Computer-aided diagnosis of primary membranous nephropathy using expert system
Abstract Background The diagnosis of primary membranous nephropathy (PMN) often depends on invasive renal biopsy, and the diagnosis based on clinical manifestations and target antigens may not be completely reliable as it could be affected by uncertain factors. Moreover, different experts could even...
Ausführliche Beschreibung
Autor*in: |
Jie Gao [verfasserIn] Siyang Wang [verfasserIn] Liang Xu [verfasserIn] Jinyan Wang [verfasserIn] Jiao Guo [verfasserIn] Haiping Wang [verfasserIn] Jing Sun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: BioMedical Engineering OnLine - BMC, 2003, 22(2023), 1, Seite 24 |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2023 ; number:1 ; pages:24 |
Links: |
---|
DOI / URN: |
10.1186/s12938-023-01063-5 |
---|
Katalog-ID: |
DOAJ080968201 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ080968201 | ||
003 | DE-627 | ||
005 | 20230310194742.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230310s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12938-023-01063-5 |2 doi | |
035 | |a (DE-627)DOAJ080968201 | ||
035 | |a (DE-599)DOAJ2817f039ad3e4872babf8f4936191a3d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a R855-855.5 | |
100 | 0 | |a Jie Gao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Computer-aided diagnosis of primary membranous nephropathy using expert system |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Background The diagnosis of primary membranous nephropathy (PMN) often depends on invasive renal biopsy, and the diagnosis based on clinical manifestations and target antigens may not be completely reliable as it could be affected by uncertain factors. Moreover, different experts could even have different diagnosis results due to their different experiences, which could further impact the reliability of the diagnosis. Therefore, how to properly integrate the knowledge of different experts to provide more reliable and comprehensive PMN diagnosis has become an urgent issue. Methods This paper develops a belief rule-based system for PMN diagnosis. The belief rule base is constructed based on the knowledge of the experts, with 9 biochemical indicators selected as the input variables. The belief rule-based system is developed of three layers: (1) input layer; (2) belief rule base layer; and (3) output layer, where 9 biochemical indicators are selected as the input variables and the diagnosis result is provided as the conclusion. The belief rule base layer is constructed based on the knowledge of the experts. The final validation was held with gold pattern clinical cases, i.e., with known and clinically confirmed diagnoses. Results 134 patients are used in this study, and the proposed method is defined by its sensitivity, specificity, accuracy and area under curve (AUC), which are 98.0%, 96.9%, 97.8% and 0.93, respectively. The results of this study present a novel and effective way for PMN diagnosis without the requirement of renal biopsy. Conclusions Through analysis of the diagnosis results and comparisons with other methods, it can be concluded that the developed system could help diagnose PMN based on biochemical indicators with relatively high accuracy. Graphical Abstract | ||
650 | 4 | |a Expert system | |
650 | 4 | |a Belief rule-based system | |
650 | 4 | |a Primary membranous nephropathy | |
650 | 4 | |a Membranous nephropathy | |
653 | 0 | |a Medical technology | |
700 | 0 | |a Siyang Wang |e verfasserin |4 aut | |
700 | 0 | |a Liang Xu |e verfasserin |4 aut | |
700 | 0 | |a Jinyan Wang |e verfasserin |4 aut | |
700 | 0 | |a Jiao Guo |e verfasserin |4 aut | |
700 | 0 | |a Haiping Wang |e verfasserin |4 aut | |
700 | 0 | |a Jing Sun |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t BioMedical Engineering OnLine |d BMC, 2003 |g 22(2023), 1, Seite 24 |w (DE-627)35210547X |w (DE-600)2084374-4 |x 1475925X |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2023 |g number:1 |g pages:24 |
856 | 4 | 0 | |u https://doi.org/10.1186/s12938-023-01063-5 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/2817f039ad3e4872babf8f4936191a3d |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1186/s12938-023-01063-5 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1475-925X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 22 |j 2023 |e 1 |h 24 |
author_variant |
j g jg s w sw l x lx j w jw j g jg h w hw j s js |
---|---|
matchkey_str |
article:1475925X:2023----::optriedanssfrmrmmrnunprpt |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
R |
publishDate |
2023 |
allfields |
10.1186/s12938-023-01063-5 doi (DE-627)DOAJ080968201 (DE-599)DOAJ2817f039ad3e4872babf8f4936191a3d DE-627 ger DE-627 rakwb eng R855-855.5 Jie Gao verfasserin aut Computer-aided diagnosis of primary membranous nephropathy using expert system 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background The diagnosis of primary membranous nephropathy (PMN) often depends on invasive renal biopsy, and the diagnosis based on clinical manifestations and target antigens may not be completely reliable as it could be affected by uncertain factors. Moreover, different experts could even have different diagnosis results due to their different experiences, which could further impact the reliability of the diagnosis. Therefore, how to properly integrate the knowledge of different experts to provide more reliable and comprehensive PMN diagnosis has become an urgent issue. Methods This paper develops a belief rule-based system for PMN diagnosis. The belief rule base is constructed based on the knowledge of the experts, with 9 biochemical indicators selected as the input variables. The belief rule-based system is developed of three layers: (1) input layer; (2) belief rule base layer; and (3) output layer, where 9 biochemical indicators are selected as the input variables and the diagnosis result is provided as the conclusion. The belief rule base layer is constructed based on the knowledge of the experts. The final validation was held with gold pattern clinical cases, i.e., with known and clinically confirmed diagnoses. Results 134 patients are used in this study, and the proposed method is defined by its sensitivity, specificity, accuracy and area under curve (AUC), which are 98.0%, 96.9%, 97.8% and 0.93, respectively. The results of this study present a novel and effective way for PMN diagnosis without the requirement of renal biopsy. Conclusions Through analysis of the diagnosis results and comparisons with other methods, it can be concluded that the developed system could help diagnose PMN based on biochemical indicators with relatively high accuracy. Graphical Abstract Expert system Belief rule-based system Primary membranous nephropathy Membranous nephropathy Medical technology Siyang Wang verfasserin aut Liang Xu verfasserin aut Jinyan Wang verfasserin aut Jiao Guo verfasserin aut Haiping Wang verfasserin aut Jing Sun verfasserin aut In BioMedical Engineering OnLine BMC, 2003 22(2023), 1, Seite 24 (DE-627)35210547X (DE-600)2084374-4 1475925X nnns volume:22 year:2023 number:1 pages:24 https://doi.org/10.1186/s12938-023-01063-5 kostenfrei https://doaj.org/article/2817f039ad3e4872babf8f4936191a3d kostenfrei https://doi.org/10.1186/s12938-023-01063-5 kostenfrei https://doaj.org/toc/1475-925X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2023 1 24 |
spelling |
10.1186/s12938-023-01063-5 doi (DE-627)DOAJ080968201 (DE-599)DOAJ2817f039ad3e4872babf8f4936191a3d DE-627 ger DE-627 rakwb eng R855-855.5 Jie Gao verfasserin aut Computer-aided diagnosis of primary membranous nephropathy using expert system 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background The diagnosis of primary membranous nephropathy (PMN) often depends on invasive renal biopsy, and the diagnosis based on clinical manifestations and target antigens may not be completely reliable as it could be affected by uncertain factors. Moreover, different experts could even have different diagnosis results due to their different experiences, which could further impact the reliability of the diagnosis. Therefore, how to properly integrate the knowledge of different experts to provide more reliable and comprehensive PMN diagnosis has become an urgent issue. Methods This paper develops a belief rule-based system for PMN diagnosis. The belief rule base is constructed based on the knowledge of the experts, with 9 biochemical indicators selected as the input variables. The belief rule-based system is developed of three layers: (1) input layer; (2) belief rule base layer; and (3) output layer, where 9 biochemical indicators are selected as the input variables and the diagnosis result is provided as the conclusion. The belief rule base layer is constructed based on the knowledge of the experts. The final validation was held with gold pattern clinical cases, i.e., with known and clinically confirmed diagnoses. Results 134 patients are used in this study, and the proposed method is defined by its sensitivity, specificity, accuracy and area under curve (AUC), which are 98.0%, 96.9%, 97.8% and 0.93, respectively. The results of this study present a novel and effective way for PMN diagnosis without the requirement of renal biopsy. Conclusions Through analysis of the diagnosis results and comparisons with other methods, it can be concluded that the developed system could help diagnose PMN based on biochemical indicators with relatively high accuracy. Graphical Abstract Expert system Belief rule-based system Primary membranous nephropathy Membranous nephropathy Medical technology Siyang Wang verfasserin aut Liang Xu verfasserin aut Jinyan Wang verfasserin aut Jiao Guo verfasserin aut Haiping Wang verfasserin aut Jing Sun verfasserin aut In BioMedical Engineering OnLine BMC, 2003 22(2023), 1, Seite 24 (DE-627)35210547X (DE-600)2084374-4 1475925X nnns volume:22 year:2023 number:1 pages:24 https://doi.org/10.1186/s12938-023-01063-5 kostenfrei https://doaj.org/article/2817f039ad3e4872babf8f4936191a3d kostenfrei https://doi.org/10.1186/s12938-023-01063-5 kostenfrei https://doaj.org/toc/1475-925X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2023 1 24 |
allfields_unstemmed |
10.1186/s12938-023-01063-5 doi (DE-627)DOAJ080968201 (DE-599)DOAJ2817f039ad3e4872babf8f4936191a3d DE-627 ger DE-627 rakwb eng R855-855.5 Jie Gao verfasserin aut Computer-aided diagnosis of primary membranous nephropathy using expert system 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background The diagnosis of primary membranous nephropathy (PMN) often depends on invasive renal biopsy, and the diagnosis based on clinical manifestations and target antigens may not be completely reliable as it could be affected by uncertain factors. Moreover, different experts could even have different diagnosis results due to their different experiences, which could further impact the reliability of the diagnosis. Therefore, how to properly integrate the knowledge of different experts to provide more reliable and comprehensive PMN diagnosis has become an urgent issue. Methods This paper develops a belief rule-based system for PMN diagnosis. The belief rule base is constructed based on the knowledge of the experts, with 9 biochemical indicators selected as the input variables. The belief rule-based system is developed of three layers: (1) input layer; (2) belief rule base layer; and (3) output layer, where 9 biochemical indicators are selected as the input variables and the diagnosis result is provided as the conclusion. The belief rule base layer is constructed based on the knowledge of the experts. The final validation was held with gold pattern clinical cases, i.e., with known and clinically confirmed diagnoses. Results 134 patients are used in this study, and the proposed method is defined by its sensitivity, specificity, accuracy and area under curve (AUC), which are 98.0%, 96.9%, 97.8% and 0.93, respectively. The results of this study present a novel and effective way for PMN diagnosis without the requirement of renal biopsy. Conclusions Through analysis of the diagnosis results and comparisons with other methods, it can be concluded that the developed system could help diagnose PMN based on biochemical indicators with relatively high accuracy. Graphical Abstract Expert system Belief rule-based system Primary membranous nephropathy Membranous nephropathy Medical technology Siyang Wang verfasserin aut Liang Xu verfasserin aut Jinyan Wang verfasserin aut Jiao Guo verfasserin aut Haiping Wang verfasserin aut Jing Sun verfasserin aut In BioMedical Engineering OnLine BMC, 2003 22(2023), 1, Seite 24 (DE-627)35210547X (DE-600)2084374-4 1475925X nnns volume:22 year:2023 number:1 pages:24 https://doi.org/10.1186/s12938-023-01063-5 kostenfrei https://doaj.org/article/2817f039ad3e4872babf8f4936191a3d kostenfrei https://doi.org/10.1186/s12938-023-01063-5 kostenfrei https://doaj.org/toc/1475-925X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2023 1 24 |
allfieldsGer |
10.1186/s12938-023-01063-5 doi (DE-627)DOAJ080968201 (DE-599)DOAJ2817f039ad3e4872babf8f4936191a3d DE-627 ger DE-627 rakwb eng R855-855.5 Jie Gao verfasserin aut Computer-aided diagnosis of primary membranous nephropathy using expert system 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background The diagnosis of primary membranous nephropathy (PMN) often depends on invasive renal biopsy, and the diagnosis based on clinical manifestations and target antigens may not be completely reliable as it could be affected by uncertain factors. Moreover, different experts could even have different diagnosis results due to their different experiences, which could further impact the reliability of the diagnosis. Therefore, how to properly integrate the knowledge of different experts to provide more reliable and comprehensive PMN diagnosis has become an urgent issue. Methods This paper develops a belief rule-based system for PMN diagnosis. The belief rule base is constructed based on the knowledge of the experts, with 9 biochemical indicators selected as the input variables. The belief rule-based system is developed of three layers: (1) input layer; (2) belief rule base layer; and (3) output layer, where 9 biochemical indicators are selected as the input variables and the diagnosis result is provided as the conclusion. The belief rule base layer is constructed based on the knowledge of the experts. The final validation was held with gold pattern clinical cases, i.e., with known and clinically confirmed diagnoses. Results 134 patients are used in this study, and the proposed method is defined by its sensitivity, specificity, accuracy and area under curve (AUC), which are 98.0%, 96.9%, 97.8% and 0.93, respectively. The results of this study present a novel and effective way for PMN diagnosis without the requirement of renal biopsy. Conclusions Through analysis of the diagnosis results and comparisons with other methods, it can be concluded that the developed system could help diagnose PMN based on biochemical indicators with relatively high accuracy. Graphical Abstract Expert system Belief rule-based system Primary membranous nephropathy Membranous nephropathy Medical technology Siyang Wang verfasserin aut Liang Xu verfasserin aut Jinyan Wang verfasserin aut Jiao Guo verfasserin aut Haiping Wang verfasserin aut Jing Sun verfasserin aut In BioMedical Engineering OnLine BMC, 2003 22(2023), 1, Seite 24 (DE-627)35210547X (DE-600)2084374-4 1475925X nnns volume:22 year:2023 number:1 pages:24 https://doi.org/10.1186/s12938-023-01063-5 kostenfrei https://doaj.org/article/2817f039ad3e4872babf8f4936191a3d kostenfrei https://doi.org/10.1186/s12938-023-01063-5 kostenfrei https://doaj.org/toc/1475-925X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2023 1 24 |
allfieldsSound |
10.1186/s12938-023-01063-5 doi (DE-627)DOAJ080968201 (DE-599)DOAJ2817f039ad3e4872babf8f4936191a3d DE-627 ger DE-627 rakwb eng R855-855.5 Jie Gao verfasserin aut Computer-aided diagnosis of primary membranous nephropathy using expert system 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background The diagnosis of primary membranous nephropathy (PMN) often depends on invasive renal biopsy, and the diagnosis based on clinical manifestations and target antigens may not be completely reliable as it could be affected by uncertain factors. Moreover, different experts could even have different diagnosis results due to their different experiences, which could further impact the reliability of the diagnosis. Therefore, how to properly integrate the knowledge of different experts to provide more reliable and comprehensive PMN diagnosis has become an urgent issue. Methods This paper develops a belief rule-based system for PMN diagnosis. The belief rule base is constructed based on the knowledge of the experts, with 9 biochemical indicators selected as the input variables. The belief rule-based system is developed of three layers: (1) input layer; (2) belief rule base layer; and (3) output layer, where 9 biochemical indicators are selected as the input variables and the diagnosis result is provided as the conclusion. The belief rule base layer is constructed based on the knowledge of the experts. The final validation was held with gold pattern clinical cases, i.e., with known and clinically confirmed diagnoses. Results 134 patients are used in this study, and the proposed method is defined by its sensitivity, specificity, accuracy and area under curve (AUC), which are 98.0%, 96.9%, 97.8% and 0.93, respectively. The results of this study present a novel and effective way for PMN diagnosis without the requirement of renal biopsy. Conclusions Through analysis of the diagnosis results and comparisons with other methods, it can be concluded that the developed system could help diagnose PMN based on biochemical indicators with relatively high accuracy. Graphical Abstract Expert system Belief rule-based system Primary membranous nephropathy Membranous nephropathy Medical technology Siyang Wang verfasserin aut Liang Xu verfasserin aut Jinyan Wang verfasserin aut Jiao Guo verfasserin aut Haiping Wang verfasserin aut Jing Sun verfasserin aut In BioMedical Engineering OnLine BMC, 2003 22(2023), 1, Seite 24 (DE-627)35210547X (DE-600)2084374-4 1475925X nnns volume:22 year:2023 number:1 pages:24 https://doi.org/10.1186/s12938-023-01063-5 kostenfrei https://doaj.org/article/2817f039ad3e4872babf8f4936191a3d kostenfrei https://doi.org/10.1186/s12938-023-01063-5 kostenfrei https://doaj.org/toc/1475-925X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2023 1 24 |
language |
English |
source |
In BioMedical Engineering OnLine 22(2023), 1, Seite 24 volume:22 year:2023 number:1 pages:24 |
sourceStr |
In BioMedical Engineering OnLine 22(2023), 1, Seite 24 volume:22 year:2023 number:1 pages:24 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Expert system Belief rule-based system Primary membranous nephropathy Membranous nephropathy Medical technology |
isfreeaccess_bool |
true |
container_title |
BioMedical Engineering OnLine |
authorswithroles_txt_mv |
Jie Gao @@aut@@ Siyang Wang @@aut@@ Liang Xu @@aut@@ Jinyan Wang @@aut@@ Jiao Guo @@aut@@ Haiping Wang @@aut@@ Jing Sun @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
35210547X |
id |
DOAJ080968201 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ080968201</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310194742.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12938-023-01063-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ080968201</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2817f039ad3e4872babf8f4936191a3d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R855-855.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jie Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computer-aided diagnosis of primary membranous nephropathy using expert system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background The diagnosis of primary membranous nephropathy (PMN) often depends on invasive renal biopsy, and the diagnosis based on clinical manifestations and target antigens may not be completely reliable as it could be affected by uncertain factors. Moreover, different experts could even have different diagnosis results due to their different experiences, which could further impact the reliability of the diagnosis. Therefore, how to properly integrate the knowledge of different experts to provide more reliable and comprehensive PMN diagnosis has become an urgent issue. Methods This paper develops a belief rule-based system for PMN diagnosis. The belief rule base is constructed based on the knowledge of the experts, with 9 biochemical indicators selected as the input variables. The belief rule-based system is developed of three layers: (1) input layer; (2) belief rule base layer; and (3) output layer, where 9 biochemical indicators are selected as the input variables and the diagnosis result is provided as the conclusion. The belief rule base layer is constructed based on the knowledge of the experts. The final validation was held with gold pattern clinical cases, i.e., with known and clinically confirmed diagnoses. Results 134 patients are used in this study, and the proposed method is defined by its sensitivity, specificity, accuracy and area under curve (AUC), which are 98.0%, 96.9%, 97.8% and 0.93, respectively. The results of this study present a novel and effective way for PMN diagnosis without the requirement of renal biopsy. Conclusions Through analysis of the diagnosis results and comparisons with other methods, it can be concluded that the developed system could help diagnose PMN based on biochemical indicators with relatively high accuracy. Graphical Abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Expert system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Belief rule-based system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Primary membranous nephropathy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Membranous nephropathy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Siyang Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liang Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinyan Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiao Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haiping Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jing Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BioMedical Engineering OnLine</subfield><subfield code="d">BMC, 2003</subfield><subfield code="g">22(2023), 1, Seite 24</subfield><subfield code="w">(DE-627)35210547X</subfield><subfield code="w">(DE-600)2084374-4</subfield><subfield code="x">1475925X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:24</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12938-023-01063-5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2817f039ad3e4872babf8f4936191a3d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12938-023-01063-5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1475-925X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="h">24</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Jie Gao |
spellingShingle |
Jie Gao misc R855-855.5 misc Expert system misc Belief rule-based system misc Primary membranous nephropathy misc Membranous nephropathy misc Medical technology Computer-aided diagnosis of primary membranous nephropathy using expert system |
authorStr |
Jie Gao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)35210547X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
R855-855 |
illustrated |
Not Illustrated |
issn |
1475925X |
topic_title |
R855-855.5 Computer-aided diagnosis of primary membranous nephropathy using expert system Expert system Belief rule-based system Primary membranous nephropathy Membranous nephropathy |
topic |
misc R855-855.5 misc Expert system misc Belief rule-based system misc Primary membranous nephropathy misc Membranous nephropathy misc Medical technology |
topic_unstemmed |
misc R855-855.5 misc Expert system misc Belief rule-based system misc Primary membranous nephropathy misc Membranous nephropathy misc Medical technology |
topic_browse |
misc R855-855.5 misc Expert system misc Belief rule-based system misc Primary membranous nephropathy misc Membranous nephropathy misc Medical technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BioMedical Engineering OnLine |
hierarchy_parent_id |
35210547X |
hierarchy_top_title |
BioMedical Engineering OnLine |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)35210547X (DE-600)2084374-4 |
title |
Computer-aided diagnosis of primary membranous nephropathy using expert system |
ctrlnum |
(DE-627)DOAJ080968201 (DE-599)DOAJ2817f039ad3e4872babf8f4936191a3d |
title_full |
Computer-aided diagnosis of primary membranous nephropathy using expert system |
author_sort |
Jie Gao |
journal |
BioMedical Engineering OnLine |
journalStr |
BioMedical Engineering OnLine |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
24 |
author_browse |
Jie Gao Siyang Wang Liang Xu Jinyan Wang Jiao Guo Haiping Wang Jing Sun |
container_volume |
22 |
class |
R855-855.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Jie Gao |
doi_str_mv |
10.1186/s12938-023-01063-5 |
author2-role |
verfasserin |
title_sort |
computer-aided diagnosis of primary membranous nephropathy using expert system |
callnumber |
R855-855.5 |
title_auth |
Computer-aided diagnosis of primary membranous nephropathy using expert system |
abstract |
Abstract Background The diagnosis of primary membranous nephropathy (PMN) often depends on invasive renal biopsy, and the diagnosis based on clinical manifestations and target antigens may not be completely reliable as it could be affected by uncertain factors. Moreover, different experts could even have different diagnosis results due to their different experiences, which could further impact the reliability of the diagnosis. Therefore, how to properly integrate the knowledge of different experts to provide more reliable and comprehensive PMN diagnosis has become an urgent issue. Methods This paper develops a belief rule-based system for PMN diagnosis. The belief rule base is constructed based on the knowledge of the experts, with 9 biochemical indicators selected as the input variables. The belief rule-based system is developed of three layers: (1) input layer; (2) belief rule base layer; and (3) output layer, where 9 biochemical indicators are selected as the input variables and the diagnosis result is provided as the conclusion. The belief rule base layer is constructed based on the knowledge of the experts. The final validation was held with gold pattern clinical cases, i.e., with known and clinically confirmed diagnoses. Results 134 patients are used in this study, and the proposed method is defined by its sensitivity, specificity, accuracy and area under curve (AUC), which are 98.0%, 96.9%, 97.8% and 0.93, respectively. The results of this study present a novel and effective way for PMN diagnosis without the requirement of renal biopsy. Conclusions Through analysis of the diagnosis results and comparisons with other methods, it can be concluded that the developed system could help diagnose PMN based on biochemical indicators with relatively high accuracy. Graphical Abstract |
abstractGer |
Abstract Background The diagnosis of primary membranous nephropathy (PMN) often depends on invasive renal biopsy, and the diagnosis based on clinical manifestations and target antigens may not be completely reliable as it could be affected by uncertain factors. Moreover, different experts could even have different diagnosis results due to their different experiences, which could further impact the reliability of the diagnosis. Therefore, how to properly integrate the knowledge of different experts to provide more reliable and comprehensive PMN diagnosis has become an urgent issue. Methods This paper develops a belief rule-based system for PMN diagnosis. The belief rule base is constructed based on the knowledge of the experts, with 9 biochemical indicators selected as the input variables. The belief rule-based system is developed of three layers: (1) input layer; (2) belief rule base layer; and (3) output layer, where 9 biochemical indicators are selected as the input variables and the diagnosis result is provided as the conclusion. The belief rule base layer is constructed based on the knowledge of the experts. The final validation was held with gold pattern clinical cases, i.e., with known and clinically confirmed diagnoses. Results 134 patients are used in this study, and the proposed method is defined by its sensitivity, specificity, accuracy and area under curve (AUC), which are 98.0%, 96.9%, 97.8% and 0.93, respectively. The results of this study present a novel and effective way for PMN diagnosis without the requirement of renal biopsy. Conclusions Through analysis of the diagnosis results and comparisons with other methods, it can be concluded that the developed system could help diagnose PMN based on biochemical indicators with relatively high accuracy. Graphical Abstract |
abstract_unstemmed |
Abstract Background The diagnosis of primary membranous nephropathy (PMN) often depends on invasive renal biopsy, and the diagnosis based on clinical manifestations and target antigens may not be completely reliable as it could be affected by uncertain factors. Moreover, different experts could even have different diagnosis results due to their different experiences, which could further impact the reliability of the diagnosis. Therefore, how to properly integrate the knowledge of different experts to provide more reliable and comprehensive PMN diagnosis has become an urgent issue. Methods This paper develops a belief rule-based system for PMN diagnosis. The belief rule base is constructed based on the knowledge of the experts, with 9 biochemical indicators selected as the input variables. The belief rule-based system is developed of three layers: (1) input layer; (2) belief rule base layer; and (3) output layer, where 9 biochemical indicators are selected as the input variables and the diagnosis result is provided as the conclusion. The belief rule base layer is constructed based on the knowledge of the experts. The final validation was held with gold pattern clinical cases, i.e., with known and clinically confirmed diagnoses. Results 134 patients are used in this study, and the proposed method is defined by its sensitivity, specificity, accuracy and area under curve (AUC), which are 98.0%, 96.9%, 97.8% and 0.93, respectively. The results of this study present a novel and effective way for PMN diagnosis without the requirement of renal biopsy. Conclusions Through analysis of the diagnosis results and comparisons with other methods, it can be concluded that the developed system could help diagnose PMN based on biochemical indicators with relatively high accuracy. Graphical Abstract |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2119 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Computer-aided diagnosis of primary membranous nephropathy using expert system |
url |
https://doi.org/10.1186/s12938-023-01063-5 https://doaj.org/article/2817f039ad3e4872babf8f4936191a3d https://doaj.org/toc/1475-925X |
remote_bool |
true |
author2 |
Siyang Wang Liang Xu Jinyan Wang Jiao Guo Haiping Wang Jing Sun |
author2Str |
Siyang Wang Liang Xu Jinyan Wang Jiao Guo Haiping Wang Jing Sun |
ppnlink |
35210547X |
callnumber-subject |
R - General Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12938-023-01063-5 |
callnumber-a |
R855-855.5 |
up_date |
2024-07-03T17:32:59.419Z |
_version_ |
1803580058548305920 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ080968201</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310194742.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12938-023-01063-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ080968201</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2817f039ad3e4872babf8f4936191a3d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R855-855.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jie Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computer-aided diagnosis of primary membranous nephropathy using expert system</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background The diagnosis of primary membranous nephropathy (PMN) often depends on invasive renal biopsy, and the diagnosis based on clinical manifestations and target antigens may not be completely reliable as it could be affected by uncertain factors. Moreover, different experts could even have different diagnosis results due to their different experiences, which could further impact the reliability of the diagnosis. Therefore, how to properly integrate the knowledge of different experts to provide more reliable and comprehensive PMN diagnosis has become an urgent issue. Methods This paper develops a belief rule-based system for PMN diagnosis. The belief rule base is constructed based on the knowledge of the experts, with 9 biochemical indicators selected as the input variables. The belief rule-based system is developed of three layers: (1) input layer; (2) belief rule base layer; and (3) output layer, where 9 biochemical indicators are selected as the input variables and the diagnosis result is provided as the conclusion. The belief rule base layer is constructed based on the knowledge of the experts. The final validation was held with gold pattern clinical cases, i.e., with known and clinically confirmed diagnoses. Results 134 patients are used in this study, and the proposed method is defined by its sensitivity, specificity, accuracy and area under curve (AUC), which are 98.0%, 96.9%, 97.8% and 0.93, respectively. The results of this study present a novel and effective way for PMN diagnosis without the requirement of renal biopsy. Conclusions Through analysis of the diagnosis results and comparisons with other methods, it can be concluded that the developed system could help diagnose PMN based on biochemical indicators with relatively high accuracy. Graphical Abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Expert system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Belief rule-based system</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Primary membranous nephropathy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Membranous nephropathy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Siyang Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liang Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinyan Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiao Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Haiping Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jing Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">BioMedical Engineering OnLine</subfield><subfield code="d">BMC, 2003</subfield><subfield code="g">22(2023), 1, Seite 24</subfield><subfield code="w">(DE-627)35210547X</subfield><subfield code="w">(DE-600)2084374-4</subfield><subfield code="x">1475925X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:24</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12938-023-01063-5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2817f039ad3e4872babf8f4936191a3d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s12938-023-01063-5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1475-925X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="h">24</subfield></datafield></record></collection>
|
score |
7.4022894 |