Simulation and design of fast neutron sensitivity silicon microchannel plate
BackgroundA fast neutron image detector developed by Lanzhou University is composed of polyethylene converter, lead glass microchannel plate and charge coupled device (CCD) camera. In order to further improve the spatial resolution of the detector, a silicon microchannel plate (Si-MCP) is proposed a...
Ausführliche Beschreibung
Autor*in: |
HU Zhiming [verfasserIn] LIU Changqi [verfasserIn] MA Zhanwen [verfasserIn] GUO Zhiqi [verfasserIn] YAO Zeen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Chinesisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: He jishu - Science Press, 2022, 45(2022), 2, Seite 020201-020201 |
---|---|
Übergeordnetes Werk: |
volume:45 ; year:2022 ; number:2 ; pages:020201-020201 |
Links: |
---|
DOI / URN: |
10.11889/j.0253-3219.2022.hjs.45.020201 |
---|
Katalog-ID: |
DOAJ080872077 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ080872077 | ||
003 | DE-627 | ||
005 | 20230310194103.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230310s2022 xx |||||o 00| ||chi c | ||
024 | 7 | |a 10.11889/j.0253-3219.2022.hjs.45.020201 |2 doi | |
035 | |a (DE-627)DOAJ080872077 | ||
035 | |a (DE-599)DOAJc49725bf828d4e76ae21fe7f56f76f34 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a chi | ||
050 | 0 | |a TK9001-9401 | |
100 | 0 | |a HU Zhiming |e verfasserin |4 aut | |
245 | 1 | 0 | |a Simulation and design of fast neutron sensitivity silicon microchannel plate |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a BackgroundA fast neutron image detector developed by Lanzhou University is composed of polyethylene converter, lead glass microchannel plate and charge coupled device (CCD) camera. In order to further improve the spatial resolution of the detector, a silicon microchannel plate (Si-MCP) is proposed as both converter and multiplier.PurposeThis study aims to improve the conversion efficiency and spatial resolution of Si-MCP by simulation design.MethodsFirst of all, Monte Carlo code Geant4 was employed to build the simulation model of a Si-MCP and neutron source. Then, the conversion efficiency and the spatial resolution of the Si-MCP for 14 MeV fast neutrons in various geometrical configurations were simulated. Finally, geometric structure of Si MCP was optimized, and the geometric parameters of Si MCP were determined by analyzing the simulation results.ResultsThe simulation results indicate that the conversion efficiency of the Si-MCP increases with its thickness. The spatial resolution mainly depends on the thickness and bias angle of the plate. When the plate thickness is 1 mm, the micropore diameter is 10 μm, the wall thickness is 10 μm, and the bias angle is 2°, a conversion efficiency of 0.15% with a spatial resolution of 43 μm can be achieved. Double layer Si MCP detection system with V-type superposition structure can be adopted to achieve 0.31% conversion efficiency for 14 MeV fast neutrons.ConclusionsThe calculation results can provide reference for the design of the Si-MCP in fast neutron image detector. | ||
650 | 4 | |a silicon microchannel plate | |
650 | 4 | |a fast neutron imaging | |
650 | 4 | |a conversion efficiency | |
650 | 4 | |a spatial resolution | |
653 | 0 | |a Nuclear engineering. Atomic power | |
700 | 0 | |a LIU Changqi |e verfasserin |4 aut | |
700 | 0 | |a MA Zhanwen |e verfasserin |4 aut | |
700 | 0 | |a GUO Zhiqi |e verfasserin |4 aut | |
700 | 0 | |a YAO Zeen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t He jishu |d Science Press, 2022 |g 45(2022), 2, Seite 020201-020201 |w (DE-627)DOAJ078593506 |x 02533219 |7 nnns |
773 | 1 | 8 | |g volume:45 |g year:2022 |g number:2 |g pages:020201-020201 |
856 | 4 | 0 | |u https://doi.org/10.11889/j.0253-3219.2022.hjs.45.020201 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/c49725bf828d4e76ae21fe7f56f76f34 |z kostenfrei |
856 | 4 | 0 | |u https://www.hjs.sinap.ac.cn/thesisDetails#10.11889/j.0253-3219.2022.hjs.45.020201&lang=zh |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/0253-3219 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
951 | |a AR | ||
952 | |d 45 |j 2022 |e 2 |h 020201-020201 |
author_variant |
h z hz l c lc m z mz g z gz y z yz |
---|---|
matchkey_str |
article:02533219:2022----::iuainndsgofsnurnestvtslc |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TK |
publishDate |
2022 |
allfields |
10.11889/j.0253-3219.2022.hjs.45.020201 doi (DE-627)DOAJ080872077 (DE-599)DOAJc49725bf828d4e76ae21fe7f56f76f34 DE-627 ger DE-627 rakwb chi TK9001-9401 HU Zhiming verfasserin aut Simulation and design of fast neutron sensitivity silicon microchannel plate 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier BackgroundA fast neutron image detector developed by Lanzhou University is composed of polyethylene converter, lead glass microchannel plate and charge coupled device (CCD) camera. In order to further improve the spatial resolution of the detector, a silicon microchannel plate (Si-MCP) is proposed as both converter and multiplier.PurposeThis study aims to improve the conversion efficiency and spatial resolution of Si-MCP by simulation design.MethodsFirst of all, Monte Carlo code Geant4 was employed to build the simulation model of a Si-MCP and neutron source. Then, the conversion efficiency and the spatial resolution of the Si-MCP for 14 MeV fast neutrons in various geometrical configurations were simulated. Finally, geometric structure of Si MCP was optimized, and the geometric parameters of Si MCP were determined by analyzing the simulation results.ResultsThe simulation results indicate that the conversion efficiency of the Si-MCP increases with its thickness. The spatial resolution mainly depends on the thickness and bias angle of the plate. When the plate thickness is 1 mm, the micropore diameter is 10 μm, the wall thickness is 10 μm, and the bias angle is 2°, a conversion efficiency of 0.15% with a spatial resolution of 43 μm can be achieved. Double layer Si MCP detection system with V-type superposition structure can be adopted to achieve 0.31% conversion efficiency for 14 MeV fast neutrons.ConclusionsThe calculation results can provide reference for the design of the Si-MCP in fast neutron image detector. silicon microchannel plate fast neutron imaging conversion efficiency spatial resolution Nuclear engineering. Atomic power LIU Changqi verfasserin aut MA Zhanwen verfasserin aut GUO Zhiqi verfasserin aut YAO Zeen verfasserin aut In He jishu Science Press, 2022 45(2022), 2, Seite 020201-020201 (DE-627)DOAJ078593506 02533219 nnns volume:45 year:2022 number:2 pages:020201-020201 https://doi.org/10.11889/j.0253-3219.2022.hjs.45.020201 kostenfrei https://doaj.org/article/c49725bf828d4e76ae21fe7f56f76f34 kostenfrei https://www.hjs.sinap.ac.cn/thesisDetails#10.11889/j.0253-3219.2022.hjs.45.020201&lang=zh kostenfrei https://doaj.org/toc/0253-3219 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 45 2022 2 020201-020201 |
spelling |
10.11889/j.0253-3219.2022.hjs.45.020201 doi (DE-627)DOAJ080872077 (DE-599)DOAJc49725bf828d4e76ae21fe7f56f76f34 DE-627 ger DE-627 rakwb chi TK9001-9401 HU Zhiming verfasserin aut Simulation and design of fast neutron sensitivity silicon microchannel plate 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier BackgroundA fast neutron image detector developed by Lanzhou University is composed of polyethylene converter, lead glass microchannel plate and charge coupled device (CCD) camera. In order to further improve the spatial resolution of the detector, a silicon microchannel plate (Si-MCP) is proposed as both converter and multiplier.PurposeThis study aims to improve the conversion efficiency and spatial resolution of Si-MCP by simulation design.MethodsFirst of all, Monte Carlo code Geant4 was employed to build the simulation model of a Si-MCP and neutron source. Then, the conversion efficiency and the spatial resolution of the Si-MCP for 14 MeV fast neutrons in various geometrical configurations were simulated. Finally, geometric structure of Si MCP was optimized, and the geometric parameters of Si MCP were determined by analyzing the simulation results.ResultsThe simulation results indicate that the conversion efficiency of the Si-MCP increases with its thickness. The spatial resolution mainly depends on the thickness and bias angle of the plate. When the plate thickness is 1 mm, the micropore diameter is 10 μm, the wall thickness is 10 μm, and the bias angle is 2°, a conversion efficiency of 0.15% with a spatial resolution of 43 μm can be achieved. Double layer Si MCP detection system with V-type superposition structure can be adopted to achieve 0.31% conversion efficiency for 14 MeV fast neutrons.ConclusionsThe calculation results can provide reference for the design of the Si-MCP in fast neutron image detector. silicon microchannel plate fast neutron imaging conversion efficiency spatial resolution Nuclear engineering. Atomic power LIU Changqi verfasserin aut MA Zhanwen verfasserin aut GUO Zhiqi verfasserin aut YAO Zeen verfasserin aut In He jishu Science Press, 2022 45(2022), 2, Seite 020201-020201 (DE-627)DOAJ078593506 02533219 nnns volume:45 year:2022 number:2 pages:020201-020201 https://doi.org/10.11889/j.0253-3219.2022.hjs.45.020201 kostenfrei https://doaj.org/article/c49725bf828d4e76ae21fe7f56f76f34 kostenfrei https://www.hjs.sinap.ac.cn/thesisDetails#10.11889/j.0253-3219.2022.hjs.45.020201&lang=zh kostenfrei https://doaj.org/toc/0253-3219 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 45 2022 2 020201-020201 |
allfields_unstemmed |
10.11889/j.0253-3219.2022.hjs.45.020201 doi (DE-627)DOAJ080872077 (DE-599)DOAJc49725bf828d4e76ae21fe7f56f76f34 DE-627 ger DE-627 rakwb chi TK9001-9401 HU Zhiming verfasserin aut Simulation and design of fast neutron sensitivity silicon microchannel plate 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier BackgroundA fast neutron image detector developed by Lanzhou University is composed of polyethylene converter, lead glass microchannel plate and charge coupled device (CCD) camera. In order to further improve the spatial resolution of the detector, a silicon microchannel plate (Si-MCP) is proposed as both converter and multiplier.PurposeThis study aims to improve the conversion efficiency and spatial resolution of Si-MCP by simulation design.MethodsFirst of all, Monte Carlo code Geant4 was employed to build the simulation model of a Si-MCP and neutron source. Then, the conversion efficiency and the spatial resolution of the Si-MCP for 14 MeV fast neutrons in various geometrical configurations were simulated. Finally, geometric structure of Si MCP was optimized, and the geometric parameters of Si MCP were determined by analyzing the simulation results.ResultsThe simulation results indicate that the conversion efficiency of the Si-MCP increases with its thickness. The spatial resolution mainly depends on the thickness and bias angle of the plate. When the plate thickness is 1 mm, the micropore diameter is 10 μm, the wall thickness is 10 μm, and the bias angle is 2°, a conversion efficiency of 0.15% with a spatial resolution of 43 μm can be achieved. Double layer Si MCP detection system with V-type superposition structure can be adopted to achieve 0.31% conversion efficiency for 14 MeV fast neutrons.ConclusionsThe calculation results can provide reference for the design of the Si-MCP in fast neutron image detector. silicon microchannel plate fast neutron imaging conversion efficiency spatial resolution Nuclear engineering. Atomic power LIU Changqi verfasserin aut MA Zhanwen verfasserin aut GUO Zhiqi verfasserin aut YAO Zeen verfasserin aut In He jishu Science Press, 2022 45(2022), 2, Seite 020201-020201 (DE-627)DOAJ078593506 02533219 nnns volume:45 year:2022 number:2 pages:020201-020201 https://doi.org/10.11889/j.0253-3219.2022.hjs.45.020201 kostenfrei https://doaj.org/article/c49725bf828d4e76ae21fe7f56f76f34 kostenfrei https://www.hjs.sinap.ac.cn/thesisDetails#10.11889/j.0253-3219.2022.hjs.45.020201&lang=zh kostenfrei https://doaj.org/toc/0253-3219 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 45 2022 2 020201-020201 |
allfieldsGer |
10.11889/j.0253-3219.2022.hjs.45.020201 doi (DE-627)DOAJ080872077 (DE-599)DOAJc49725bf828d4e76ae21fe7f56f76f34 DE-627 ger DE-627 rakwb chi TK9001-9401 HU Zhiming verfasserin aut Simulation and design of fast neutron sensitivity silicon microchannel plate 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier BackgroundA fast neutron image detector developed by Lanzhou University is composed of polyethylene converter, lead glass microchannel plate and charge coupled device (CCD) camera. In order to further improve the spatial resolution of the detector, a silicon microchannel plate (Si-MCP) is proposed as both converter and multiplier.PurposeThis study aims to improve the conversion efficiency and spatial resolution of Si-MCP by simulation design.MethodsFirst of all, Monte Carlo code Geant4 was employed to build the simulation model of a Si-MCP and neutron source. Then, the conversion efficiency and the spatial resolution of the Si-MCP for 14 MeV fast neutrons in various geometrical configurations were simulated. Finally, geometric structure of Si MCP was optimized, and the geometric parameters of Si MCP were determined by analyzing the simulation results.ResultsThe simulation results indicate that the conversion efficiency of the Si-MCP increases with its thickness. The spatial resolution mainly depends on the thickness and bias angle of the plate. When the plate thickness is 1 mm, the micropore diameter is 10 μm, the wall thickness is 10 μm, and the bias angle is 2°, a conversion efficiency of 0.15% with a spatial resolution of 43 μm can be achieved. Double layer Si MCP detection system with V-type superposition structure can be adopted to achieve 0.31% conversion efficiency for 14 MeV fast neutrons.ConclusionsThe calculation results can provide reference for the design of the Si-MCP in fast neutron image detector. silicon microchannel plate fast neutron imaging conversion efficiency spatial resolution Nuclear engineering. Atomic power LIU Changqi verfasserin aut MA Zhanwen verfasserin aut GUO Zhiqi verfasserin aut YAO Zeen verfasserin aut In He jishu Science Press, 2022 45(2022), 2, Seite 020201-020201 (DE-627)DOAJ078593506 02533219 nnns volume:45 year:2022 number:2 pages:020201-020201 https://doi.org/10.11889/j.0253-3219.2022.hjs.45.020201 kostenfrei https://doaj.org/article/c49725bf828d4e76ae21fe7f56f76f34 kostenfrei https://www.hjs.sinap.ac.cn/thesisDetails#10.11889/j.0253-3219.2022.hjs.45.020201&lang=zh kostenfrei https://doaj.org/toc/0253-3219 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 45 2022 2 020201-020201 |
allfieldsSound |
10.11889/j.0253-3219.2022.hjs.45.020201 doi (DE-627)DOAJ080872077 (DE-599)DOAJc49725bf828d4e76ae21fe7f56f76f34 DE-627 ger DE-627 rakwb chi TK9001-9401 HU Zhiming verfasserin aut Simulation and design of fast neutron sensitivity silicon microchannel plate 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier BackgroundA fast neutron image detector developed by Lanzhou University is composed of polyethylene converter, lead glass microchannel plate and charge coupled device (CCD) camera. In order to further improve the spatial resolution of the detector, a silicon microchannel plate (Si-MCP) is proposed as both converter and multiplier.PurposeThis study aims to improve the conversion efficiency and spatial resolution of Si-MCP by simulation design.MethodsFirst of all, Monte Carlo code Geant4 was employed to build the simulation model of a Si-MCP and neutron source. Then, the conversion efficiency and the spatial resolution of the Si-MCP for 14 MeV fast neutrons in various geometrical configurations were simulated. Finally, geometric structure of Si MCP was optimized, and the geometric parameters of Si MCP were determined by analyzing the simulation results.ResultsThe simulation results indicate that the conversion efficiency of the Si-MCP increases with its thickness. The spatial resolution mainly depends on the thickness and bias angle of the plate. When the plate thickness is 1 mm, the micropore diameter is 10 μm, the wall thickness is 10 μm, and the bias angle is 2°, a conversion efficiency of 0.15% with a spatial resolution of 43 μm can be achieved. Double layer Si MCP detection system with V-type superposition structure can be adopted to achieve 0.31% conversion efficiency for 14 MeV fast neutrons.ConclusionsThe calculation results can provide reference for the design of the Si-MCP in fast neutron image detector. silicon microchannel plate fast neutron imaging conversion efficiency spatial resolution Nuclear engineering. Atomic power LIU Changqi verfasserin aut MA Zhanwen verfasserin aut GUO Zhiqi verfasserin aut YAO Zeen verfasserin aut In He jishu Science Press, 2022 45(2022), 2, Seite 020201-020201 (DE-627)DOAJ078593506 02533219 nnns volume:45 year:2022 number:2 pages:020201-020201 https://doi.org/10.11889/j.0253-3219.2022.hjs.45.020201 kostenfrei https://doaj.org/article/c49725bf828d4e76ae21fe7f56f76f34 kostenfrei https://www.hjs.sinap.ac.cn/thesisDetails#10.11889/j.0253-3219.2022.hjs.45.020201&lang=zh kostenfrei https://doaj.org/toc/0253-3219 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 45 2022 2 020201-020201 |
language |
Chinese |
source |
In He jishu 45(2022), 2, Seite 020201-020201 volume:45 year:2022 number:2 pages:020201-020201 |
sourceStr |
In He jishu 45(2022), 2, Seite 020201-020201 volume:45 year:2022 number:2 pages:020201-020201 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
silicon microchannel plate fast neutron imaging conversion efficiency spatial resolution Nuclear engineering. Atomic power |
isfreeaccess_bool |
true |
container_title |
He jishu |
authorswithroles_txt_mv |
HU Zhiming @@aut@@ LIU Changqi @@aut@@ MA Zhanwen @@aut@@ GUO Zhiqi @@aut@@ YAO Zeen @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
DOAJ078593506 |
id |
DOAJ080872077 |
language_de |
chinesisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ080872077</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310194103.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2022 xx |||||o 00| ||chi c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.11889/j.0253-3219.2022.hjs.45.020201</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ080872077</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc49725bf828d4e76ae21fe7f56f76f34</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">chi</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK9001-9401</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">HU Zhiming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Simulation and design of fast neutron sensitivity silicon microchannel plate</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">BackgroundA fast neutron image detector developed by Lanzhou University is composed of polyethylene converter, lead glass microchannel plate and charge coupled device (CCD) camera. In order to further improve the spatial resolution of the detector, a silicon microchannel plate (Si-MCP) is proposed as both converter and multiplier.PurposeThis study aims to improve the conversion efficiency and spatial resolution of Si-MCP by simulation design.MethodsFirst of all, Monte Carlo code Geant4 was employed to build the simulation model of a Si-MCP and neutron source. Then, the conversion efficiency and the spatial resolution of the Si-MCP for 14 MeV fast neutrons in various geometrical configurations were simulated. Finally, geometric structure of Si MCP was optimized, and the geometric parameters of Si MCP were determined by analyzing the simulation results.ResultsThe simulation results indicate that the conversion efficiency of the Si-MCP increases with its thickness. The spatial resolution mainly depends on the thickness and bias angle of the plate. When the plate thickness is 1 mm, the micropore diameter is 10 μm, the wall thickness is 10 μm, and the bias angle is 2°, a conversion efficiency of 0.15% with a spatial resolution of 43 μm can be achieved. Double layer Si MCP detection system with V-type superposition structure can be adopted to achieve 0.31% conversion efficiency for 14 MeV fast neutrons.ConclusionsThe calculation results can provide reference for the design of the Si-MCP in fast neutron image detector.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">silicon microchannel plate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fast neutron imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">conversion efficiency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spatial resolution</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Nuclear engineering. Atomic power</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">LIU Changqi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">MA Zhanwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">GUO Zhiqi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">YAO Zeen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">He jishu</subfield><subfield code="d">Science Press, 2022</subfield><subfield code="g">45(2022), 2, Seite 020201-020201</subfield><subfield code="w">(DE-627)DOAJ078593506</subfield><subfield code="x">02533219</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:45</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:020201-020201</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.11889/j.0253-3219.2022.hjs.45.020201</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c49725bf828d4e76ae21fe7f56f76f34</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.hjs.sinap.ac.cn/thesisDetails#10.11889/j.0253-3219.2022.hjs.45.020201&lang=zh</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0253-3219</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">45</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="h">020201-020201</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
HU Zhiming |
spellingShingle |
HU Zhiming misc TK9001-9401 misc silicon microchannel plate misc fast neutron imaging misc conversion efficiency misc spatial resolution misc Nuclear engineering. Atomic power Simulation and design of fast neutron sensitivity silicon microchannel plate |
authorStr |
HU Zhiming |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)DOAJ078593506 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK9001-9401 |
illustrated |
Not Illustrated |
issn |
02533219 |
topic_title |
TK9001-9401 Simulation and design of fast neutron sensitivity silicon microchannel plate silicon microchannel plate fast neutron imaging conversion efficiency spatial resolution |
topic |
misc TK9001-9401 misc silicon microchannel plate misc fast neutron imaging misc conversion efficiency misc spatial resolution misc Nuclear engineering. Atomic power |
topic_unstemmed |
misc TK9001-9401 misc silicon microchannel plate misc fast neutron imaging misc conversion efficiency misc spatial resolution misc Nuclear engineering. Atomic power |
topic_browse |
misc TK9001-9401 misc silicon microchannel plate misc fast neutron imaging misc conversion efficiency misc spatial resolution misc Nuclear engineering. Atomic power |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
He jishu |
hierarchy_parent_id |
DOAJ078593506 |
hierarchy_top_title |
He jishu |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)DOAJ078593506 |
title |
Simulation and design of fast neutron sensitivity silicon microchannel plate |
ctrlnum |
(DE-627)DOAJ080872077 (DE-599)DOAJc49725bf828d4e76ae21fe7f56f76f34 |
title_full |
Simulation and design of fast neutron sensitivity silicon microchannel plate |
author_sort |
HU Zhiming |
journal |
He jishu |
journalStr |
He jishu |
callnumber-first-code |
T |
lang_code |
chi |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
020201 |
author_browse |
HU Zhiming LIU Changqi MA Zhanwen GUO Zhiqi YAO Zeen |
container_volume |
45 |
class |
TK9001-9401 |
format_se |
Elektronische Aufsätze |
author-letter |
HU Zhiming |
doi_str_mv |
10.11889/j.0253-3219.2022.hjs.45.020201 |
author2-role |
verfasserin |
title_sort |
simulation and design of fast neutron sensitivity silicon microchannel plate |
callnumber |
TK9001-9401 |
title_auth |
Simulation and design of fast neutron sensitivity silicon microchannel plate |
abstract |
BackgroundA fast neutron image detector developed by Lanzhou University is composed of polyethylene converter, lead glass microchannel plate and charge coupled device (CCD) camera. In order to further improve the spatial resolution of the detector, a silicon microchannel plate (Si-MCP) is proposed as both converter and multiplier.PurposeThis study aims to improve the conversion efficiency and spatial resolution of Si-MCP by simulation design.MethodsFirst of all, Monte Carlo code Geant4 was employed to build the simulation model of a Si-MCP and neutron source. Then, the conversion efficiency and the spatial resolution of the Si-MCP for 14 MeV fast neutrons in various geometrical configurations were simulated. Finally, geometric structure of Si MCP was optimized, and the geometric parameters of Si MCP were determined by analyzing the simulation results.ResultsThe simulation results indicate that the conversion efficiency of the Si-MCP increases with its thickness. The spatial resolution mainly depends on the thickness and bias angle of the plate. When the plate thickness is 1 mm, the micropore diameter is 10 μm, the wall thickness is 10 μm, and the bias angle is 2°, a conversion efficiency of 0.15% with a spatial resolution of 43 μm can be achieved. Double layer Si MCP detection system with V-type superposition structure can be adopted to achieve 0.31% conversion efficiency for 14 MeV fast neutrons.ConclusionsThe calculation results can provide reference for the design of the Si-MCP in fast neutron image detector. |
abstractGer |
BackgroundA fast neutron image detector developed by Lanzhou University is composed of polyethylene converter, lead glass microchannel plate and charge coupled device (CCD) camera. In order to further improve the spatial resolution of the detector, a silicon microchannel plate (Si-MCP) is proposed as both converter and multiplier.PurposeThis study aims to improve the conversion efficiency and spatial resolution of Si-MCP by simulation design.MethodsFirst of all, Monte Carlo code Geant4 was employed to build the simulation model of a Si-MCP and neutron source. Then, the conversion efficiency and the spatial resolution of the Si-MCP for 14 MeV fast neutrons in various geometrical configurations were simulated. Finally, geometric structure of Si MCP was optimized, and the geometric parameters of Si MCP were determined by analyzing the simulation results.ResultsThe simulation results indicate that the conversion efficiency of the Si-MCP increases with its thickness. The spatial resolution mainly depends on the thickness and bias angle of the plate. When the plate thickness is 1 mm, the micropore diameter is 10 μm, the wall thickness is 10 μm, and the bias angle is 2°, a conversion efficiency of 0.15% with a spatial resolution of 43 μm can be achieved. Double layer Si MCP detection system with V-type superposition structure can be adopted to achieve 0.31% conversion efficiency for 14 MeV fast neutrons.ConclusionsThe calculation results can provide reference for the design of the Si-MCP in fast neutron image detector. |
abstract_unstemmed |
BackgroundA fast neutron image detector developed by Lanzhou University is composed of polyethylene converter, lead glass microchannel plate and charge coupled device (CCD) camera. In order to further improve the spatial resolution of the detector, a silicon microchannel plate (Si-MCP) is proposed as both converter and multiplier.PurposeThis study aims to improve the conversion efficiency and spatial resolution of Si-MCP by simulation design.MethodsFirst of all, Monte Carlo code Geant4 was employed to build the simulation model of a Si-MCP and neutron source. Then, the conversion efficiency and the spatial resolution of the Si-MCP for 14 MeV fast neutrons in various geometrical configurations were simulated. Finally, geometric structure of Si MCP was optimized, and the geometric parameters of Si MCP were determined by analyzing the simulation results.ResultsThe simulation results indicate that the conversion efficiency of the Si-MCP increases with its thickness. The spatial resolution mainly depends on the thickness and bias angle of the plate. When the plate thickness is 1 mm, the micropore diameter is 10 μm, the wall thickness is 10 μm, and the bias angle is 2°, a conversion efficiency of 0.15% with a spatial resolution of 43 μm can be achieved. Double layer Si MCP detection system with V-type superposition structure can be adopted to achieve 0.31% conversion efficiency for 14 MeV fast neutrons.ConclusionsThe calculation results can provide reference for the design of the Si-MCP in fast neutron image detector. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ |
container_issue |
2 |
title_short |
Simulation and design of fast neutron sensitivity silicon microchannel plate |
url |
https://doi.org/10.11889/j.0253-3219.2022.hjs.45.020201 https://doaj.org/article/c49725bf828d4e76ae21fe7f56f76f34 https://www.hjs.sinap.ac.cn/thesisDetails#10.11889/j.0253-3219.2022.hjs.45.020201&lang=zh https://doaj.org/toc/0253-3219 |
remote_bool |
true |
author2 |
LIU Changqi MA Zhanwen GUO Zhiqi YAO Zeen |
author2Str |
LIU Changqi MA Zhanwen GUO Zhiqi YAO Zeen |
ppnlink |
DOAJ078593506 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.11889/j.0253-3219.2022.hjs.45.020201 |
callnumber-a |
TK9001-9401 |
up_date |
2024-07-03T17:00:04.984Z |
_version_ |
1803577988203151360 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ080872077</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310194103.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2022 xx |||||o 00| ||chi c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.11889/j.0253-3219.2022.hjs.45.020201</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ080872077</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc49725bf828d4e76ae21fe7f56f76f34</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">chi</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK9001-9401</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">HU Zhiming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Simulation and design of fast neutron sensitivity silicon microchannel plate</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">BackgroundA fast neutron image detector developed by Lanzhou University is composed of polyethylene converter, lead glass microchannel plate and charge coupled device (CCD) camera. In order to further improve the spatial resolution of the detector, a silicon microchannel plate (Si-MCP) is proposed as both converter and multiplier.PurposeThis study aims to improve the conversion efficiency and spatial resolution of Si-MCP by simulation design.MethodsFirst of all, Monte Carlo code Geant4 was employed to build the simulation model of a Si-MCP and neutron source. Then, the conversion efficiency and the spatial resolution of the Si-MCP for 14 MeV fast neutrons in various geometrical configurations were simulated. Finally, geometric structure of Si MCP was optimized, and the geometric parameters of Si MCP were determined by analyzing the simulation results.ResultsThe simulation results indicate that the conversion efficiency of the Si-MCP increases with its thickness. The spatial resolution mainly depends on the thickness and bias angle of the plate. When the plate thickness is 1 mm, the micropore diameter is 10 μm, the wall thickness is 10 μm, and the bias angle is 2°, a conversion efficiency of 0.15% with a spatial resolution of 43 μm can be achieved. Double layer Si MCP detection system with V-type superposition structure can be adopted to achieve 0.31% conversion efficiency for 14 MeV fast neutrons.ConclusionsThe calculation results can provide reference for the design of the Si-MCP in fast neutron image detector.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">silicon microchannel plate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fast neutron imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">conversion efficiency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spatial resolution</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Nuclear engineering. Atomic power</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">LIU Changqi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">MA Zhanwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">GUO Zhiqi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">YAO Zeen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">He jishu</subfield><subfield code="d">Science Press, 2022</subfield><subfield code="g">45(2022), 2, Seite 020201-020201</subfield><subfield code="w">(DE-627)DOAJ078593506</subfield><subfield code="x">02533219</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:45</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:020201-020201</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.11889/j.0253-3219.2022.hjs.45.020201</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c49725bf828d4e76ae21fe7f56f76f34</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.hjs.sinap.ac.cn/thesisDetails#10.11889/j.0253-3219.2022.hjs.45.020201&lang=zh</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/0253-3219</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">45</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="h">020201-020201</subfield></datafield></record></collection>
|
score |
7.401991 |