Commonly Used Therapeutics Associated with Changes in Arousal Inhibit GABA<sub<A</sub<R Activation
GABA<sub<A</sub< receptor-positive modulators are well-known to induce sedation, sleep, and general anesthesia. Conversely, GABA<sub<A</sub< receptor negative allosteric modulators (GABA<sub<A</sub<RNAMs) can increase arousal and induce seizures. Motivated by our...
Ausführliche Beschreibung
Autor*in: |
Anling Kaplan [verfasserIn] Abigail I. Nash [verfasserIn] Amanda A. H. Freeman [verfasserIn] Lauren G. Lewicki [verfasserIn] David B. Rye [verfasserIn] Lynn Marie Trotti [verfasserIn] Asher L. Brandt [verfasserIn] Andrew Jenkins [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Biomolecules - MDPI AG, 2013, 13(2023), 2, p 365 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2023 ; number:2, p 365 |
Links: |
---|
DOI / URN: |
10.3390/biom13020365 |
---|
Katalog-ID: |
DOAJ080999735 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ080999735 | ||
003 | DE-627 | ||
005 | 20240413064215.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230310s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/biom13020365 |2 doi | |
035 | |a (DE-627)DOAJ080999735 | ||
035 | |a (DE-599)DOAJ205ad69312054207a855d40bce6fc6e8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QR1-502 | |
100 | 0 | |a Anling Kaplan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Commonly Used Therapeutics Associated with Changes in Arousal Inhibit GABA<sub<A</sub<R Activation |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a GABA<sub<A</sub< receptor-positive modulators are well-known to induce sedation, sleep, and general anesthesia. Conversely, GABA<sub<A</sub< receptor negative allosteric modulators (GABA<sub<A</sub<RNAMs) can increase arousal and induce seizures. Motivated by our studies with patients with hypersomnia, and our discovery that two GABA<sub<A</sub<RNAMs can restore the Excitation/Inhibition (E/I) balance in vitro and arousal in vivo, we chose to screen 11 compounds that have been reported to modulate arousal, to see if they shared a GABA-related mechanism. We determined modulation with both conventional and microfluidic patch clamp methods. We found that receptor activation was variably modulated by all 11 compounds: Rifampicin (RIF), Metronidazole (MET), Minocycline (MIN), Erythromycin (ERY), Ofloxacin (OFX), Chloroquine (CQ), Hydroxychloroquine sulfate (HCQ), Flumazenil (FLZ), Pentylenetetrazol (PTZ), (-)-Epigallocatechin Gallate (EGCG), and clarithromycin (CLR). The computational modeling of modulator–receptor interactions predicted drug action at canonical binding sites and novel orphan sites on the receptor. Our findings suggest that multiple avenues of investigation are now open to investigate large and brain-penetrant molecules for the treatment of patients with diminished CNS E/I balance. | ||
650 | 4 | |a gamma-aminobutyric acid | |
650 | 4 | |a GABA | |
650 | 4 | |a GABA<sub<A</sub< receptor | |
650 | 4 | |a GABA<sub<A</sub<R | |
650 | 4 | |a negative allosteric modulator | |
650 | 4 | |a arousal | |
653 | 0 | |a Microbiology | |
700 | 0 | |a Abigail I. Nash |e verfasserin |4 aut | |
700 | 0 | |a Amanda A. H. Freeman |e verfasserin |4 aut | |
700 | 0 | |a Lauren G. Lewicki |e verfasserin |4 aut | |
700 | 0 | |a David B. Rye |e verfasserin |4 aut | |
700 | 0 | |a Lynn Marie Trotti |e verfasserin |4 aut | |
700 | 0 | |a Asher L. Brandt |e verfasserin |4 aut | |
700 | 0 | |a Andrew Jenkins |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Biomolecules |d MDPI AG, 2013 |g 13(2023), 2, p 365 |w (DE-627)735688915 |w (DE-600)2701262-1 |x 2218273X |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2023 |g number:2, p 365 |
856 | 4 | 0 | |u https://doi.org/10.3390/biom13020365 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/205ad69312054207a855d40bce6fc6e8 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2218-273X/13/2/365 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2218-273X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2023 |e 2, p 365 |
author_variant |
a k ak a i n ain a a h f aahf l g l lgl d b r dbr l m t lmt a l b alb a j aj |
---|---|
matchkey_str |
article:2218273X:2023----::omnysdhrpuissoitdihhneiaoslnii |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QR |
publishDate |
2023 |
allfields |
10.3390/biom13020365 doi (DE-627)DOAJ080999735 (DE-599)DOAJ205ad69312054207a855d40bce6fc6e8 DE-627 ger DE-627 rakwb eng QR1-502 Anling Kaplan verfasserin aut Commonly Used Therapeutics Associated with Changes in Arousal Inhibit GABA<sub<A</sub<R Activation 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier GABA<sub<A</sub< receptor-positive modulators are well-known to induce sedation, sleep, and general anesthesia. Conversely, GABA<sub<A</sub< receptor negative allosteric modulators (GABA<sub<A</sub<RNAMs) can increase arousal and induce seizures. Motivated by our studies with patients with hypersomnia, and our discovery that two GABA<sub<A</sub<RNAMs can restore the Excitation/Inhibition (E/I) balance in vitro and arousal in vivo, we chose to screen 11 compounds that have been reported to modulate arousal, to see if they shared a GABA-related mechanism. We determined modulation with both conventional and microfluidic patch clamp methods. We found that receptor activation was variably modulated by all 11 compounds: Rifampicin (RIF), Metronidazole (MET), Minocycline (MIN), Erythromycin (ERY), Ofloxacin (OFX), Chloroquine (CQ), Hydroxychloroquine sulfate (HCQ), Flumazenil (FLZ), Pentylenetetrazol (PTZ), (-)-Epigallocatechin Gallate (EGCG), and clarithromycin (CLR). The computational modeling of modulator–receptor interactions predicted drug action at canonical binding sites and novel orphan sites on the receptor. Our findings suggest that multiple avenues of investigation are now open to investigate large and brain-penetrant molecules for the treatment of patients with diminished CNS E/I balance. gamma-aminobutyric acid GABA GABA<sub<A</sub< receptor GABA<sub<A</sub<R negative allosteric modulator arousal Microbiology Abigail I. Nash verfasserin aut Amanda A. H. Freeman verfasserin aut Lauren G. Lewicki verfasserin aut David B. Rye verfasserin aut Lynn Marie Trotti verfasserin aut Asher L. Brandt verfasserin aut Andrew Jenkins verfasserin aut In Biomolecules MDPI AG, 2013 13(2023), 2, p 365 (DE-627)735688915 (DE-600)2701262-1 2218273X nnns volume:13 year:2023 number:2, p 365 https://doi.org/10.3390/biom13020365 kostenfrei https://doaj.org/article/205ad69312054207a855d40bce6fc6e8 kostenfrei https://www.mdpi.com/2218-273X/13/2/365 kostenfrei https://doaj.org/toc/2218-273X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 2, p 365 |
spelling |
10.3390/biom13020365 doi (DE-627)DOAJ080999735 (DE-599)DOAJ205ad69312054207a855d40bce6fc6e8 DE-627 ger DE-627 rakwb eng QR1-502 Anling Kaplan verfasserin aut Commonly Used Therapeutics Associated with Changes in Arousal Inhibit GABA<sub<A</sub<R Activation 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier GABA<sub<A</sub< receptor-positive modulators are well-known to induce sedation, sleep, and general anesthesia. Conversely, GABA<sub<A</sub< receptor negative allosteric modulators (GABA<sub<A</sub<RNAMs) can increase arousal and induce seizures. Motivated by our studies with patients with hypersomnia, and our discovery that two GABA<sub<A</sub<RNAMs can restore the Excitation/Inhibition (E/I) balance in vitro and arousal in vivo, we chose to screen 11 compounds that have been reported to modulate arousal, to see if they shared a GABA-related mechanism. We determined modulation with both conventional and microfluidic patch clamp methods. We found that receptor activation was variably modulated by all 11 compounds: Rifampicin (RIF), Metronidazole (MET), Minocycline (MIN), Erythromycin (ERY), Ofloxacin (OFX), Chloroquine (CQ), Hydroxychloroquine sulfate (HCQ), Flumazenil (FLZ), Pentylenetetrazol (PTZ), (-)-Epigallocatechin Gallate (EGCG), and clarithromycin (CLR). The computational modeling of modulator–receptor interactions predicted drug action at canonical binding sites and novel orphan sites on the receptor. Our findings suggest that multiple avenues of investigation are now open to investigate large and brain-penetrant molecules for the treatment of patients with diminished CNS E/I balance. gamma-aminobutyric acid GABA GABA<sub<A</sub< receptor GABA<sub<A</sub<R negative allosteric modulator arousal Microbiology Abigail I. Nash verfasserin aut Amanda A. H. Freeman verfasserin aut Lauren G. Lewicki verfasserin aut David B. Rye verfasserin aut Lynn Marie Trotti verfasserin aut Asher L. Brandt verfasserin aut Andrew Jenkins verfasserin aut In Biomolecules MDPI AG, 2013 13(2023), 2, p 365 (DE-627)735688915 (DE-600)2701262-1 2218273X nnns volume:13 year:2023 number:2, p 365 https://doi.org/10.3390/biom13020365 kostenfrei https://doaj.org/article/205ad69312054207a855d40bce6fc6e8 kostenfrei https://www.mdpi.com/2218-273X/13/2/365 kostenfrei https://doaj.org/toc/2218-273X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 2, p 365 |
allfields_unstemmed |
10.3390/biom13020365 doi (DE-627)DOAJ080999735 (DE-599)DOAJ205ad69312054207a855d40bce6fc6e8 DE-627 ger DE-627 rakwb eng QR1-502 Anling Kaplan verfasserin aut Commonly Used Therapeutics Associated with Changes in Arousal Inhibit GABA<sub<A</sub<R Activation 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier GABA<sub<A</sub< receptor-positive modulators are well-known to induce sedation, sleep, and general anesthesia. Conversely, GABA<sub<A</sub< receptor negative allosteric modulators (GABA<sub<A</sub<RNAMs) can increase arousal and induce seizures. Motivated by our studies with patients with hypersomnia, and our discovery that two GABA<sub<A</sub<RNAMs can restore the Excitation/Inhibition (E/I) balance in vitro and arousal in vivo, we chose to screen 11 compounds that have been reported to modulate arousal, to see if they shared a GABA-related mechanism. We determined modulation with both conventional and microfluidic patch clamp methods. We found that receptor activation was variably modulated by all 11 compounds: Rifampicin (RIF), Metronidazole (MET), Minocycline (MIN), Erythromycin (ERY), Ofloxacin (OFX), Chloroquine (CQ), Hydroxychloroquine sulfate (HCQ), Flumazenil (FLZ), Pentylenetetrazol (PTZ), (-)-Epigallocatechin Gallate (EGCG), and clarithromycin (CLR). The computational modeling of modulator–receptor interactions predicted drug action at canonical binding sites and novel orphan sites on the receptor. Our findings suggest that multiple avenues of investigation are now open to investigate large and brain-penetrant molecules for the treatment of patients with diminished CNS E/I balance. gamma-aminobutyric acid GABA GABA<sub<A</sub< receptor GABA<sub<A</sub<R negative allosteric modulator arousal Microbiology Abigail I. Nash verfasserin aut Amanda A. H. Freeman verfasserin aut Lauren G. Lewicki verfasserin aut David B. Rye verfasserin aut Lynn Marie Trotti verfasserin aut Asher L. Brandt verfasserin aut Andrew Jenkins verfasserin aut In Biomolecules MDPI AG, 2013 13(2023), 2, p 365 (DE-627)735688915 (DE-600)2701262-1 2218273X nnns volume:13 year:2023 number:2, p 365 https://doi.org/10.3390/biom13020365 kostenfrei https://doaj.org/article/205ad69312054207a855d40bce6fc6e8 kostenfrei https://www.mdpi.com/2218-273X/13/2/365 kostenfrei https://doaj.org/toc/2218-273X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 2, p 365 |
allfieldsGer |
10.3390/biom13020365 doi (DE-627)DOAJ080999735 (DE-599)DOAJ205ad69312054207a855d40bce6fc6e8 DE-627 ger DE-627 rakwb eng QR1-502 Anling Kaplan verfasserin aut Commonly Used Therapeutics Associated with Changes in Arousal Inhibit GABA<sub<A</sub<R Activation 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier GABA<sub<A</sub< receptor-positive modulators are well-known to induce sedation, sleep, and general anesthesia. Conversely, GABA<sub<A</sub< receptor negative allosteric modulators (GABA<sub<A</sub<RNAMs) can increase arousal and induce seizures. Motivated by our studies with patients with hypersomnia, and our discovery that two GABA<sub<A</sub<RNAMs can restore the Excitation/Inhibition (E/I) balance in vitro and arousal in vivo, we chose to screen 11 compounds that have been reported to modulate arousal, to see if they shared a GABA-related mechanism. We determined modulation with both conventional and microfluidic patch clamp methods. We found that receptor activation was variably modulated by all 11 compounds: Rifampicin (RIF), Metronidazole (MET), Minocycline (MIN), Erythromycin (ERY), Ofloxacin (OFX), Chloroquine (CQ), Hydroxychloroquine sulfate (HCQ), Flumazenil (FLZ), Pentylenetetrazol (PTZ), (-)-Epigallocatechin Gallate (EGCG), and clarithromycin (CLR). The computational modeling of modulator–receptor interactions predicted drug action at canonical binding sites and novel orphan sites on the receptor. Our findings suggest that multiple avenues of investigation are now open to investigate large and brain-penetrant molecules for the treatment of patients with diminished CNS E/I balance. gamma-aminobutyric acid GABA GABA<sub<A</sub< receptor GABA<sub<A</sub<R negative allosteric modulator arousal Microbiology Abigail I. Nash verfasserin aut Amanda A. H. Freeman verfasserin aut Lauren G. Lewicki verfasserin aut David B. Rye verfasserin aut Lynn Marie Trotti verfasserin aut Asher L. Brandt verfasserin aut Andrew Jenkins verfasserin aut In Biomolecules MDPI AG, 2013 13(2023), 2, p 365 (DE-627)735688915 (DE-600)2701262-1 2218273X nnns volume:13 year:2023 number:2, p 365 https://doi.org/10.3390/biom13020365 kostenfrei https://doaj.org/article/205ad69312054207a855d40bce6fc6e8 kostenfrei https://www.mdpi.com/2218-273X/13/2/365 kostenfrei https://doaj.org/toc/2218-273X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 2, p 365 |
allfieldsSound |
10.3390/biom13020365 doi (DE-627)DOAJ080999735 (DE-599)DOAJ205ad69312054207a855d40bce6fc6e8 DE-627 ger DE-627 rakwb eng QR1-502 Anling Kaplan verfasserin aut Commonly Used Therapeutics Associated with Changes in Arousal Inhibit GABA<sub<A</sub<R Activation 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier GABA<sub<A</sub< receptor-positive modulators are well-known to induce sedation, sleep, and general anesthesia. Conversely, GABA<sub<A</sub< receptor negative allosteric modulators (GABA<sub<A</sub<RNAMs) can increase arousal and induce seizures. Motivated by our studies with patients with hypersomnia, and our discovery that two GABA<sub<A</sub<RNAMs can restore the Excitation/Inhibition (E/I) balance in vitro and arousal in vivo, we chose to screen 11 compounds that have been reported to modulate arousal, to see if they shared a GABA-related mechanism. We determined modulation with both conventional and microfluidic patch clamp methods. We found that receptor activation was variably modulated by all 11 compounds: Rifampicin (RIF), Metronidazole (MET), Minocycline (MIN), Erythromycin (ERY), Ofloxacin (OFX), Chloroquine (CQ), Hydroxychloroquine sulfate (HCQ), Flumazenil (FLZ), Pentylenetetrazol (PTZ), (-)-Epigallocatechin Gallate (EGCG), and clarithromycin (CLR). The computational modeling of modulator–receptor interactions predicted drug action at canonical binding sites and novel orphan sites on the receptor. Our findings suggest that multiple avenues of investigation are now open to investigate large and brain-penetrant molecules for the treatment of patients with diminished CNS E/I balance. gamma-aminobutyric acid GABA GABA<sub<A</sub< receptor GABA<sub<A</sub<R negative allosteric modulator arousal Microbiology Abigail I. Nash verfasserin aut Amanda A. H. Freeman verfasserin aut Lauren G. Lewicki verfasserin aut David B. Rye verfasserin aut Lynn Marie Trotti verfasserin aut Asher L. Brandt verfasserin aut Andrew Jenkins verfasserin aut In Biomolecules MDPI AG, 2013 13(2023), 2, p 365 (DE-627)735688915 (DE-600)2701262-1 2218273X nnns volume:13 year:2023 number:2, p 365 https://doi.org/10.3390/biom13020365 kostenfrei https://doaj.org/article/205ad69312054207a855d40bce6fc6e8 kostenfrei https://www.mdpi.com/2218-273X/13/2/365 kostenfrei https://doaj.org/toc/2218-273X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 2, p 365 |
language |
English |
source |
In Biomolecules 13(2023), 2, p 365 volume:13 year:2023 number:2, p 365 |
sourceStr |
In Biomolecules 13(2023), 2, p 365 volume:13 year:2023 number:2, p 365 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
gamma-aminobutyric acid GABA GABA<sub<A</sub< receptor GABA<sub<A</sub<R negative allosteric modulator arousal Microbiology |
isfreeaccess_bool |
true |
container_title |
Biomolecules |
authorswithroles_txt_mv |
Anling Kaplan @@aut@@ Abigail I. Nash @@aut@@ Amanda A. H. Freeman @@aut@@ Lauren G. Lewicki @@aut@@ David B. Rye @@aut@@ Lynn Marie Trotti @@aut@@ Asher L. Brandt @@aut@@ Andrew Jenkins @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
735688915 |
id |
DOAJ080999735 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ080999735</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413064215.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/biom13020365</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ080999735</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ205ad69312054207a855d40bce6fc6e8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR1-502</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Anling Kaplan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Commonly Used Therapeutics Associated with Changes in Arousal Inhibit GABA<sub<A</sub<R Activation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">GABA<sub<A</sub< receptor-positive modulators are well-known to induce sedation, sleep, and general anesthesia. Conversely, GABA<sub<A</sub< receptor negative allosteric modulators (GABA<sub<A</sub<RNAMs) can increase arousal and induce seizures. Motivated by our studies with patients with hypersomnia, and our discovery that two GABA<sub<A</sub<RNAMs can restore the Excitation/Inhibition (E/I) balance in vitro and arousal in vivo, we chose to screen 11 compounds that have been reported to modulate arousal, to see if they shared a GABA-related mechanism. We determined modulation with both conventional and microfluidic patch clamp methods. We found that receptor activation was variably modulated by all 11 compounds: Rifampicin (RIF), Metronidazole (MET), Minocycline (MIN), Erythromycin (ERY), Ofloxacin (OFX), Chloroquine (CQ), Hydroxychloroquine sulfate (HCQ), Flumazenil (FLZ), Pentylenetetrazol (PTZ), (-)-Epigallocatechin Gallate (EGCG), and clarithromycin (CLR). The computational modeling of modulator–receptor interactions predicted drug action at canonical binding sites and novel orphan sites on the receptor. Our findings suggest that multiple avenues of investigation are now open to investigate large and brain-penetrant molecules for the treatment of patients with diminished CNS E/I balance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gamma-aminobutyric acid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GABA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GABA<sub<A</sub< receptor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GABA<sub<A</sub<R</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">negative allosteric modulator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">arousal</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microbiology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Abigail I. Nash</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Amanda A. H. Freeman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lauren G. Lewicki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David B. Rye</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lynn Marie Trotti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Asher L. Brandt</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrew Jenkins</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Biomolecules</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">13(2023), 2, p 365</subfield><subfield code="w">(DE-627)735688915</subfield><subfield code="w">(DE-600)2701262-1</subfield><subfield code="x">2218273X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:2, p 365</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/biom13020365</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/205ad69312054207a855d40bce6fc6e8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2218-273X/13/2/365</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2218-273X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">2, p 365</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Anling Kaplan |
spellingShingle |
Anling Kaplan misc QR1-502 misc gamma-aminobutyric acid misc GABA misc GABA<sub<A</sub< receptor misc GABA<sub<A</sub<R misc negative allosteric modulator misc arousal misc Microbiology Commonly Used Therapeutics Associated with Changes in Arousal Inhibit GABA<sub<A</sub<R Activation |
authorStr |
Anling Kaplan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)735688915 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QR1-502 |
illustrated |
Not Illustrated |
issn |
2218273X |
topic_title |
QR1-502 Commonly Used Therapeutics Associated with Changes in Arousal Inhibit GABA<sub<A</sub<R Activation gamma-aminobutyric acid GABA GABA<sub<A</sub< receptor GABA<sub<A</sub<R negative allosteric modulator arousal |
topic |
misc QR1-502 misc gamma-aminobutyric acid misc GABA misc GABA<sub<A</sub< receptor misc GABA<sub<A</sub<R misc negative allosteric modulator misc arousal misc Microbiology |
topic_unstemmed |
misc QR1-502 misc gamma-aminobutyric acid misc GABA misc GABA<sub<A</sub< receptor misc GABA<sub<A</sub<R misc negative allosteric modulator misc arousal misc Microbiology |
topic_browse |
misc QR1-502 misc gamma-aminobutyric acid misc GABA misc GABA<sub<A</sub< receptor misc GABA<sub<A</sub<R misc negative allosteric modulator misc arousal misc Microbiology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Biomolecules |
hierarchy_parent_id |
735688915 |
hierarchy_top_title |
Biomolecules |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)735688915 (DE-600)2701262-1 |
title |
Commonly Used Therapeutics Associated with Changes in Arousal Inhibit GABA<sub<A</sub<R Activation |
ctrlnum |
(DE-627)DOAJ080999735 (DE-599)DOAJ205ad69312054207a855d40bce6fc6e8 |
title_full |
Commonly Used Therapeutics Associated with Changes in Arousal Inhibit GABA<sub<A</sub<R Activation |
author_sort |
Anling Kaplan |
journal |
Biomolecules |
journalStr |
Biomolecules |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Anling Kaplan Abigail I. Nash Amanda A. H. Freeman Lauren G. Lewicki David B. Rye Lynn Marie Trotti Asher L. Brandt Andrew Jenkins |
container_volume |
13 |
class |
QR1-502 |
format_se |
Elektronische Aufsätze |
author-letter |
Anling Kaplan |
doi_str_mv |
10.3390/biom13020365 |
author2-role |
verfasserin |
title_sort |
commonly used therapeutics associated with changes in arousal inhibit gaba<sub<a</sub<r activation |
callnumber |
QR1-502 |
title_auth |
Commonly Used Therapeutics Associated with Changes in Arousal Inhibit GABA<sub<A</sub<R Activation |
abstract |
GABA<sub<A</sub< receptor-positive modulators are well-known to induce sedation, sleep, and general anesthesia. Conversely, GABA<sub<A</sub< receptor negative allosteric modulators (GABA<sub<A</sub<RNAMs) can increase arousal and induce seizures. Motivated by our studies with patients with hypersomnia, and our discovery that two GABA<sub<A</sub<RNAMs can restore the Excitation/Inhibition (E/I) balance in vitro and arousal in vivo, we chose to screen 11 compounds that have been reported to modulate arousal, to see if they shared a GABA-related mechanism. We determined modulation with both conventional and microfluidic patch clamp methods. We found that receptor activation was variably modulated by all 11 compounds: Rifampicin (RIF), Metronidazole (MET), Minocycline (MIN), Erythromycin (ERY), Ofloxacin (OFX), Chloroquine (CQ), Hydroxychloroquine sulfate (HCQ), Flumazenil (FLZ), Pentylenetetrazol (PTZ), (-)-Epigallocatechin Gallate (EGCG), and clarithromycin (CLR). The computational modeling of modulator–receptor interactions predicted drug action at canonical binding sites and novel orphan sites on the receptor. Our findings suggest that multiple avenues of investigation are now open to investigate large and brain-penetrant molecules for the treatment of patients with diminished CNS E/I balance. |
abstractGer |
GABA<sub<A</sub< receptor-positive modulators are well-known to induce sedation, sleep, and general anesthesia. Conversely, GABA<sub<A</sub< receptor negative allosteric modulators (GABA<sub<A</sub<RNAMs) can increase arousal and induce seizures. Motivated by our studies with patients with hypersomnia, and our discovery that two GABA<sub<A</sub<RNAMs can restore the Excitation/Inhibition (E/I) balance in vitro and arousal in vivo, we chose to screen 11 compounds that have been reported to modulate arousal, to see if they shared a GABA-related mechanism. We determined modulation with both conventional and microfluidic patch clamp methods. We found that receptor activation was variably modulated by all 11 compounds: Rifampicin (RIF), Metronidazole (MET), Minocycline (MIN), Erythromycin (ERY), Ofloxacin (OFX), Chloroquine (CQ), Hydroxychloroquine sulfate (HCQ), Flumazenil (FLZ), Pentylenetetrazol (PTZ), (-)-Epigallocatechin Gallate (EGCG), and clarithromycin (CLR). The computational modeling of modulator–receptor interactions predicted drug action at canonical binding sites and novel orphan sites on the receptor. Our findings suggest that multiple avenues of investigation are now open to investigate large and brain-penetrant molecules for the treatment of patients with diminished CNS E/I balance. |
abstract_unstemmed |
GABA<sub<A</sub< receptor-positive modulators are well-known to induce sedation, sleep, and general anesthesia. Conversely, GABA<sub<A</sub< receptor negative allosteric modulators (GABA<sub<A</sub<RNAMs) can increase arousal and induce seizures. Motivated by our studies with patients with hypersomnia, and our discovery that two GABA<sub<A</sub<RNAMs can restore the Excitation/Inhibition (E/I) balance in vitro and arousal in vivo, we chose to screen 11 compounds that have been reported to modulate arousal, to see if they shared a GABA-related mechanism. We determined modulation with both conventional and microfluidic patch clamp methods. We found that receptor activation was variably modulated by all 11 compounds: Rifampicin (RIF), Metronidazole (MET), Minocycline (MIN), Erythromycin (ERY), Ofloxacin (OFX), Chloroquine (CQ), Hydroxychloroquine sulfate (HCQ), Flumazenil (FLZ), Pentylenetetrazol (PTZ), (-)-Epigallocatechin Gallate (EGCG), and clarithromycin (CLR). The computational modeling of modulator–receptor interactions predicted drug action at canonical binding sites and novel orphan sites on the receptor. Our findings suggest that multiple avenues of investigation are now open to investigate large and brain-penetrant molecules for the treatment of patients with diminished CNS E/I balance. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
2, p 365 |
title_short |
Commonly Used Therapeutics Associated with Changes in Arousal Inhibit GABA<sub<A</sub<R Activation |
url |
https://doi.org/10.3390/biom13020365 https://doaj.org/article/205ad69312054207a855d40bce6fc6e8 https://www.mdpi.com/2218-273X/13/2/365 https://doaj.org/toc/2218-273X |
remote_bool |
true |
author2 |
Abigail I. Nash Amanda A. H. Freeman Lauren G. Lewicki David B. Rye Lynn Marie Trotti Asher L. Brandt Andrew Jenkins |
author2Str |
Abigail I. Nash Amanda A. H. Freeman Lauren G. Lewicki David B. Rye Lynn Marie Trotti Asher L. Brandt Andrew Jenkins |
ppnlink |
735688915 |
callnumber-subject |
QR - Microbiology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/biom13020365 |
callnumber-a |
QR1-502 |
up_date |
2024-07-03T17:44:09.055Z |
_version_ |
1803580760710447104 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ080999735</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413064215.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/biom13020365</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ080999735</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ205ad69312054207a855d40bce6fc6e8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR1-502</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Anling Kaplan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Commonly Used Therapeutics Associated with Changes in Arousal Inhibit GABA<sub<A</sub<R Activation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">GABA<sub<A</sub< receptor-positive modulators are well-known to induce sedation, sleep, and general anesthesia. Conversely, GABA<sub<A</sub< receptor negative allosteric modulators (GABA<sub<A</sub<RNAMs) can increase arousal and induce seizures. Motivated by our studies with patients with hypersomnia, and our discovery that two GABA<sub<A</sub<RNAMs can restore the Excitation/Inhibition (E/I) balance in vitro and arousal in vivo, we chose to screen 11 compounds that have been reported to modulate arousal, to see if they shared a GABA-related mechanism. We determined modulation with both conventional and microfluidic patch clamp methods. We found that receptor activation was variably modulated by all 11 compounds: Rifampicin (RIF), Metronidazole (MET), Minocycline (MIN), Erythromycin (ERY), Ofloxacin (OFX), Chloroquine (CQ), Hydroxychloroquine sulfate (HCQ), Flumazenil (FLZ), Pentylenetetrazol (PTZ), (-)-Epigallocatechin Gallate (EGCG), and clarithromycin (CLR). The computational modeling of modulator–receptor interactions predicted drug action at canonical binding sites and novel orphan sites on the receptor. Our findings suggest that multiple avenues of investigation are now open to investigate large and brain-penetrant molecules for the treatment of patients with diminished CNS E/I balance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gamma-aminobutyric acid</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GABA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GABA<sub<A</sub< receptor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GABA<sub<A</sub<R</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">negative allosteric modulator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">arousal</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microbiology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Abigail I. Nash</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Amanda A. H. Freeman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lauren G. Lewicki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David B. Rye</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lynn Marie Trotti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Asher L. Brandt</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrew Jenkins</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Biomolecules</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">13(2023), 2, p 365</subfield><subfield code="w">(DE-627)735688915</subfield><subfield code="w">(DE-600)2701262-1</subfield><subfield code="x">2218273X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:2, p 365</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/biom13020365</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/205ad69312054207a855d40bce6fc6e8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2218-273X/13/2/365</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2218-273X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">2, p 365</subfield></datafield></record></collection>
|
score |
7.3993263 |