TCNformer Model for Photovoltaic Power Prediction
Despite the growing capabilities of the short-term prediction of photovoltaic power, we still face two challenges to longer time-range predictions: error accumulation and long-term time series feature extraction. In order to improve the longer time range prediction accuracy of photovoltaic power, th...
Ausführliche Beschreibung
Autor*in: |
Shipeng Liu [verfasserIn] Dejun Ning [verfasserIn] Jue Ma [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Applied Sciences - MDPI AG, 2012, 13(2023), 4, p 2593 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2023 ; number:4, p 2593 |
Links: |
---|
DOI / URN: |
10.3390/app13042593 |
---|
Katalog-ID: |
DOAJ081017812 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ081017812 | ||
003 | DE-627 | ||
005 | 20240413064510.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230310s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/app13042593 |2 doi | |
035 | |a (DE-627)DOAJ081017812 | ||
035 | |a (DE-599)DOAJ3228aa1a04ee471f8f92998a9300c59d | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
050 | 0 | |a QH301-705.5 | |
050 | 0 | |a QC1-999 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Shipeng Liu |e verfasserin |4 aut | |
245 | 1 | 0 | |a TCNformer Model for Photovoltaic Power Prediction |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Despite the growing capabilities of the short-term prediction of photovoltaic power, we still face two challenges to longer time-range predictions: error accumulation and long-term time series feature extraction. In order to improve the longer time range prediction accuracy of photovoltaic power, this paper proposes a seq2seq prediction model TCNformer, which outperforms other state-of-the-art (SOTA) algorithms by introducing variable selection (VS), long- and short-term time series feature extraction (LSTFE), and one-step temporal convolutional network (TCN) decoding. A VS module employs correlation analysis and periodic analysis to separate the time series correlation information, LSTFE extracts multiple time series features from time series data, and one-step TCN decoding realizes generative predictions. We demonstrate here that TCNformer has the lowest mean squared error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) in contrast to the other algorithms in the field of the short-term prediction of photovoltaic power, and furthermore, the effectiveness of each module has been verified through ablation experiments. | ||
650 | 4 | |a transformer | |
650 | 4 | |a SkipGRU | |
650 | 4 | |a TCN | |
650 | 4 | |a photovoltaic power prediction | |
650 | 4 | |a time series data prediction | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Biology (General) | |
653 | 0 | |a Physics | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Dejun Ning |e verfasserin |4 aut | |
700 | 0 | |a Jue Ma |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Applied Sciences |d MDPI AG, 2012 |g 13(2023), 4, p 2593 |w (DE-627)737287640 |w (DE-600)2704225-X |x 20763417 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2023 |g number:4, p 2593 |
856 | 4 | 0 | |u https://doi.org/10.3390/app13042593 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/3228aa1a04ee471f8f92998a9300c59d |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2076-3417/13/4/2593 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2076-3417 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2023 |e 4, p 2593 |
author_variant |
s l sl d n dn j m jm |
---|---|
matchkey_str |
article:20763417:2023----::cfremdlopoootipw |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TA |
publishDate |
2023 |
allfields |
10.3390/app13042593 doi (DE-627)DOAJ081017812 (DE-599)DOAJ3228aa1a04ee471f8f92998a9300c59d DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Shipeng Liu verfasserin aut TCNformer Model for Photovoltaic Power Prediction 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Despite the growing capabilities of the short-term prediction of photovoltaic power, we still face two challenges to longer time-range predictions: error accumulation and long-term time series feature extraction. In order to improve the longer time range prediction accuracy of photovoltaic power, this paper proposes a seq2seq prediction model TCNformer, which outperforms other state-of-the-art (SOTA) algorithms by introducing variable selection (VS), long- and short-term time series feature extraction (LSTFE), and one-step temporal convolutional network (TCN) decoding. A VS module employs correlation analysis and periodic analysis to separate the time series correlation information, LSTFE extracts multiple time series features from time series data, and one-step TCN decoding realizes generative predictions. We demonstrate here that TCNformer has the lowest mean squared error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) in contrast to the other algorithms in the field of the short-term prediction of photovoltaic power, and furthermore, the effectiveness of each module has been verified through ablation experiments. transformer SkipGRU TCN photovoltaic power prediction time series data prediction Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Dejun Ning verfasserin aut Jue Ma verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 4, p 2593 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:4, p 2593 https://doi.org/10.3390/app13042593 kostenfrei https://doaj.org/article/3228aa1a04ee471f8f92998a9300c59d kostenfrei https://www.mdpi.com/2076-3417/13/4/2593 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 4, p 2593 |
spelling |
10.3390/app13042593 doi (DE-627)DOAJ081017812 (DE-599)DOAJ3228aa1a04ee471f8f92998a9300c59d DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Shipeng Liu verfasserin aut TCNformer Model for Photovoltaic Power Prediction 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Despite the growing capabilities of the short-term prediction of photovoltaic power, we still face two challenges to longer time-range predictions: error accumulation and long-term time series feature extraction. In order to improve the longer time range prediction accuracy of photovoltaic power, this paper proposes a seq2seq prediction model TCNformer, which outperforms other state-of-the-art (SOTA) algorithms by introducing variable selection (VS), long- and short-term time series feature extraction (LSTFE), and one-step temporal convolutional network (TCN) decoding. A VS module employs correlation analysis and periodic analysis to separate the time series correlation information, LSTFE extracts multiple time series features from time series data, and one-step TCN decoding realizes generative predictions. We demonstrate here that TCNformer has the lowest mean squared error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) in contrast to the other algorithms in the field of the short-term prediction of photovoltaic power, and furthermore, the effectiveness of each module has been verified through ablation experiments. transformer SkipGRU TCN photovoltaic power prediction time series data prediction Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Dejun Ning verfasserin aut Jue Ma verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 4, p 2593 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:4, p 2593 https://doi.org/10.3390/app13042593 kostenfrei https://doaj.org/article/3228aa1a04ee471f8f92998a9300c59d kostenfrei https://www.mdpi.com/2076-3417/13/4/2593 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 4, p 2593 |
allfields_unstemmed |
10.3390/app13042593 doi (DE-627)DOAJ081017812 (DE-599)DOAJ3228aa1a04ee471f8f92998a9300c59d DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Shipeng Liu verfasserin aut TCNformer Model for Photovoltaic Power Prediction 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Despite the growing capabilities of the short-term prediction of photovoltaic power, we still face two challenges to longer time-range predictions: error accumulation and long-term time series feature extraction. In order to improve the longer time range prediction accuracy of photovoltaic power, this paper proposes a seq2seq prediction model TCNformer, which outperforms other state-of-the-art (SOTA) algorithms by introducing variable selection (VS), long- and short-term time series feature extraction (LSTFE), and one-step temporal convolutional network (TCN) decoding. A VS module employs correlation analysis and periodic analysis to separate the time series correlation information, LSTFE extracts multiple time series features from time series data, and one-step TCN decoding realizes generative predictions. We demonstrate here that TCNformer has the lowest mean squared error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) in contrast to the other algorithms in the field of the short-term prediction of photovoltaic power, and furthermore, the effectiveness of each module has been verified through ablation experiments. transformer SkipGRU TCN photovoltaic power prediction time series data prediction Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Dejun Ning verfasserin aut Jue Ma verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 4, p 2593 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:4, p 2593 https://doi.org/10.3390/app13042593 kostenfrei https://doaj.org/article/3228aa1a04ee471f8f92998a9300c59d kostenfrei https://www.mdpi.com/2076-3417/13/4/2593 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 4, p 2593 |
allfieldsGer |
10.3390/app13042593 doi (DE-627)DOAJ081017812 (DE-599)DOAJ3228aa1a04ee471f8f92998a9300c59d DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Shipeng Liu verfasserin aut TCNformer Model for Photovoltaic Power Prediction 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Despite the growing capabilities of the short-term prediction of photovoltaic power, we still face two challenges to longer time-range predictions: error accumulation and long-term time series feature extraction. In order to improve the longer time range prediction accuracy of photovoltaic power, this paper proposes a seq2seq prediction model TCNformer, which outperforms other state-of-the-art (SOTA) algorithms by introducing variable selection (VS), long- and short-term time series feature extraction (LSTFE), and one-step temporal convolutional network (TCN) decoding. A VS module employs correlation analysis and periodic analysis to separate the time series correlation information, LSTFE extracts multiple time series features from time series data, and one-step TCN decoding realizes generative predictions. We demonstrate here that TCNformer has the lowest mean squared error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) in contrast to the other algorithms in the field of the short-term prediction of photovoltaic power, and furthermore, the effectiveness of each module has been verified through ablation experiments. transformer SkipGRU TCN photovoltaic power prediction time series data prediction Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Dejun Ning verfasserin aut Jue Ma verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 4, p 2593 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:4, p 2593 https://doi.org/10.3390/app13042593 kostenfrei https://doaj.org/article/3228aa1a04ee471f8f92998a9300c59d kostenfrei https://www.mdpi.com/2076-3417/13/4/2593 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 4, p 2593 |
allfieldsSound |
10.3390/app13042593 doi (DE-627)DOAJ081017812 (DE-599)DOAJ3228aa1a04ee471f8f92998a9300c59d DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Shipeng Liu verfasserin aut TCNformer Model for Photovoltaic Power Prediction 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Despite the growing capabilities of the short-term prediction of photovoltaic power, we still face two challenges to longer time-range predictions: error accumulation and long-term time series feature extraction. In order to improve the longer time range prediction accuracy of photovoltaic power, this paper proposes a seq2seq prediction model TCNformer, which outperforms other state-of-the-art (SOTA) algorithms by introducing variable selection (VS), long- and short-term time series feature extraction (LSTFE), and one-step temporal convolutional network (TCN) decoding. A VS module employs correlation analysis and periodic analysis to separate the time series correlation information, LSTFE extracts multiple time series features from time series data, and one-step TCN decoding realizes generative predictions. We demonstrate here that TCNformer has the lowest mean squared error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) in contrast to the other algorithms in the field of the short-term prediction of photovoltaic power, and furthermore, the effectiveness of each module has been verified through ablation experiments. transformer SkipGRU TCN photovoltaic power prediction time series data prediction Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Dejun Ning verfasserin aut Jue Ma verfasserin aut In Applied Sciences MDPI AG, 2012 13(2023), 4, p 2593 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:13 year:2023 number:4, p 2593 https://doi.org/10.3390/app13042593 kostenfrei https://doaj.org/article/3228aa1a04ee471f8f92998a9300c59d kostenfrei https://www.mdpi.com/2076-3417/13/4/2593 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 4, p 2593 |
language |
English |
source |
In Applied Sciences 13(2023), 4, p 2593 volume:13 year:2023 number:4, p 2593 |
sourceStr |
In Applied Sciences 13(2023), 4, p 2593 volume:13 year:2023 number:4, p 2593 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
transformer SkipGRU TCN photovoltaic power prediction time series data prediction Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry |
isfreeaccess_bool |
true |
container_title |
Applied Sciences |
authorswithroles_txt_mv |
Shipeng Liu @@aut@@ Dejun Ning @@aut@@ Jue Ma @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
737287640 |
id |
DOAJ081017812 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ081017812</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413064510.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app13042593</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ081017812</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3228aa1a04ee471f8f92998a9300c59d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Shipeng Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">TCNformer Model for Photovoltaic Power Prediction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Despite the growing capabilities of the short-term prediction of photovoltaic power, we still face two challenges to longer time-range predictions: error accumulation and long-term time series feature extraction. In order to improve the longer time range prediction accuracy of photovoltaic power, this paper proposes a seq2seq prediction model TCNformer, which outperforms other state-of-the-art (SOTA) algorithms by introducing variable selection (VS), long- and short-term time series feature extraction (LSTFE), and one-step temporal convolutional network (TCN) decoding. A VS module employs correlation analysis and periodic analysis to separate the time series correlation information, LSTFE extracts multiple time series features from time series data, and one-step TCN decoding realizes generative predictions. We demonstrate here that TCNformer has the lowest mean squared error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) in contrast to the other algorithms in the field of the short-term prediction of photovoltaic power, and furthermore, the effectiveness of each module has been verified through ablation experiments.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transformer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SkipGRU</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TCN</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">photovoltaic power prediction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time series data prediction</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dejun Ning</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jue Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 4, p 2593</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:4, p 2593</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app13042593</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3228aa1a04ee471f8f92998a9300c59d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/13/4/2593</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">4, p 2593</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Shipeng Liu |
spellingShingle |
Shipeng Liu misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc transformer misc SkipGRU misc TCN misc photovoltaic power prediction misc time series data prediction misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry TCNformer Model for Photovoltaic Power Prediction |
authorStr |
Shipeng Liu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287640 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
20763417 |
topic_title |
TA1-2040 QH301-705.5 QC1-999 QD1-999 TCNformer Model for Photovoltaic Power Prediction transformer SkipGRU TCN photovoltaic power prediction time series data prediction |
topic |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc transformer misc SkipGRU misc TCN misc photovoltaic power prediction misc time series data prediction misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_unstemmed |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc transformer misc SkipGRU misc TCN misc photovoltaic power prediction misc time series data prediction misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_browse |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc transformer misc SkipGRU misc TCN misc photovoltaic power prediction misc time series data prediction misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied Sciences |
hierarchy_parent_id |
737287640 |
hierarchy_top_title |
Applied Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287640 (DE-600)2704225-X |
title |
TCNformer Model for Photovoltaic Power Prediction |
ctrlnum |
(DE-627)DOAJ081017812 (DE-599)DOAJ3228aa1a04ee471f8f92998a9300c59d |
title_full |
TCNformer Model for Photovoltaic Power Prediction |
author_sort |
Shipeng Liu |
journal |
Applied Sciences |
journalStr |
Applied Sciences |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Shipeng Liu Dejun Ning Jue Ma |
container_volume |
13 |
class |
TA1-2040 QH301-705.5 QC1-999 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Shipeng Liu |
doi_str_mv |
10.3390/app13042593 |
author2-role |
verfasserin |
title_sort |
tcnformer model for photovoltaic power prediction |
callnumber |
TA1-2040 |
title_auth |
TCNformer Model for Photovoltaic Power Prediction |
abstract |
Despite the growing capabilities of the short-term prediction of photovoltaic power, we still face two challenges to longer time-range predictions: error accumulation and long-term time series feature extraction. In order to improve the longer time range prediction accuracy of photovoltaic power, this paper proposes a seq2seq prediction model TCNformer, which outperforms other state-of-the-art (SOTA) algorithms by introducing variable selection (VS), long- and short-term time series feature extraction (LSTFE), and one-step temporal convolutional network (TCN) decoding. A VS module employs correlation analysis and periodic analysis to separate the time series correlation information, LSTFE extracts multiple time series features from time series data, and one-step TCN decoding realizes generative predictions. We demonstrate here that TCNformer has the lowest mean squared error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) in contrast to the other algorithms in the field of the short-term prediction of photovoltaic power, and furthermore, the effectiveness of each module has been verified through ablation experiments. |
abstractGer |
Despite the growing capabilities of the short-term prediction of photovoltaic power, we still face two challenges to longer time-range predictions: error accumulation and long-term time series feature extraction. In order to improve the longer time range prediction accuracy of photovoltaic power, this paper proposes a seq2seq prediction model TCNformer, which outperforms other state-of-the-art (SOTA) algorithms by introducing variable selection (VS), long- and short-term time series feature extraction (LSTFE), and one-step temporal convolutional network (TCN) decoding. A VS module employs correlation analysis and periodic analysis to separate the time series correlation information, LSTFE extracts multiple time series features from time series data, and one-step TCN decoding realizes generative predictions. We demonstrate here that TCNformer has the lowest mean squared error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) in contrast to the other algorithms in the field of the short-term prediction of photovoltaic power, and furthermore, the effectiveness of each module has been verified through ablation experiments. |
abstract_unstemmed |
Despite the growing capabilities of the short-term prediction of photovoltaic power, we still face two challenges to longer time-range predictions: error accumulation and long-term time series feature extraction. In order to improve the longer time range prediction accuracy of photovoltaic power, this paper proposes a seq2seq prediction model TCNformer, which outperforms other state-of-the-art (SOTA) algorithms by introducing variable selection (VS), long- and short-term time series feature extraction (LSTFE), and one-step temporal convolutional network (TCN) decoding. A VS module employs correlation analysis and periodic analysis to separate the time series correlation information, LSTFE extracts multiple time series features from time series data, and one-step TCN decoding realizes generative predictions. We demonstrate here that TCNformer has the lowest mean squared error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) in contrast to the other algorithms in the field of the short-term prediction of photovoltaic power, and furthermore, the effectiveness of each module has been verified through ablation experiments. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4, p 2593 |
title_short |
TCNformer Model for Photovoltaic Power Prediction |
url |
https://doi.org/10.3390/app13042593 https://doaj.org/article/3228aa1a04ee471f8f92998a9300c59d https://www.mdpi.com/2076-3417/13/4/2593 https://doaj.org/toc/2076-3417 |
remote_bool |
true |
author2 |
Dejun Ning Jue Ma |
author2Str |
Dejun Ning Jue Ma |
ppnlink |
737287640 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/app13042593 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T17:50:30.941Z |
_version_ |
1803581161150087168 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ081017812</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413064510.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app13042593</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ081017812</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ3228aa1a04ee471f8f92998a9300c59d</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Shipeng Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">TCNformer Model for Photovoltaic Power Prediction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Despite the growing capabilities of the short-term prediction of photovoltaic power, we still face two challenges to longer time-range predictions: error accumulation and long-term time series feature extraction. In order to improve the longer time range prediction accuracy of photovoltaic power, this paper proposes a seq2seq prediction model TCNformer, which outperforms other state-of-the-art (SOTA) algorithms by introducing variable selection (VS), long- and short-term time series feature extraction (LSTFE), and one-step temporal convolutional network (TCN) decoding. A VS module employs correlation analysis and periodic analysis to separate the time series correlation information, LSTFE extracts multiple time series features from time series data, and one-step TCN decoding realizes generative predictions. We demonstrate here that TCNformer has the lowest mean squared error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) in contrast to the other algorithms in the field of the short-term prediction of photovoltaic power, and furthermore, the effectiveness of each module has been verified through ablation experiments.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transformer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SkipGRU</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TCN</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">photovoltaic power prediction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time series data prediction</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dejun Ning</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jue Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2023), 4, p 2593</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:4, p 2593</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app13042593</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/3228aa1a04ee471f8f92998a9300c59d</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/13/4/2593</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">4, p 2593</subfield></datafield></record></collection>
|
score |
7.4014387 |