 |2 doi | |
035 | |a (DE-627)DOAJ080643574 | ||
035 | |a (DE-599)DOAJ1c97e0b6eb584efabbe1071d06f4678f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Kamil Jurowski |e verfasserin |4 aut | |
245 | 1 | 4 | |a The Toxicological Risk Assessment of Dermal Exposure of Patients Exposed to Lead and Cadmium Due to Application of Ointments with Marjoram Herb Extract (<i<Majoranae herbae extractum</i<) |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Potential heavy metal impurities (HMI) in pharmaceuticals/pharmaceutical products/drugs based on plant raw materials (e.g., herbs) are an important problem in the pharmaceutical industry; however, there is a lack of scientific articles on the comprehensive toxicological risk assessment of HMI in ointment applied dermally. To make the appropriate toxicological risk assessment, we consider: (1) the raw results of the levels of lead and cadmium in the ointments (metal per kg of mass), (2) one-time administration of the applied ointment, (3) daily exposure of Pb and Cd in the applied ointments according to the maximum daily dose of applied pharmaceuticals, including transcutaneous penetration, (4) human health risk assessment based on the USEPA model, and 5) the margin of exposure (MoE). The raw results indicated that lead (7.05–101.78 µg/kg) and cadmium (0.32–0.81 µg/kg) were present in all samples. The levels of analyzed HMI (independently of the producer and declared composition) were similar. Pb and Cd contamination associated with daily doses met the standards of the ICH Q3D (R2) guide on elemental impurities in pharmaceuticals, including the cutaneous route of administration. Taking into account the daily amount of lead and cadmium (ointment, ug/day) the results were satisfactory, confirming the safety of marjoram herb extract ointments available in Polish pharmacies according to the ICH guideline Q3D (R2) on elemental impurities. The HQ values obtained for Pb and Cd in all samples were less than 1; therefore, exposure to these HMI would not cause a health risk based on the USEPA model strategy. Furthermore, the obtained values of MoE for Pb and Cd in ointments were above 100, so exposure to these elements would not cause a health risk based on the MoE-based strategy. The original contribution of this work is that this is the first study on the triple approach strategy to evaluate the safety of heavy metal impurities in traditional herbal medicinal products applied dermally in solid form (ointments with marjoram herb extract). The research is novel and has not been previously published; The proposed procedure includes transcutaneous penetration of heavy metal (Pb and Cd) impurities described for the first time in the literature. | ||
650 | 4 | |a heavy metals | |
650 | 4 | |a toxicological risk assessment | |
650 | 4 | |a marjoram herb | |
650 | 4 | |a ICH Q3D (R2) | |
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
700 | 0 | |a Mirosław Krośniak |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t International Journal of Environmental Research and Public Health |d MDPI AG, 2005 |g 20(2023), 2701, p 2701 |w (DE-627)477992463 |w (DE-600)2175195-X |x 16604601 |7 nnns |
773 | 1 | 8 | |g volume:20 |g year:2023 |g number:2701, p 2701 |
856 | 4 | 0 | |u https://doi.org/10.3390/ijerph20032701 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/1c97e0b6eb584efabbe1071d06f4678f |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1660-4601/20/3/2701 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1661-7827 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1660-4601 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 20 |j 2023 |e 2701, p 2701 |
author_variant |
k j kj m k mk |
---|---|
matchkey_str |
article:16604601:2023----::htxclgcliksesetfemlxouefainsxoetlaadamudeoplctooonmnsihaj |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.3390/ijerph20032701 doi (DE-627)DOAJ080643574 (DE-599)DOAJ1c97e0b6eb584efabbe1071d06f4678f DE-627 ger DE-627 rakwb eng Kamil Jurowski verfasserin aut The Toxicological Risk Assessment of Dermal Exposure of Patients Exposed to Lead and Cadmium Due to Application of Ointments with Marjoram Herb Extract (<i<Majoranae herbae extractum</i<) 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Potential heavy metal impurities (HMI) in pharmaceuticals/pharmaceutical products/drugs based on plant raw materials (e.g., herbs) are an important problem in the pharmaceutical industry; however, there is a lack of scientific articles on the comprehensive toxicological risk assessment of HMI in ointment applied dermally. To make the appropriate toxicological risk assessment, we consider: (1) the raw results of the levels of lead and cadmium in the ointments (metal per kg of mass), (2) one-time administration of the applied ointment, (3) daily exposure of Pb and Cd in the applied ointments according to the maximum daily dose of applied pharmaceuticals, including transcutaneous penetration, (4) human health risk assessment based on the USEPA model, and 5) the margin of exposure (MoE). The raw results indicated that lead (7.05–101.78 µg/kg) and cadmium (0.32–0.81 µg/kg) were present in all samples. The levels of analyzed HMI (independently of the producer and declared composition) were similar. Pb and Cd contamination associated with daily doses met the standards of the ICH Q3D (R2) guide on elemental impurities in pharmaceuticals, including the cutaneous route of administration. Taking into account the daily amount of lead and cadmium (ointment, ug/day) the results were satisfactory, confirming the safety of marjoram herb extract ointments available in Polish pharmacies according to the ICH guideline Q3D (R2) on elemental impurities. The HQ values obtained for Pb and Cd in all samples were less than 1; therefore, exposure to these HMI would not cause a health risk based on the USEPA model strategy. Furthermore, the obtained values of MoE for Pb and Cd in ointments were above 100, so exposure to these elements would not cause a health risk based on the MoE-based strategy. The original contribution of this work is that this is the first study on the triple approach strategy to evaluate the safety of heavy metal impurities in traditional herbal medicinal products applied dermally in solid form (ointments with marjoram herb extract). The research is novel and has not been previously published; The proposed procedure includes transcutaneous penetration of heavy metal (Pb and Cd) impurities described for the first time in the literature. heavy metals toxicological risk assessment marjoram herb ICH Q3D (R2) Medicine R Mirosław Krośniak verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 20(2023), 2701, p 2701 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:20 year:2023 number:2701, p 2701 https://doi.org/10.3390/ijerph20032701 kostenfrei https://doaj.org/article/1c97e0b6eb584efabbe1071d06f4678f kostenfrei https://www.mdpi.com/1660-4601/20/3/2701 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2023 2701, p 2701 |
spelling |
10.3390/ijerph20032701 doi (DE-627)DOAJ080643574 (DE-599)DOAJ1c97e0b6eb584efabbe1071d06f4678f DE-627 ger DE-627 rakwb eng Kamil Jurowski verfasserin aut The Toxicological Risk Assessment of Dermal Exposure of Patients Exposed to Lead and Cadmium Due to Application of Ointments with Marjoram Herb Extract (<i<Majoranae herbae extractum</i<) 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Potential heavy metal impurities (HMI) in pharmaceuticals/pharmaceutical products/drugs based on plant raw materials (e.g., herbs) are an important problem in the pharmaceutical industry; however, there is a lack of scientific articles on the comprehensive toxicological risk assessment of HMI in ointment applied dermally. To make the appropriate toxicological risk assessment, we consider: (1) the raw results of the levels of lead and cadmium in the ointments (metal per kg of mass), (2) one-time administration of the applied ointment, (3) daily exposure of Pb and Cd in the applied ointments according to the maximum daily dose of applied pharmaceuticals, including transcutaneous penetration, (4) human health risk assessment based on the USEPA model, and 5) the margin of exposure (MoE). The raw results indicated that lead (7.05–101.78 µg/kg) and cadmium (0.32–0.81 µg/kg) were present in all samples. The levels of analyzed HMI (independently of the producer and declared composition) were similar. Pb and Cd contamination associated with daily doses met the standards of the ICH Q3D (R2) guide on elemental impurities in pharmaceuticals, including the cutaneous route of administration. Taking into account the daily amount of lead and cadmium (ointment, ug/day) the results were satisfactory, confirming the safety of marjoram herb extract ointments available in Polish pharmacies according to the ICH guideline Q3D (R2) on elemental impurities. The HQ values obtained for Pb and Cd in all samples were less than 1; therefore, exposure to these HMI would not cause a health risk based on the USEPA model strategy. Furthermore, the obtained values of MoE for Pb and Cd in ointments were above 100, so exposure to these elements would not cause a health risk based on the MoE-based strategy. The original contribution of this work is that this is the first study on the triple approach strategy to evaluate the safety of heavy metal impurities in traditional herbal medicinal products applied dermally in solid form (ointments with marjoram herb extract). The research is novel and has not been previously published; The proposed procedure includes transcutaneous penetration of heavy metal (Pb and Cd) impurities described for the first time in the literature. heavy metals toxicological risk assessment marjoram herb ICH Q3D (R2) Medicine R Mirosław Krośniak verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 20(2023), 2701, p 2701 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:20 year:2023 number:2701, p 2701 https://doi.org/10.3390/ijerph20032701 kostenfrei https://doaj.org/article/1c97e0b6eb584efabbe1071d06f4678f kostenfrei https://www.mdpi.com/1660-4601/20/3/2701 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2023 2701, p 2701 |
allfields_unstemmed |
10.3390/ijerph20032701 doi (DE-627)DOAJ080643574 (DE-599)DOAJ1c97e0b6eb584efabbe1071d06f4678f DE-627 ger DE-627 rakwb eng Kamil Jurowski verfasserin aut The Toxicological Risk Assessment of Dermal Exposure of Patients Exposed to Lead and Cadmium Due to Application of Ointments with Marjoram Herb Extract (<i<Majoranae herbae extractum</i<) 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Potential heavy metal impurities (HMI) in pharmaceuticals/pharmaceutical products/drugs based on plant raw materials (e.g., herbs) are an important problem in the pharmaceutical industry; however, there is a lack of scientific articles on the comprehensive toxicological risk assessment of HMI in ointment applied dermally. To make the appropriate toxicological risk assessment, we consider: (1) the raw results of the levels of lead and cadmium in the ointments (metal per kg of mass), (2) one-time administration of the applied ointment, (3) daily exposure of Pb and Cd in the applied ointments according to the maximum daily dose of applied pharmaceuticals, including transcutaneous penetration, (4) human health risk assessment based on the USEPA model, and 5) the margin of exposure (MoE). The raw results indicated that lead (7.05–101.78 µg/kg) and cadmium (0.32–0.81 µg/kg) were present in all samples. The levels of analyzed HMI (independently of the producer and declared composition) were similar. Pb and Cd contamination associated with daily doses met the standards of the ICH Q3D (R2) guide on elemental impurities in pharmaceuticals, including the cutaneous route of administration. Taking into account the daily amount of lead and cadmium (ointment, ug/day) the results were satisfactory, confirming the safety of marjoram herb extract ointments available in Polish pharmacies according to the ICH guideline Q3D (R2) on elemental impurities. The HQ values obtained for Pb and Cd in all samples were less than 1; therefore, exposure to these HMI would not cause a health risk based on the USEPA model strategy. Furthermore, the obtained values of MoE for Pb and Cd in ointments were above 100, so exposure to these elements would not cause a health risk based on the MoE-based strategy. The original contribution of this work is that this is the first study on the triple approach strategy to evaluate the safety of heavy metal impurities in traditional herbal medicinal products applied dermally in solid form (ointments with marjoram herb extract). The research is novel and has not been previously published; The proposed procedure includes transcutaneous penetration of heavy metal (Pb and Cd) impurities described for the first time in the literature. heavy metals toxicological risk assessment marjoram herb ICH Q3D (R2) Medicine R Mirosław Krośniak verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 20(2023), 2701, p 2701 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:20 year:2023 number:2701, p 2701 https://doi.org/10.3390/ijerph20032701 kostenfrei https://doaj.org/article/1c97e0b6eb584efabbe1071d06f4678f kostenfrei https://www.mdpi.com/1660-4601/20/3/2701 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2023 2701, p 2701 |
allfieldsGer |
10.3390/ijerph20032701 doi (DE-627)DOAJ080643574 (DE-599)DOAJ1c97e0b6eb584efabbe1071d06f4678f DE-627 ger DE-627 rakwb eng Kamil Jurowski verfasserin aut The Toxicological Risk Assessment of Dermal Exposure of Patients Exposed to Lead and Cadmium Due to Application of Ointments with Marjoram Herb Extract (<i<Majoranae herbae extractum</i<) 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Potential heavy metal impurities (HMI) in pharmaceuticals/pharmaceutical products/drugs based on plant raw materials (e.g., herbs) are an important problem in the pharmaceutical industry; however, there is a lack of scientific articles on the comprehensive toxicological risk assessment of HMI in ointment applied dermally. To make the appropriate toxicological risk assessment, we consider: (1) the raw results of the levels of lead and cadmium in the ointments (metal per kg of mass), (2) one-time administration of the applied ointment, (3) daily exposure of Pb and Cd in the applied ointments according to the maximum daily dose of applied pharmaceuticals, including transcutaneous penetration, (4) human health risk assessment based on the USEPA model, and 5) the margin of exposure (MoE). The raw results indicated that lead (7.05–101.78 µg/kg) and cadmium (0.32–0.81 µg/kg) were present in all samples. The levels of analyzed HMI (independently of the producer and declared composition) were similar. Pb and Cd contamination associated with daily doses met the standards of the ICH Q3D (R2) guide on elemental impurities in pharmaceuticals, including the cutaneous route of administration. Taking into account the daily amount of lead and cadmium (ointment, ug/day) the results were satisfactory, confirming the safety of marjoram herb extract ointments available in Polish pharmacies according to the ICH guideline Q3D (R2) on elemental impurities. The HQ values obtained for Pb and Cd in all samples were less than 1; therefore, exposure to these HMI would not cause a health risk based on the USEPA model strategy. Furthermore, the obtained values of MoE for Pb and Cd in ointments were above 100, so exposure to these elements would not cause a health risk based on the MoE-based strategy. The original contribution of this work is that this is the first study on the triple approach strategy to evaluate the safety of heavy metal impurities in traditional herbal medicinal products applied dermally in solid form (ointments with marjoram herb extract). The research is novel and has not been previously published; The proposed procedure includes transcutaneous penetration of heavy metal (Pb and Cd) impurities described for the first time in the literature. heavy metals toxicological risk assessment marjoram herb ICH Q3D (R2) Medicine R Mirosław Krośniak verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 20(2023), 2701, p 2701 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:20 year:2023 number:2701, p 2701 https://doi.org/10.3390/ijerph20032701 kostenfrei https://doaj.org/article/1c97e0b6eb584efabbe1071d06f4678f kostenfrei https://www.mdpi.com/1660-4601/20/3/2701 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2023 2701, p 2701 |
allfieldsSound |
10.3390/ijerph20032701 doi (DE-627)DOAJ080643574 (DE-599)DOAJ1c97e0b6eb584efabbe1071d06f4678f DE-627 ger DE-627 rakwb eng Kamil Jurowski verfasserin aut The Toxicological Risk Assessment of Dermal Exposure of Patients Exposed to Lead and Cadmium Due to Application of Ointments with Marjoram Herb Extract (<i<Majoranae herbae extractum</i<) 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Potential heavy metal impurities (HMI) in pharmaceuticals/pharmaceutical products/drugs based on plant raw materials (e.g., herbs) are an important problem in the pharmaceutical industry; however, there is a lack of scientific articles on the comprehensive toxicological risk assessment of HMI in ointment applied dermally. To make the appropriate toxicological risk assessment, we consider: (1) the raw results of the levels of lead and cadmium in the ointments (metal per kg of mass), (2) one-time administration of the applied ointment, (3) daily exposure of Pb and Cd in the applied ointments according to the maximum daily dose of applied pharmaceuticals, including transcutaneous penetration, (4) human health risk assessment based on the USEPA model, and 5) the margin of exposure (MoE). The raw results indicated that lead (7.05–101.78 µg/kg) and cadmium (0.32–0.81 µg/kg) were present in all samples. The levels of analyzed HMI (independently of the producer and declared composition) were similar. Pb and Cd contamination associated with daily doses met the standards of the ICH Q3D (R2) guide on elemental impurities in pharmaceuticals, including the cutaneous route of administration. Taking into account the daily amount of lead and cadmium (ointment, ug/day) the results were satisfactory, confirming the safety of marjoram herb extract ointments available in Polish pharmacies according to the ICH guideline Q3D (R2) on elemental impurities. The HQ values obtained for Pb and Cd in all samples were less than 1; therefore, exposure to these HMI would not cause a health risk based on the USEPA model strategy. Furthermore, the obtained values of MoE for Pb and Cd in ointments were above 100, so exposure to these elements would not cause a health risk based on the MoE-based strategy. The original contribution of this work is that this is the first study on the triple approach strategy to evaluate the safety of heavy metal impurities in traditional herbal medicinal products applied dermally in solid form (ointments with marjoram herb extract). The research is novel and has not been previously published; The proposed procedure includes transcutaneous penetration of heavy metal (Pb and Cd) impurities described for the first time in the literature. heavy metals toxicological risk assessment marjoram herb ICH Q3D (R2) Medicine R Mirosław Krośniak verfasserin aut In International Journal of Environmental Research and Public Health MDPI AG, 2005 20(2023), 2701, p 2701 (DE-627)477992463 (DE-600)2175195-X 16604601 nnns volume:20 year:2023 number:2701, p 2701 https://doi.org/10.3390/ijerph20032701 kostenfrei https://doaj.org/article/1c97e0b6eb584efabbe1071d06f4678f kostenfrei https://www.mdpi.com/1660-4601/20/3/2701 kostenfrei https://doaj.org/toc/1661-7827 Journal toc kostenfrei https://doaj.org/toc/1660-4601 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2023 2701, p 2701 |
language |
English |
source |
In International Journal of Environmental Research and Public Health 20(2023), 2701, p 2701 volume:20 year:2023 number:2701, p 2701 |
sourceStr |
In International Journal of Environmental Research and Public Health 20(2023), 2701, p 2701 volume:20 year:2023 number:2701, p 2701 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
heavy metals toxicological risk assessment marjoram herb ICH Q3D (R2) Medicine R |
isfreeaccess_bool |
true |
container_title |
International Journal of Environmental Research and Public Health |
authorswithroles_txt_mv |
Kamil Jurowski @@aut@@ Mirosław Krośniak @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
477992463 |
id |
DOAJ080643574 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ080643574</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310192430.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijerph20032701</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ080643574</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1c97e0b6eb584efabbe1071d06f4678f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kamil Jurowski</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Toxicological Risk Assessment of Dermal Exposure of Patients Exposed to Lead and Cadmium Due to Application of Ointments with Marjoram Herb Extract (<i<Majoranae herbae extractum</i<)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Potential heavy metal impurities (HMI) in pharmaceuticals/pharmaceutical products/drugs based on plant raw materials (e.g., herbs) are an important problem in the pharmaceutical industry; however, there is a lack of scientific articles on the comprehensive toxicological risk assessment of HMI in ointment applied dermally. To make the appropriate toxicological risk assessment, we consider: (1) the raw results of the levels of lead and cadmium in the ointments (metal per kg of mass), (2) one-time administration of the applied ointment, (3) daily exposure of Pb and Cd in the applied ointments according to the maximum daily dose of applied pharmaceuticals, including transcutaneous penetration, (4) human health risk assessment based on the USEPA model, and 5) the margin of exposure (MoE). The raw results indicated that lead (7.05–101.78 µg/kg) and cadmium (0.32–0.81 µg/kg) were present in all samples. The levels of analyzed HMI (independently of the producer and declared composition) were similar. Pb and Cd contamination associated with daily doses met the standards of the ICH Q3D (R2) guide on elemental impurities in pharmaceuticals, including the cutaneous route of administration. Taking into account the daily amount of lead and cadmium (ointment, ug/day) the results were satisfactory, confirming the safety of marjoram herb extract ointments available in Polish pharmacies according to the ICH guideline Q3D (R2) on elemental impurities. The HQ values obtained for Pb and Cd in all samples were less than 1; therefore, exposure to these HMI would not cause a health risk based on the USEPA model strategy. Furthermore, the obtained values of MoE for Pb and Cd in ointments were above 100, so exposure to these elements would not cause a health risk based on the MoE-based strategy. The original contribution of this work is that this is the first study on the triple approach strategy to evaluate the safety of heavy metal impurities in traditional herbal medicinal products applied dermally in solid form (ointments with marjoram herb extract). The research is novel and has not been previously published; The proposed procedure includes transcutaneous penetration of heavy metal (Pb and Cd) impurities described for the first time in the literature.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heavy metals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">toxicological risk assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">marjoram herb</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ICH Q3D (R2)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mirosław Krośniak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Environmental Research and Public Health</subfield><subfield code="d">MDPI AG, 2005</subfield><subfield code="g">20(2023), 2701, p 2701</subfield><subfield code="w">(DE-627)477992463</subfield><subfield code="w">(DE-600)2175195-X</subfield><subfield code="x">16604601</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:2701, p 2701</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijerph20032701</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1c97e0b6eb584efabbe1071d06f4678f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1660-4601/20/3/2701</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1661-7827</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1660-4601</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2023</subfield><subfield code="e">2701, p 2701</subfield></datafield></record></collection>
|
author |
Kamil Jurowski |
spellingShingle |
Kamil Jurowski misc heavy metals misc toxicological risk assessment misc marjoram herb misc ICH Q3D (R2) misc Medicine misc R The Toxicological Risk Assessment of Dermal Exposure of Patients Exposed to Lead and Cadmium Due to Application of Ointments with Marjoram Herb Extract (<i<Majoranae herbae extractum</i<) |
authorStr |
Kamil Jurowski |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)477992463 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
16604601 |
topic_title |
The Toxicological Risk Assessment of Dermal Exposure of Patients Exposed to Lead and Cadmium Due to Application of Ointments with Marjoram Herb Extract (<i<Majoranae herbae extractum</i<) heavy metals toxicological risk assessment marjoram herb ICH Q3D (R2) |
topic |
misc heavy metals misc toxicological risk assessment misc marjoram herb misc ICH Q3D (R2) misc Medicine misc R |
topic_unstemmed |
misc heavy metals misc toxicological risk assessment misc marjoram herb misc ICH Q3D (R2) misc Medicine misc R |
topic_browse |
misc heavy metals misc toxicological risk assessment misc marjoram herb misc ICH Q3D (R2) misc Medicine misc R |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International Journal of Environmental Research and Public Health |
hierarchy_parent_id |
477992463 |
hierarchy_top_title |
International Journal of Environmental Research and Public Health |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)477992463 (DE-600)2175195-X |
title |
The Toxicological Risk Assessment of Dermal Exposure of Patients Exposed to Lead and Cadmium Due to Application of Ointments with Marjoram Herb Extract (<i<Majoranae herbae extractum</i<) |
ctrlnum |
(DE-627)DOAJ080643574 (DE-599)DOAJ1c97e0b6eb584efabbe1071d06f4678f |
title_full |
The Toxicological Risk Assessment of Dermal Exposure of Patients Exposed to Lead and Cadmium Due to Application of Ointments with Marjoram Herb Extract (<i<Majoranae herbae extractum</i<) |
author_sort |
Kamil Jurowski |
journal |
International Journal of Environmental Research and Public Health |
journalStr |
International Journal of Environmental Research and Public Health |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Kamil Jurowski Mirosław Krośniak |
container_volume |
20 |
format_se |
Elektronische Aufsätze |
author-letter |
Kamil Jurowski |
doi_str_mv |
10.3390/ijerph20032701 |
author2-role |
verfasserin |
title_sort |
toxicological risk assessment of dermal exposure of patients exposed to lead and cadmium due to application of ointments with marjoram herb extract (<i<majoranae herbae extractum</i<) |
title_auth |
The Toxicological Risk Assessment of Dermal Exposure of Patients Exposed to Lead and Cadmium Due to Application of Ointments with Marjoram Herb Extract (<i<Majoranae herbae extractum</i<) |
abstract |
Potential heavy metal impurities (HMI) in pharmaceuticals/pharmaceutical products/drugs based on plant raw materials (e.g., herbs) are an important problem in the pharmaceutical industry; however, there is a lack of scientific articles on the comprehensive toxicological risk assessment of HMI in ointment applied dermally. To make the appropriate toxicological risk assessment, we consider: (1) the raw results of the levels of lead and cadmium in the ointments (metal per kg of mass), (2) one-time administration of the applied ointment, (3) daily exposure of Pb and Cd in the applied ointments according to the maximum daily dose of applied pharmaceuticals, including transcutaneous penetration, (4) human health risk assessment based on the USEPA model, and 5) the margin of exposure (MoE). The raw results indicated that lead (7.05–101.78 µg/kg) and cadmium (0.32–0.81 µg/kg) were present in all samples. The levels of analyzed HMI (independently of the producer and declared composition) were similar. Pb and Cd contamination associated with daily doses met the standards of the ICH Q3D (R2) guide on elemental impurities in pharmaceuticals, including the cutaneous route of administration. Taking into account the daily amount of lead and cadmium (ointment, ug/day) the results were satisfactory, confirming the safety of marjoram herb extract ointments available in Polish pharmacies according to the ICH guideline Q3D (R2) on elemental impurities. The HQ values obtained for Pb and Cd in all samples were less than 1; therefore, exposure to these HMI would not cause a health risk based on the USEPA model strategy. Furthermore, the obtained values of MoE for Pb and Cd in ointments were above 100, so exposure to these elements would not cause a health risk based on the MoE-based strategy. The original contribution of this work is that this is the first study on the triple approach strategy to evaluate the safety of heavy metal impurities in traditional herbal medicinal products applied dermally in solid form (ointments with marjoram herb extract). The research is novel and has not been previously published; The proposed procedure includes transcutaneous penetration of heavy metal (Pb and Cd) impurities described for the first time in the literature. |
abstractGer |
Potential heavy metal impurities (HMI) in pharmaceuticals/pharmaceutical products/drugs based on plant raw materials (e.g., herbs) are an important problem in the pharmaceutical industry; however, there is a lack of scientific articles on the comprehensive toxicological risk assessment of HMI in ointment applied dermally. To make the appropriate toxicological risk assessment, we consider: (1) the raw results of the levels of lead and cadmium in the ointments (metal per kg of mass), (2) one-time administration of the applied ointment, (3) daily exposure of Pb and Cd in the applied ointments according to the maximum daily dose of applied pharmaceuticals, including transcutaneous penetration, (4) human health risk assessment based on the USEPA model, and 5) the margin of exposure (MoE). The raw results indicated that lead (7.05–101.78 µg/kg) and cadmium (0.32–0.81 µg/kg) were present in all samples. The levels of analyzed HMI (independently of the producer and declared composition) were similar. Pb and Cd contamination associated with daily doses met the standards of the ICH Q3D (R2) guide on elemental impurities in pharmaceuticals, including the cutaneous route of administration. Taking into account the daily amount of lead and cadmium (ointment, ug/day) the results were satisfactory, confirming the safety of marjoram herb extract ointments available in Polish pharmacies according to the ICH guideline Q3D (R2) on elemental impurities. The HQ values obtained for Pb and Cd in all samples were less than 1; therefore, exposure to these HMI would not cause a health risk based on the USEPA model strategy. Furthermore, the obtained values of MoE for Pb and Cd in ointments were above 100, so exposure to these elements would not cause a health risk based on the MoE-based strategy. The original contribution of this work is that this is the first study on the triple approach strategy to evaluate the safety of heavy metal impurities in traditional herbal medicinal products applied dermally in solid form (ointments with marjoram herb extract). The research is novel and has not been previously published; The proposed procedure includes transcutaneous penetration of heavy metal (Pb and Cd) impurities described for the first time in the literature. |
abstract_unstemmed |
Potential heavy metal impurities (HMI) in pharmaceuticals/pharmaceutical products/drugs based on plant raw materials (e.g., herbs) are an important problem in the pharmaceutical industry; however, there is a lack of scientific articles on the comprehensive toxicological risk assessment of HMI in ointment applied dermally. To make the appropriate toxicological risk assessment, we consider: (1) the raw results of the levels of lead and cadmium in the ointments (metal per kg of mass), (2) one-time administration of the applied ointment, (3) daily exposure of Pb and Cd in the applied ointments according to the maximum daily dose of applied pharmaceuticals, including transcutaneous penetration, (4) human health risk assessment based on the USEPA model, and 5) the margin of exposure (MoE). The raw results indicated that lead (7.05–101.78 µg/kg) and cadmium (0.32–0.81 µg/kg) were present in all samples. The levels of analyzed HMI (independently of the producer and declared composition) were similar. Pb and Cd contamination associated with daily doses met the standards of the ICH Q3D (R2) guide on elemental impurities in pharmaceuticals, including the cutaneous route of administration. Taking into account the daily amount of lead and cadmium (ointment, ug/day) the results were satisfactory, confirming the safety of marjoram herb extract ointments available in Polish pharmacies according to the ICH guideline Q3D (R2) on elemental impurities. The HQ values obtained for Pb and Cd in all samples were less than 1; therefore, exposure to these HMI would not cause a health risk based on the USEPA model strategy. Furthermore, the obtained values of MoE for Pb and Cd in ointments were above 100, so exposure to these elements would not cause a health risk based on the MoE-based strategy. The original contribution of this work is that this is the first study on the triple approach strategy to evaluate the safety of heavy metal impurities in traditional herbal medicinal products applied dermally in solid form (ointments with marjoram herb extract). The research is novel and has not been previously published; The proposed procedure includes transcutaneous penetration of heavy metal (Pb and Cd) impurities described for the first time in the literature. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2701, p 2701 |
title_short |
The Toxicological Risk Assessment of Dermal Exposure of Patients Exposed to Lead and Cadmium Due to Application of Ointments with Marjoram Herb Extract (<i<Majoranae herbae extractum</i<) |
url |
https://doi.org/10.3390/ijerph20032701 https://doaj.org/article/1c97e0b6eb584efabbe1071d06f4678f https://www.mdpi.com/1660-4601/20/3/2701 https://doaj.org/toc/1661-7827 https://doaj.org/toc/1660-4601 |
remote_bool |
true |
author2 |
Mirosław Krośniak |
author2Str |
Mirosław Krośniak |
ppnlink |
477992463 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/ijerph20032701 |
up_date |
2024-07-03T15:47:29.534Z |
_version_ |
1803573421180715008 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ080643574</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310192430.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijerph20032701</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ080643574</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1c97e0b6eb584efabbe1071d06f4678f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kamil Jurowski</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Toxicological Risk Assessment of Dermal Exposure of Patients Exposed to Lead and Cadmium Due to Application of Ointments with Marjoram Herb Extract (<i<Majoranae herbae extractum</i<)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Potential heavy metal impurities (HMI) in pharmaceuticals/pharmaceutical products/drugs based on plant raw materials (e.g., herbs) are an important problem in the pharmaceutical industry; however, there is a lack of scientific articles on the comprehensive toxicological risk assessment of HMI in ointment applied dermally. To make the appropriate toxicological risk assessment, we consider: (1) the raw results of the levels of lead and cadmium in the ointments (metal per kg of mass), (2) one-time administration of the applied ointment, (3) daily exposure of Pb and Cd in the applied ointments according to the maximum daily dose of applied pharmaceuticals, including transcutaneous penetration, (4) human health risk assessment based on the USEPA model, and 5) the margin of exposure (MoE). The raw results indicated that lead (7.05–101.78 µg/kg) and cadmium (0.32–0.81 µg/kg) were present in all samples. The levels of analyzed HMI (independently of the producer and declared composition) were similar. Pb and Cd contamination associated with daily doses met the standards of the ICH Q3D (R2) guide on elemental impurities in pharmaceuticals, including the cutaneous route of administration. Taking into account the daily amount of lead and cadmium (ointment, ug/day) the results were satisfactory, confirming the safety of marjoram herb extract ointments available in Polish pharmacies according to the ICH guideline Q3D (R2) on elemental impurities. The HQ values obtained for Pb and Cd in all samples were less than 1; therefore, exposure to these HMI would not cause a health risk based on the USEPA model strategy. Furthermore, the obtained values of MoE for Pb and Cd in ointments were above 100, so exposure to these elements would not cause a health risk based on the MoE-based strategy. The original contribution of this work is that this is the first study on the triple approach strategy to evaluate the safety of heavy metal impurities in traditional herbal medicinal products applied dermally in solid form (ointments with marjoram herb extract). The research is novel and has not been previously published; The proposed procedure includes transcutaneous penetration of heavy metal (Pb and Cd) impurities described for the first time in the literature.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heavy metals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">toxicological risk assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">marjoram herb</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ICH Q3D (R2)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mirosław Krośniak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Environmental Research and Public Health</subfield><subfield code="d">MDPI AG, 2005</subfield><subfield code="g">20(2023), 2701, p 2701</subfield><subfield code="w">(DE-627)477992463</subfield><subfield code="w">(DE-600)2175195-X</subfield><subfield code="x">16604601</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:2701, p 2701</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijerph20032701</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1c97e0b6eb584efabbe1071d06f4678f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1660-4601/20/3/2701</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1661-7827</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1660-4601</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2023</subfield><subfield code="e">2701, p 2701</subfield></datafield></record></collection>
|
score |
7.4008837 |