Design optimization of a truncated cone-shaped LaBr3:Ce/NaI:Tl phoswich detector based on GEANT4 simulation
The anti-Compton phoswich (ACP) detector, which is composed of multiple scintillators with one photomultiplier tube, takes into account the Compton suppression function and portability, and therefore, a discussion on how to design its shape to improve the performance of the detector has become neces...
Ausführliche Beschreibung
Autor*in: |
R. P. Li [verfasserIn] H. D. Wang [verfasserIn] Jingbin Lu [verfasserIn] Chengqian Li [verfasserIn] Zirui Situ [verfasserIn] Huan Qu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Übergeordnetes Werk: |
In: AIP Advances - AIP Publishing LLC, 2011, 13(2023), 1, Seite 015006-015006-6 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2023 ; number:1 ; pages:015006-015006-6 |
Links: |
---|
DOI / URN: |
10.1063/5.0138163 |
---|
Katalog-ID: |
DOAJ081107757 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ081107757 | ||
003 | DE-627 | ||
005 | 20230310195639.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230310s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1063/5.0138163 |2 doi | |
035 | |a (DE-627)DOAJ081107757 | ||
035 | |a (DE-599)DOAJ5b6bcd256afa4a6b900e657049ef7362 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC1-999 | |
100 | 0 | |a R. P. Li |e verfasserin |4 aut | |
245 | 1 | 0 | |a Design optimization of a truncated cone-shaped LaBr3:Ce/NaI:Tl phoswich detector based on GEANT4 simulation |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The anti-Compton phoswich (ACP) detector, which is composed of multiple scintillators with one photomultiplier tube, takes into account the Compton suppression function and portability, and therefore, a discussion on how to design its shape to improve the performance of the detector has become necessary. Based on an ACP detector using a well-typed LaBr3:Ce/NaI:Tl composite scintillator that has been developed in the laboratory in early work, this study uses GEANT4 to simulate and study the influence of the change in the shape and size of the secondary scintillator on the performance of the detector, such as the Compton suppression ratio, the energy resolution, and the full-energy peak (FEP) loss. In the course of the study, we mainly investigate the variation of the performance of the detector in two ways. First, the inclination angle of the truncated cone is gradually changed to compare its FEP address and Compton suppression ratio. Second, the case of the well-shaped and annular-shaped secondary scintillators is compared, respectively, to find out their impact on energy resolution and FEP address. The final results show that, compared with the ACP detector using a φ75 × 90 mm2 LaBr3:Ce/NaI:Tl cylindrical composite scintillator, a truncated cone-shaped composite scintillator of 0.8 inclination may have an equivalent 137% light yield (137% signal-to-noise ratio), a Compton suppression ratio of 89.62% (at 662 keV), 89.98% FWHM energy resolution, and a volume reduction of 36.74%, which means that the weight of the detector is reduced by 2.107 kg. | ||
653 | 0 | |a Physics | |
700 | 0 | |a H. D. Wang |e verfasserin |4 aut | |
700 | 0 | |a Jingbin Lu |e verfasserin |4 aut | |
700 | 0 | |a Chengqian Li |e verfasserin |4 aut | |
700 | 0 | |a Zirui Situ |e verfasserin |4 aut | |
700 | 0 | |a Huan Qu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t AIP Advances |d AIP Publishing LLC, 2011 |g 13(2023), 1, Seite 015006-015006-6 |w (DE-627)641391706 |w (DE-600)2583909-3 |x 21583226 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2023 |g number:1 |g pages:015006-015006-6 |
856 | 4 | 0 | |u https://doi.org/10.1063/5.0138163 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5b6bcd256afa4a6b900e657049ef7362 |z kostenfrei |
856 | 4 | 0 | |u http://dx.doi.org/10.1063/5.0138163 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2158-3226 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2023 |e 1 |h 015006-015006-6 |
author_variant |
r p l rpl h d w hdw j l jl c l cl z s zs h q hq |
---|---|
matchkey_str |
article:21583226:2023----::einpiiainftuctdoehpdarcnilhsiheet |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
QC |
publishDate |
2023 |
allfields |
10.1063/5.0138163 doi (DE-627)DOAJ081107757 (DE-599)DOAJ5b6bcd256afa4a6b900e657049ef7362 DE-627 ger DE-627 rakwb eng QC1-999 R. P. Li verfasserin aut Design optimization of a truncated cone-shaped LaBr3:Ce/NaI:Tl phoswich detector based on GEANT4 simulation 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The anti-Compton phoswich (ACP) detector, which is composed of multiple scintillators with one photomultiplier tube, takes into account the Compton suppression function and portability, and therefore, a discussion on how to design its shape to improve the performance of the detector has become necessary. Based on an ACP detector using a well-typed LaBr3:Ce/NaI:Tl composite scintillator that has been developed in the laboratory in early work, this study uses GEANT4 to simulate and study the influence of the change in the shape and size of the secondary scintillator on the performance of the detector, such as the Compton suppression ratio, the energy resolution, and the full-energy peak (FEP) loss. In the course of the study, we mainly investigate the variation of the performance of the detector in two ways. First, the inclination angle of the truncated cone is gradually changed to compare its FEP address and Compton suppression ratio. Second, the case of the well-shaped and annular-shaped secondary scintillators is compared, respectively, to find out their impact on energy resolution and FEP address. The final results show that, compared with the ACP detector using a φ75 × 90 mm2 LaBr3:Ce/NaI:Tl cylindrical composite scintillator, a truncated cone-shaped composite scintillator of 0.8 inclination may have an equivalent 137% light yield (137% signal-to-noise ratio), a Compton suppression ratio of 89.62% (at 662 keV), 89.98% FWHM energy resolution, and a volume reduction of 36.74%, which means that the weight of the detector is reduced by 2.107 kg. Physics H. D. Wang verfasserin aut Jingbin Lu verfasserin aut Chengqian Li verfasserin aut Zirui Situ verfasserin aut Huan Qu verfasserin aut In AIP Advances AIP Publishing LLC, 2011 13(2023), 1, Seite 015006-015006-6 (DE-627)641391706 (DE-600)2583909-3 21583226 nnns volume:13 year:2023 number:1 pages:015006-015006-6 https://doi.org/10.1063/5.0138163 kostenfrei https://doaj.org/article/5b6bcd256afa4a6b900e657049ef7362 kostenfrei http://dx.doi.org/10.1063/5.0138163 kostenfrei https://doaj.org/toc/2158-3226 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 1 015006-015006-6 |
spelling |
10.1063/5.0138163 doi (DE-627)DOAJ081107757 (DE-599)DOAJ5b6bcd256afa4a6b900e657049ef7362 DE-627 ger DE-627 rakwb eng QC1-999 R. P. Li verfasserin aut Design optimization of a truncated cone-shaped LaBr3:Ce/NaI:Tl phoswich detector based on GEANT4 simulation 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The anti-Compton phoswich (ACP) detector, which is composed of multiple scintillators with one photomultiplier tube, takes into account the Compton suppression function and portability, and therefore, a discussion on how to design its shape to improve the performance of the detector has become necessary. Based on an ACP detector using a well-typed LaBr3:Ce/NaI:Tl composite scintillator that has been developed in the laboratory in early work, this study uses GEANT4 to simulate and study the influence of the change in the shape and size of the secondary scintillator on the performance of the detector, such as the Compton suppression ratio, the energy resolution, and the full-energy peak (FEP) loss. In the course of the study, we mainly investigate the variation of the performance of the detector in two ways. First, the inclination angle of the truncated cone is gradually changed to compare its FEP address and Compton suppression ratio. Second, the case of the well-shaped and annular-shaped secondary scintillators is compared, respectively, to find out their impact on energy resolution and FEP address. The final results show that, compared with the ACP detector using a φ75 × 90 mm2 LaBr3:Ce/NaI:Tl cylindrical composite scintillator, a truncated cone-shaped composite scintillator of 0.8 inclination may have an equivalent 137% light yield (137% signal-to-noise ratio), a Compton suppression ratio of 89.62% (at 662 keV), 89.98% FWHM energy resolution, and a volume reduction of 36.74%, which means that the weight of the detector is reduced by 2.107 kg. Physics H. D. Wang verfasserin aut Jingbin Lu verfasserin aut Chengqian Li verfasserin aut Zirui Situ verfasserin aut Huan Qu verfasserin aut In AIP Advances AIP Publishing LLC, 2011 13(2023), 1, Seite 015006-015006-6 (DE-627)641391706 (DE-600)2583909-3 21583226 nnns volume:13 year:2023 number:1 pages:015006-015006-6 https://doi.org/10.1063/5.0138163 kostenfrei https://doaj.org/article/5b6bcd256afa4a6b900e657049ef7362 kostenfrei http://dx.doi.org/10.1063/5.0138163 kostenfrei https://doaj.org/toc/2158-3226 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 1 015006-015006-6 |
allfields_unstemmed |
10.1063/5.0138163 doi (DE-627)DOAJ081107757 (DE-599)DOAJ5b6bcd256afa4a6b900e657049ef7362 DE-627 ger DE-627 rakwb eng QC1-999 R. P. Li verfasserin aut Design optimization of a truncated cone-shaped LaBr3:Ce/NaI:Tl phoswich detector based on GEANT4 simulation 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The anti-Compton phoswich (ACP) detector, which is composed of multiple scintillators with one photomultiplier tube, takes into account the Compton suppression function and portability, and therefore, a discussion on how to design its shape to improve the performance of the detector has become necessary. Based on an ACP detector using a well-typed LaBr3:Ce/NaI:Tl composite scintillator that has been developed in the laboratory in early work, this study uses GEANT4 to simulate and study the influence of the change in the shape and size of the secondary scintillator on the performance of the detector, such as the Compton suppression ratio, the energy resolution, and the full-energy peak (FEP) loss. In the course of the study, we mainly investigate the variation of the performance of the detector in two ways. First, the inclination angle of the truncated cone is gradually changed to compare its FEP address and Compton suppression ratio. Second, the case of the well-shaped and annular-shaped secondary scintillators is compared, respectively, to find out their impact on energy resolution and FEP address. The final results show that, compared with the ACP detector using a φ75 × 90 mm2 LaBr3:Ce/NaI:Tl cylindrical composite scintillator, a truncated cone-shaped composite scintillator of 0.8 inclination may have an equivalent 137% light yield (137% signal-to-noise ratio), a Compton suppression ratio of 89.62% (at 662 keV), 89.98% FWHM energy resolution, and a volume reduction of 36.74%, which means that the weight of the detector is reduced by 2.107 kg. Physics H. D. Wang verfasserin aut Jingbin Lu verfasserin aut Chengqian Li verfasserin aut Zirui Situ verfasserin aut Huan Qu verfasserin aut In AIP Advances AIP Publishing LLC, 2011 13(2023), 1, Seite 015006-015006-6 (DE-627)641391706 (DE-600)2583909-3 21583226 nnns volume:13 year:2023 number:1 pages:015006-015006-6 https://doi.org/10.1063/5.0138163 kostenfrei https://doaj.org/article/5b6bcd256afa4a6b900e657049ef7362 kostenfrei http://dx.doi.org/10.1063/5.0138163 kostenfrei https://doaj.org/toc/2158-3226 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 1 015006-015006-6 |
allfieldsGer |
10.1063/5.0138163 doi (DE-627)DOAJ081107757 (DE-599)DOAJ5b6bcd256afa4a6b900e657049ef7362 DE-627 ger DE-627 rakwb eng QC1-999 R. P. Li verfasserin aut Design optimization of a truncated cone-shaped LaBr3:Ce/NaI:Tl phoswich detector based on GEANT4 simulation 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The anti-Compton phoswich (ACP) detector, which is composed of multiple scintillators with one photomultiplier tube, takes into account the Compton suppression function and portability, and therefore, a discussion on how to design its shape to improve the performance of the detector has become necessary. Based on an ACP detector using a well-typed LaBr3:Ce/NaI:Tl composite scintillator that has been developed in the laboratory in early work, this study uses GEANT4 to simulate and study the influence of the change in the shape and size of the secondary scintillator on the performance of the detector, such as the Compton suppression ratio, the energy resolution, and the full-energy peak (FEP) loss. In the course of the study, we mainly investigate the variation of the performance of the detector in two ways. First, the inclination angle of the truncated cone is gradually changed to compare its FEP address and Compton suppression ratio. Second, the case of the well-shaped and annular-shaped secondary scintillators is compared, respectively, to find out their impact on energy resolution and FEP address. The final results show that, compared with the ACP detector using a φ75 × 90 mm2 LaBr3:Ce/NaI:Tl cylindrical composite scintillator, a truncated cone-shaped composite scintillator of 0.8 inclination may have an equivalent 137% light yield (137% signal-to-noise ratio), a Compton suppression ratio of 89.62% (at 662 keV), 89.98% FWHM energy resolution, and a volume reduction of 36.74%, which means that the weight of the detector is reduced by 2.107 kg. Physics H. D. Wang verfasserin aut Jingbin Lu verfasserin aut Chengqian Li verfasserin aut Zirui Situ verfasserin aut Huan Qu verfasserin aut In AIP Advances AIP Publishing LLC, 2011 13(2023), 1, Seite 015006-015006-6 (DE-627)641391706 (DE-600)2583909-3 21583226 nnns volume:13 year:2023 number:1 pages:015006-015006-6 https://doi.org/10.1063/5.0138163 kostenfrei https://doaj.org/article/5b6bcd256afa4a6b900e657049ef7362 kostenfrei http://dx.doi.org/10.1063/5.0138163 kostenfrei https://doaj.org/toc/2158-3226 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 1 015006-015006-6 |
allfieldsSound |
10.1063/5.0138163 doi (DE-627)DOAJ081107757 (DE-599)DOAJ5b6bcd256afa4a6b900e657049ef7362 DE-627 ger DE-627 rakwb eng QC1-999 R. P. Li verfasserin aut Design optimization of a truncated cone-shaped LaBr3:Ce/NaI:Tl phoswich detector based on GEANT4 simulation 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The anti-Compton phoswich (ACP) detector, which is composed of multiple scintillators with one photomultiplier tube, takes into account the Compton suppression function and portability, and therefore, a discussion on how to design its shape to improve the performance of the detector has become necessary. Based on an ACP detector using a well-typed LaBr3:Ce/NaI:Tl composite scintillator that has been developed in the laboratory in early work, this study uses GEANT4 to simulate and study the influence of the change in the shape and size of the secondary scintillator on the performance of the detector, such as the Compton suppression ratio, the energy resolution, and the full-energy peak (FEP) loss. In the course of the study, we mainly investigate the variation of the performance of the detector in two ways. First, the inclination angle of the truncated cone is gradually changed to compare its FEP address and Compton suppression ratio. Second, the case of the well-shaped and annular-shaped secondary scintillators is compared, respectively, to find out their impact on energy resolution and FEP address. The final results show that, compared with the ACP detector using a φ75 × 90 mm2 LaBr3:Ce/NaI:Tl cylindrical composite scintillator, a truncated cone-shaped composite scintillator of 0.8 inclination may have an equivalent 137% light yield (137% signal-to-noise ratio), a Compton suppression ratio of 89.62% (at 662 keV), 89.98% FWHM energy resolution, and a volume reduction of 36.74%, which means that the weight of the detector is reduced by 2.107 kg. Physics H. D. Wang verfasserin aut Jingbin Lu verfasserin aut Chengqian Li verfasserin aut Zirui Situ verfasserin aut Huan Qu verfasserin aut In AIP Advances AIP Publishing LLC, 2011 13(2023), 1, Seite 015006-015006-6 (DE-627)641391706 (DE-600)2583909-3 21583226 nnns volume:13 year:2023 number:1 pages:015006-015006-6 https://doi.org/10.1063/5.0138163 kostenfrei https://doaj.org/article/5b6bcd256afa4a6b900e657049ef7362 kostenfrei http://dx.doi.org/10.1063/5.0138163 kostenfrei https://doaj.org/toc/2158-3226 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2023 1 015006-015006-6 |
language |
English |
source |
In AIP Advances 13(2023), 1, Seite 015006-015006-6 volume:13 year:2023 number:1 pages:015006-015006-6 |
sourceStr |
In AIP Advances 13(2023), 1, Seite 015006-015006-6 volume:13 year:2023 number:1 pages:015006-015006-6 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Physics |
isfreeaccess_bool |
true |
container_title |
AIP Advances |
authorswithroles_txt_mv |
R. P. Li @@aut@@ H. D. Wang @@aut@@ Jingbin Lu @@aut@@ Chengqian Li @@aut@@ Zirui Situ @@aut@@ Huan Qu @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
641391706 |
id |
DOAJ081107757 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ081107757</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310195639.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1063/5.0138163</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ081107757</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5b6bcd256afa4a6b900e657049ef7362</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">R. P. Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Design optimization of a truncated cone-shaped LaBr3:Ce/NaI:Tl phoswich detector based on GEANT4 simulation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The anti-Compton phoswich (ACP) detector, which is composed of multiple scintillators with one photomultiplier tube, takes into account the Compton suppression function and portability, and therefore, a discussion on how to design its shape to improve the performance of the detector has become necessary. Based on an ACP detector using a well-typed LaBr3:Ce/NaI:Tl composite scintillator that has been developed in the laboratory in early work, this study uses GEANT4 to simulate and study the influence of the change in the shape and size of the secondary scintillator on the performance of the detector, such as the Compton suppression ratio, the energy resolution, and the full-energy peak (FEP) loss. In the course of the study, we mainly investigate the variation of the performance of the detector in two ways. First, the inclination angle of the truncated cone is gradually changed to compare its FEP address and Compton suppression ratio. Second, the case of the well-shaped and annular-shaped secondary scintillators is compared, respectively, to find out their impact on energy resolution and FEP address. The final results show that, compared with the ACP detector using a φ75 × 90 mm2 LaBr3:Ce/NaI:Tl cylindrical composite scintillator, a truncated cone-shaped composite scintillator of 0.8 inclination may have an equivalent 137% light yield (137% signal-to-noise ratio), a Compton suppression ratio of 89.62% (at 662 keV), 89.98% FWHM energy resolution, and a volume reduction of 36.74%, which means that the weight of the detector is reduced by 2.107 kg.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">H. D. Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingbin Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chengqian Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zirui Situ</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huan Qu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">AIP Advances</subfield><subfield code="d">AIP Publishing LLC, 2011</subfield><subfield code="g">13(2023), 1, Seite 015006-015006-6</subfield><subfield code="w">(DE-627)641391706</subfield><subfield code="w">(DE-600)2583909-3</subfield><subfield code="x">21583226</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:015006-015006-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1063/5.0138163</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5b6bcd256afa4a6b900e657049ef7362</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1063/5.0138163</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2158-3226</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="h">015006-015006-6</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
R. P. Li |
spellingShingle |
R. P. Li misc QC1-999 misc Physics Design optimization of a truncated cone-shaped LaBr3:Ce/NaI:Tl phoswich detector based on GEANT4 simulation |
authorStr |
R. P. Li |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)641391706 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC1-999 |
illustrated |
Not Illustrated |
issn |
21583226 |
topic_title |
QC1-999 Design optimization of a truncated cone-shaped LaBr3:Ce/NaI:Tl phoswich detector based on GEANT4 simulation |
topic |
misc QC1-999 misc Physics |
topic_unstemmed |
misc QC1-999 misc Physics |
topic_browse |
misc QC1-999 misc Physics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
AIP Advances |
hierarchy_parent_id |
641391706 |
hierarchy_top_title |
AIP Advances |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)641391706 (DE-600)2583909-3 |
title |
Design optimization of a truncated cone-shaped LaBr3:Ce/NaI:Tl phoswich detector based on GEANT4 simulation |
ctrlnum |
(DE-627)DOAJ081107757 (DE-599)DOAJ5b6bcd256afa4a6b900e657049ef7362 |
title_full |
Design optimization of a truncated cone-shaped LaBr3:Ce/NaI:Tl phoswich detector based on GEANT4 simulation |
author_sort |
R. P. Li |
journal |
AIP Advances |
journalStr |
AIP Advances |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
015006 |
author_browse |
R. P. Li H. D. Wang Jingbin Lu Chengqian Li Zirui Situ Huan Qu |
container_volume |
13 |
class |
QC1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
R. P. Li |
doi_str_mv |
10.1063/5.0138163 |
author2-role |
verfasserin |
title_sort |
design optimization of a truncated cone-shaped labr3:ce/nai:tl phoswich detector based on geant4 simulation |
callnumber |
QC1-999 |
title_auth |
Design optimization of a truncated cone-shaped LaBr3:Ce/NaI:Tl phoswich detector based on GEANT4 simulation |
abstract |
The anti-Compton phoswich (ACP) detector, which is composed of multiple scintillators with one photomultiplier tube, takes into account the Compton suppression function and portability, and therefore, a discussion on how to design its shape to improve the performance of the detector has become necessary. Based on an ACP detector using a well-typed LaBr3:Ce/NaI:Tl composite scintillator that has been developed in the laboratory in early work, this study uses GEANT4 to simulate and study the influence of the change in the shape and size of the secondary scintillator on the performance of the detector, such as the Compton suppression ratio, the energy resolution, and the full-energy peak (FEP) loss. In the course of the study, we mainly investigate the variation of the performance of the detector in two ways. First, the inclination angle of the truncated cone is gradually changed to compare its FEP address and Compton suppression ratio. Second, the case of the well-shaped and annular-shaped secondary scintillators is compared, respectively, to find out their impact on energy resolution and FEP address. The final results show that, compared with the ACP detector using a φ75 × 90 mm2 LaBr3:Ce/NaI:Tl cylindrical composite scintillator, a truncated cone-shaped composite scintillator of 0.8 inclination may have an equivalent 137% light yield (137% signal-to-noise ratio), a Compton suppression ratio of 89.62% (at 662 keV), 89.98% FWHM energy resolution, and a volume reduction of 36.74%, which means that the weight of the detector is reduced by 2.107 kg. |
abstractGer |
The anti-Compton phoswich (ACP) detector, which is composed of multiple scintillators with one photomultiplier tube, takes into account the Compton suppression function and portability, and therefore, a discussion on how to design its shape to improve the performance of the detector has become necessary. Based on an ACP detector using a well-typed LaBr3:Ce/NaI:Tl composite scintillator that has been developed in the laboratory in early work, this study uses GEANT4 to simulate and study the influence of the change in the shape and size of the secondary scintillator on the performance of the detector, such as the Compton suppression ratio, the energy resolution, and the full-energy peak (FEP) loss. In the course of the study, we mainly investigate the variation of the performance of the detector in two ways. First, the inclination angle of the truncated cone is gradually changed to compare its FEP address and Compton suppression ratio. Second, the case of the well-shaped and annular-shaped secondary scintillators is compared, respectively, to find out their impact on energy resolution and FEP address. The final results show that, compared with the ACP detector using a φ75 × 90 mm2 LaBr3:Ce/NaI:Tl cylindrical composite scintillator, a truncated cone-shaped composite scintillator of 0.8 inclination may have an equivalent 137% light yield (137% signal-to-noise ratio), a Compton suppression ratio of 89.62% (at 662 keV), 89.98% FWHM energy resolution, and a volume reduction of 36.74%, which means that the weight of the detector is reduced by 2.107 kg. |
abstract_unstemmed |
The anti-Compton phoswich (ACP) detector, which is composed of multiple scintillators with one photomultiplier tube, takes into account the Compton suppression function and portability, and therefore, a discussion on how to design its shape to improve the performance of the detector has become necessary. Based on an ACP detector using a well-typed LaBr3:Ce/NaI:Tl composite scintillator that has been developed in the laboratory in early work, this study uses GEANT4 to simulate and study the influence of the change in the shape and size of the secondary scintillator on the performance of the detector, such as the Compton suppression ratio, the energy resolution, and the full-energy peak (FEP) loss. In the course of the study, we mainly investigate the variation of the performance of the detector in two ways. First, the inclination angle of the truncated cone is gradually changed to compare its FEP address and Compton suppression ratio. Second, the case of the well-shaped and annular-shaped secondary scintillators is compared, respectively, to find out their impact on energy resolution and FEP address. The final results show that, compared with the ACP detector using a φ75 × 90 mm2 LaBr3:Ce/NaI:Tl cylindrical composite scintillator, a truncated cone-shaped composite scintillator of 0.8 inclination may have an equivalent 137% light yield (137% signal-to-noise ratio), a Compton suppression ratio of 89.62% (at 662 keV), 89.98% FWHM energy resolution, and a volume reduction of 36.74%, which means that the weight of the detector is reduced by 2.107 kg. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Design optimization of a truncated cone-shaped LaBr3:Ce/NaI:Tl phoswich detector based on GEANT4 simulation |
url |
https://doi.org/10.1063/5.0138163 https://doaj.org/article/5b6bcd256afa4a6b900e657049ef7362 http://dx.doi.org/10.1063/5.0138163 https://doaj.org/toc/2158-3226 |
remote_bool |
true |
author2 |
H. D. Wang Jingbin Lu Chengqian Li Zirui Situ Huan Qu |
author2Str |
H. D. Wang Jingbin Lu Chengqian Li Zirui Situ Huan Qu |
ppnlink |
641391706 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1063/5.0138163 |
callnumber-a |
QC1-999 |
up_date |
2024-07-03T18:20:15.694Z |
_version_ |
1803583032602394624 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ081107757</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310195639.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1063/5.0138163</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ081107757</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5b6bcd256afa4a6b900e657049ef7362</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">R. P. Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Design optimization of a truncated cone-shaped LaBr3:Ce/NaI:Tl phoswich detector based on GEANT4 simulation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The anti-Compton phoswich (ACP) detector, which is composed of multiple scintillators with one photomultiplier tube, takes into account the Compton suppression function and portability, and therefore, a discussion on how to design its shape to improve the performance of the detector has become necessary. Based on an ACP detector using a well-typed LaBr3:Ce/NaI:Tl composite scintillator that has been developed in the laboratory in early work, this study uses GEANT4 to simulate and study the influence of the change in the shape and size of the secondary scintillator on the performance of the detector, such as the Compton suppression ratio, the energy resolution, and the full-energy peak (FEP) loss. In the course of the study, we mainly investigate the variation of the performance of the detector in two ways. First, the inclination angle of the truncated cone is gradually changed to compare its FEP address and Compton suppression ratio. Second, the case of the well-shaped and annular-shaped secondary scintillators is compared, respectively, to find out their impact on energy resolution and FEP address. The final results show that, compared with the ACP detector using a φ75 × 90 mm2 LaBr3:Ce/NaI:Tl cylindrical composite scintillator, a truncated cone-shaped composite scintillator of 0.8 inclination may have an equivalent 137% light yield (137% signal-to-noise ratio), a Compton suppression ratio of 89.62% (at 662 keV), 89.98% FWHM energy resolution, and a volume reduction of 36.74%, which means that the weight of the detector is reduced by 2.107 kg.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">H. D. Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jingbin Lu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chengqian Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zirui Situ</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huan Qu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">AIP Advances</subfield><subfield code="d">AIP Publishing LLC, 2011</subfield><subfield code="g">13(2023), 1, Seite 015006-015006-6</subfield><subfield code="w">(DE-627)641391706</subfield><subfield code="w">(DE-600)2583909-3</subfield><subfield code="x">21583226</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:015006-015006-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1063/5.0138163</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5b6bcd256afa4a6b900e657049ef7362</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1063/5.0138163</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2158-3226</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="h">015006-015006-6</subfield></datafield></record></collection>
|
score |
7.401039 |