A New Unsupervised Video Anomaly Detection Using Multi-Scale Feature Memorization and Multipath Temporal Information Prediction
Anomaly detection in video is an advanced computer vision challenge that recognizes video segments containing out-of-the-ordinary motions or objects. Most recent techniques in video anomaly detection have focused on reconstruction and prediction methods; however, in practice, frame reconstruction me...
Ausführliche Beschreibung
Autor*in: |
Neda Taghinezhad [verfasserIn] Mehran Yazdi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 11(2023), Seite 9295-9310 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2023 ; pages:9295-9310 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2023.3237028 |
---|
Katalog-ID: |
DOAJ081265697 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ081265697 | ||
003 | DE-627 | ||
005 | 20230310211431.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230310s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2023.3237028 |2 doi | |
035 | |a (DE-627)DOAJ081265697 | ||
035 | |a (DE-599)DOAJ42e3f3203e6a4ec5a19d4d2701543f62 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Neda Taghinezhad |e verfasserin |4 aut | |
245 | 1 | 2 | |a A New Unsupervised Video Anomaly Detection Using Multi-Scale Feature Memorization and Multipath Temporal Information Prediction |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Anomaly detection in video is an advanced computer vision challenge that recognizes video segments containing out-of-the-ordinary motions or objects. Most recent techniques in video anomaly detection have focused on reconstruction and prediction methods; however, in practice, frame reconstruction methods deliver suboptimal results due to the outstanding generalization abilities of convolutional neural networks when reconstructing abnormal frames. Meanwhile, frame prediction methods have drawn much attention and are a powerful way of simulating the dynamics of natural scenes. This paper provides a new unsupervised frame prediction-based algorithm for anomaly detection that improves overall performance. Our suggested strategy follows a U-Net-like architecture that employs a Time-distributed 2D CNN-based encoder and 2D CNN-based decoder. A memory module is used in the design to retrieve and store the most relevant prototypical pattern of the normal scenario in the memory slots during training giving our model the capacity to produce poor predictions in the case of unusual input. For the memory module to fully retain normal semantic patterns on multiple scales, we propose an upstream multi-branch structure composed of dilated convolutions to extract contextual information. We also provide a multi-path structure that, as a great substitute for the optical flow loss function, directly includes temporal information into the network design. Experiments on the UCSD Ped1, UCSD Ped2, and CUHK Avenue benchmark datasets revealed that our design outperforms most competing models. | ||
650 | 4 | |a Video anomaly detection | |
650 | 4 | |a U-Net | |
650 | 4 | |a future frame prediction | |
650 | 4 | |a memory networks | |
650 | 4 | |a surveillance videos | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Mehran Yazdi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 11(2023), Seite 9295-9310 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2023 |g pages:9295-9310 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2023.3237028 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/42e3f3203e6a4ec5a19d4d2701543f62 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/10017243/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2023 |h 9295-9310 |
author_variant |
n t nt m y my |
---|---|
matchkey_str |
article:21693536:2023----::nwnuevsdieaoayeetouigutsaeetrmmrztoadutptt |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TK |
publishDate |
2023 |
allfields |
10.1109/ACCESS.2023.3237028 doi (DE-627)DOAJ081265697 (DE-599)DOAJ42e3f3203e6a4ec5a19d4d2701543f62 DE-627 ger DE-627 rakwb eng TK1-9971 Neda Taghinezhad verfasserin aut A New Unsupervised Video Anomaly Detection Using Multi-Scale Feature Memorization and Multipath Temporal Information Prediction 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Anomaly detection in video is an advanced computer vision challenge that recognizes video segments containing out-of-the-ordinary motions or objects. Most recent techniques in video anomaly detection have focused on reconstruction and prediction methods; however, in practice, frame reconstruction methods deliver suboptimal results due to the outstanding generalization abilities of convolutional neural networks when reconstructing abnormal frames. Meanwhile, frame prediction methods have drawn much attention and are a powerful way of simulating the dynamics of natural scenes. This paper provides a new unsupervised frame prediction-based algorithm for anomaly detection that improves overall performance. Our suggested strategy follows a U-Net-like architecture that employs a Time-distributed 2D CNN-based encoder and 2D CNN-based decoder. A memory module is used in the design to retrieve and store the most relevant prototypical pattern of the normal scenario in the memory slots during training giving our model the capacity to produce poor predictions in the case of unusual input. For the memory module to fully retain normal semantic patterns on multiple scales, we propose an upstream multi-branch structure composed of dilated convolutions to extract contextual information. We also provide a multi-path structure that, as a great substitute for the optical flow loss function, directly includes temporal information into the network design. Experiments on the UCSD Ped1, UCSD Ped2, and CUHK Avenue benchmark datasets revealed that our design outperforms most competing models. Video anomaly detection U-Net future frame prediction memory networks surveillance videos Electrical engineering. Electronics. Nuclear engineering Mehran Yazdi verfasserin aut In IEEE Access IEEE, 2014 11(2023), Seite 9295-9310 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:11 year:2023 pages:9295-9310 https://doi.org/10.1109/ACCESS.2023.3237028 kostenfrei https://doaj.org/article/42e3f3203e6a4ec5a19d4d2701543f62 kostenfrei https://ieeexplore.ieee.org/document/10017243/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 9295-9310 |
spelling |
10.1109/ACCESS.2023.3237028 doi (DE-627)DOAJ081265697 (DE-599)DOAJ42e3f3203e6a4ec5a19d4d2701543f62 DE-627 ger DE-627 rakwb eng TK1-9971 Neda Taghinezhad verfasserin aut A New Unsupervised Video Anomaly Detection Using Multi-Scale Feature Memorization and Multipath Temporal Information Prediction 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Anomaly detection in video is an advanced computer vision challenge that recognizes video segments containing out-of-the-ordinary motions or objects. Most recent techniques in video anomaly detection have focused on reconstruction and prediction methods; however, in practice, frame reconstruction methods deliver suboptimal results due to the outstanding generalization abilities of convolutional neural networks when reconstructing abnormal frames. Meanwhile, frame prediction methods have drawn much attention and are a powerful way of simulating the dynamics of natural scenes. This paper provides a new unsupervised frame prediction-based algorithm for anomaly detection that improves overall performance. Our suggested strategy follows a U-Net-like architecture that employs a Time-distributed 2D CNN-based encoder and 2D CNN-based decoder. A memory module is used in the design to retrieve and store the most relevant prototypical pattern of the normal scenario in the memory slots during training giving our model the capacity to produce poor predictions in the case of unusual input. For the memory module to fully retain normal semantic patterns on multiple scales, we propose an upstream multi-branch structure composed of dilated convolutions to extract contextual information. We also provide a multi-path structure that, as a great substitute for the optical flow loss function, directly includes temporal information into the network design. Experiments on the UCSD Ped1, UCSD Ped2, and CUHK Avenue benchmark datasets revealed that our design outperforms most competing models. Video anomaly detection U-Net future frame prediction memory networks surveillance videos Electrical engineering. Electronics. Nuclear engineering Mehran Yazdi verfasserin aut In IEEE Access IEEE, 2014 11(2023), Seite 9295-9310 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:11 year:2023 pages:9295-9310 https://doi.org/10.1109/ACCESS.2023.3237028 kostenfrei https://doaj.org/article/42e3f3203e6a4ec5a19d4d2701543f62 kostenfrei https://ieeexplore.ieee.org/document/10017243/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 9295-9310 |
allfields_unstemmed |
10.1109/ACCESS.2023.3237028 doi (DE-627)DOAJ081265697 (DE-599)DOAJ42e3f3203e6a4ec5a19d4d2701543f62 DE-627 ger DE-627 rakwb eng TK1-9971 Neda Taghinezhad verfasserin aut A New Unsupervised Video Anomaly Detection Using Multi-Scale Feature Memorization and Multipath Temporal Information Prediction 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Anomaly detection in video is an advanced computer vision challenge that recognizes video segments containing out-of-the-ordinary motions or objects. Most recent techniques in video anomaly detection have focused on reconstruction and prediction methods; however, in practice, frame reconstruction methods deliver suboptimal results due to the outstanding generalization abilities of convolutional neural networks when reconstructing abnormal frames. Meanwhile, frame prediction methods have drawn much attention and are a powerful way of simulating the dynamics of natural scenes. This paper provides a new unsupervised frame prediction-based algorithm for anomaly detection that improves overall performance. Our suggested strategy follows a U-Net-like architecture that employs a Time-distributed 2D CNN-based encoder and 2D CNN-based decoder. A memory module is used in the design to retrieve and store the most relevant prototypical pattern of the normal scenario in the memory slots during training giving our model the capacity to produce poor predictions in the case of unusual input. For the memory module to fully retain normal semantic patterns on multiple scales, we propose an upstream multi-branch structure composed of dilated convolutions to extract contextual information. We also provide a multi-path structure that, as a great substitute for the optical flow loss function, directly includes temporal information into the network design. Experiments on the UCSD Ped1, UCSD Ped2, and CUHK Avenue benchmark datasets revealed that our design outperforms most competing models. Video anomaly detection U-Net future frame prediction memory networks surveillance videos Electrical engineering. Electronics. Nuclear engineering Mehran Yazdi verfasserin aut In IEEE Access IEEE, 2014 11(2023), Seite 9295-9310 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:11 year:2023 pages:9295-9310 https://doi.org/10.1109/ACCESS.2023.3237028 kostenfrei https://doaj.org/article/42e3f3203e6a4ec5a19d4d2701543f62 kostenfrei https://ieeexplore.ieee.org/document/10017243/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 9295-9310 |
allfieldsGer |
10.1109/ACCESS.2023.3237028 doi (DE-627)DOAJ081265697 (DE-599)DOAJ42e3f3203e6a4ec5a19d4d2701543f62 DE-627 ger DE-627 rakwb eng TK1-9971 Neda Taghinezhad verfasserin aut A New Unsupervised Video Anomaly Detection Using Multi-Scale Feature Memorization and Multipath Temporal Information Prediction 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Anomaly detection in video is an advanced computer vision challenge that recognizes video segments containing out-of-the-ordinary motions or objects. Most recent techniques in video anomaly detection have focused on reconstruction and prediction methods; however, in practice, frame reconstruction methods deliver suboptimal results due to the outstanding generalization abilities of convolutional neural networks when reconstructing abnormal frames. Meanwhile, frame prediction methods have drawn much attention and are a powerful way of simulating the dynamics of natural scenes. This paper provides a new unsupervised frame prediction-based algorithm for anomaly detection that improves overall performance. Our suggested strategy follows a U-Net-like architecture that employs a Time-distributed 2D CNN-based encoder and 2D CNN-based decoder. A memory module is used in the design to retrieve and store the most relevant prototypical pattern of the normal scenario in the memory slots during training giving our model the capacity to produce poor predictions in the case of unusual input. For the memory module to fully retain normal semantic patterns on multiple scales, we propose an upstream multi-branch structure composed of dilated convolutions to extract contextual information. We also provide a multi-path structure that, as a great substitute for the optical flow loss function, directly includes temporal information into the network design. Experiments on the UCSD Ped1, UCSD Ped2, and CUHK Avenue benchmark datasets revealed that our design outperforms most competing models. Video anomaly detection U-Net future frame prediction memory networks surveillance videos Electrical engineering. Electronics. Nuclear engineering Mehran Yazdi verfasserin aut In IEEE Access IEEE, 2014 11(2023), Seite 9295-9310 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:11 year:2023 pages:9295-9310 https://doi.org/10.1109/ACCESS.2023.3237028 kostenfrei https://doaj.org/article/42e3f3203e6a4ec5a19d4d2701543f62 kostenfrei https://ieeexplore.ieee.org/document/10017243/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 9295-9310 |
allfieldsSound |
10.1109/ACCESS.2023.3237028 doi (DE-627)DOAJ081265697 (DE-599)DOAJ42e3f3203e6a4ec5a19d4d2701543f62 DE-627 ger DE-627 rakwb eng TK1-9971 Neda Taghinezhad verfasserin aut A New Unsupervised Video Anomaly Detection Using Multi-Scale Feature Memorization and Multipath Temporal Information Prediction 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Anomaly detection in video is an advanced computer vision challenge that recognizes video segments containing out-of-the-ordinary motions or objects. Most recent techniques in video anomaly detection have focused on reconstruction and prediction methods; however, in practice, frame reconstruction methods deliver suboptimal results due to the outstanding generalization abilities of convolutional neural networks when reconstructing abnormal frames. Meanwhile, frame prediction methods have drawn much attention and are a powerful way of simulating the dynamics of natural scenes. This paper provides a new unsupervised frame prediction-based algorithm for anomaly detection that improves overall performance. Our suggested strategy follows a U-Net-like architecture that employs a Time-distributed 2D CNN-based encoder and 2D CNN-based decoder. A memory module is used in the design to retrieve and store the most relevant prototypical pattern of the normal scenario in the memory slots during training giving our model the capacity to produce poor predictions in the case of unusual input. For the memory module to fully retain normal semantic patterns on multiple scales, we propose an upstream multi-branch structure composed of dilated convolutions to extract contextual information. We also provide a multi-path structure that, as a great substitute for the optical flow loss function, directly includes temporal information into the network design. Experiments on the UCSD Ped1, UCSD Ped2, and CUHK Avenue benchmark datasets revealed that our design outperforms most competing models. Video anomaly detection U-Net future frame prediction memory networks surveillance videos Electrical engineering. Electronics. Nuclear engineering Mehran Yazdi verfasserin aut In IEEE Access IEEE, 2014 11(2023), Seite 9295-9310 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:11 year:2023 pages:9295-9310 https://doi.org/10.1109/ACCESS.2023.3237028 kostenfrei https://doaj.org/article/42e3f3203e6a4ec5a19d4d2701543f62 kostenfrei https://ieeexplore.ieee.org/document/10017243/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2023 9295-9310 |
language |
English |
source |
In IEEE Access 11(2023), Seite 9295-9310 volume:11 year:2023 pages:9295-9310 |
sourceStr |
In IEEE Access 11(2023), Seite 9295-9310 volume:11 year:2023 pages:9295-9310 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Video anomaly detection U-Net future frame prediction memory networks surveillance videos Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Neda Taghinezhad @@aut@@ Mehran Yazdi @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ081265697 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ081265697</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310211431.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2023.3237028</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ081265697</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ42e3f3203e6a4ec5a19d4d2701543f62</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Neda Taghinezhad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A New Unsupervised Video Anomaly Detection Using Multi-Scale Feature Memorization and Multipath Temporal Information Prediction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Anomaly detection in video is an advanced computer vision challenge that recognizes video segments containing out-of-the-ordinary motions or objects. Most recent techniques in video anomaly detection have focused on reconstruction and prediction methods; however, in practice, frame reconstruction methods deliver suboptimal results due to the outstanding generalization abilities of convolutional neural networks when reconstructing abnormal frames. Meanwhile, frame prediction methods have drawn much attention and are a powerful way of simulating the dynamics of natural scenes. This paper provides a new unsupervised frame prediction-based algorithm for anomaly detection that improves overall performance. Our suggested strategy follows a U-Net-like architecture that employs a Time-distributed 2D CNN-based encoder and 2D CNN-based decoder. A memory module is used in the design to retrieve and store the most relevant prototypical pattern of the normal scenario in the memory slots during training giving our model the capacity to produce poor predictions in the case of unusual input. For the memory module to fully retain normal semantic patterns on multiple scales, we propose an upstream multi-branch structure composed of dilated convolutions to extract contextual information. We also provide a multi-path structure that, as a great substitute for the optical flow loss function, directly includes temporal information into the network design. Experiments on the UCSD Ped1, UCSD Ped2, and CUHK Avenue benchmark datasets revealed that our design outperforms most competing models.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Video anomaly detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">U-Net</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">future frame prediction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">memory networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">surveillance videos</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mehran Yazdi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">11(2023), Seite 9295-9310</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:9295-9310</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2023.3237028</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/42e3f3203e6a4ec5a19d4d2701543f62</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/10017243/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2023</subfield><subfield code="h">9295-9310</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Neda Taghinezhad |
spellingShingle |
Neda Taghinezhad misc TK1-9971 misc Video anomaly detection misc U-Net misc future frame prediction misc memory networks misc surveillance videos misc Electrical engineering. Electronics. Nuclear engineering A New Unsupervised Video Anomaly Detection Using Multi-Scale Feature Memorization and Multipath Temporal Information Prediction |
authorStr |
Neda Taghinezhad |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 A New Unsupervised Video Anomaly Detection Using Multi-Scale Feature Memorization and Multipath Temporal Information Prediction Video anomaly detection U-Net future frame prediction memory networks surveillance videos |
topic |
misc TK1-9971 misc Video anomaly detection misc U-Net misc future frame prediction misc memory networks misc surveillance videos misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Video anomaly detection misc U-Net misc future frame prediction misc memory networks misc surveillance videos misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Video anomaly detection misc U-Net misc future frame prediction misc memory networks misc surveillance videos misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
A New Unsupervised Video Anomaly Detection Using Multi-Scale Feature Memorization and Multipath Temporal Information Prediction |
ctrlnum |
(DE-627)DOAJ081265697 (DE-599)DOAJ42e3f3203e6a4ec5a19d4d2701543f62 |
title_full |
A New Unsupervised Video Anomaly Detection Using Multi-Scale Feature Memorization and Multipath Temporal Information Prediction |
author_sort |
Neda Taghinezhad |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
9295 |
author_browse |
Neda Taghinezhad Mehran Yazdi |
container_volume |
11 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Neda Taghinezhad |
doi_str_mv |
10.1109/ACCESS.2023.3237028 |
author2-role |
verfasserin |
title_sort |
new unsupervised video anomaly detection using multi-scale feature memorization and multipath temporal information prediction |
callnumber |
TK1-9971 |
title_auth |
A New Unsupervised Video Anomaly Detection Using Multi-Scale Feature Memorization and Multipath Temporal Information Prediction |
abstract |
Anomaly detection in video is an advanced computer vision challenge that recognizes video segments containing out-of-the-ordinary motions or objects. Most recent techniques in video anomaly detection have focused on reconstruction and prediction methods; however, in practice, frame reconstruction methods deliver suboptimal results due to the outstanding generalization abilities of convolutional neural networks when reconstructing abnormal frames. Meanwhile, frame prediction methods have drawn much attention and are a powerful way of simulating the dynamics of natural scenes. This paper provides a new unsupervised frame prediction-based algorithm for anomaly detection that improves overall performance. Our suggested strategy follows a U-Net-like architecture that employs a Time-distributed 2D CNN-based encoder and 2D CNN-based decoder. A memory module is used in the design to retrieve and store the most relevant prototypical pattern of the normal scenario in the memory slots during training giving our model the capacity to produce poor predictions in the case of unusual input. For the memory module to fully retain normal semantic patterns on multiple scales, we propose an upstream multi-branch structure composed of dilated convolutions to extract contextual information. We also provide a multi-path structure that, as a great substitute for the optical flow loss function, directly includes temporal information into the network design. Experiments on the UCSD Ped1, UCSD Ped2, and CUHK Avenue benchmark datasets revealed that our design outperforms most competing models. |
abstractGer |
Anomaly detection in video is an advanced computer vision challenge that recognizes video segments containing out-of-the-ordinary motions or objects. Most recent techniques in video anomaly detection have focused on reconstruction and prediction methods; however, in practice, frame reconstruction methods deliver suboptimal results due to the outstanding generalization abilities of convolutional neural networks when reconstructing abnormal frames. Meanwhile, frame prediction methods have drawn much attention and are a powerful way of simulating the dynamics of natural scenes. This paper provides a new unsupervised frame prediction-based algorithm for anomaly detection that improves overall performance. Our suggested strategy follows a U-Net-like architecture that employs a Time-distributed 2D CNN-based encoder and 2D CNN-based decoder. A memory module is used in the design to retrieve and store the most relevant prototypical pattern of the normal scenario in the memory slots during training giving our model the capacity to produce poor predictions in the case of unusual input. For the memory module to fully retain normal semantic patterns on multiple scales, we propose an upstream multi-branch structure composed of dilated convolutions to extract contextual information. We also provide a multi-path structure that, as a great substitute for the optical flow loss function, directly includes temporal information into the network design. Experiments on the UCSD Ped1, UCSD Ped2, and CUHK Avenue benchmark datasets revealed that our design outperforms most competing models. |
abstract_unstemmed |
Anomaly detection in video is an advanced computer vision challenge that recognizes video segments containing out-of-the-ordinary motions or objects. Most recent techniques in video anomaly detection have focused on reconstruction and prediction methods; however, in practice, frame reconstruction methods deliver suboptimal results due to the outstanding generalization abilities of convolutional neural networks when reconstructing abnormal frames. Meanwhile, frame prediction methods have drawn much attention and are a powerful way of simulating the dynamics of natural scenes. This paper provides a new unsupervised frame prediction-based algorithm for anomaly detection that improves overall performance. Our suggested strategy follows a U-Net-like architecture that employs a Time-distributed 2D CNN-based encoder and 2D CNN-based decoder. A memory module is used in the design to retrieve and store the most relevant prototypical pattern of the normal scenario in the memory slots during training giving our model the capacity to produce poor predictions in the case of unusual input. For the memory module to fully retain normal semantic patterns on multiple scales, we propose an upstream multi-branch structure composed of dilated convolutions to extract contextual information. We also provide a multi-path structure that, as a great substitute for the optical flow loss function, directly includes temporal information into the network design. Experiments on the UCSD Ped1, UCSD Ped2, and CUHK Avenue benchmark datasets revealed that our design outperforms most competing models. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
A New Unsupervised Video Anomaly Detection Using Multi-Scale Feature Memorization and Multipath Temporal Information Prediction |
url |
https://doi.org/10.1109/ACCESS.2023.3237028 https://doaj.org/article/42e3f3203e6a4ec5a19d4d2701543f62 https://ieeexplore.ieee.org/document/10017243/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Mehran Yazdi |
author2Str |
Mehran Yazdi |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2023.3237028 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T19:09:41.204Z |
_version_ |
1803586142161862656 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ081265697</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310211431.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2023.3237028</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ081265697</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ42e3f3203e6a4ec5a19d4d2701543f62</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Neda Taghinezhad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A New Unsupervised Video Anomaly Detection Using Multi-Scale Feature Memorization and Multipath Temporal Information Prediction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Anomaly detection in video is an advanced computer vision challenge that recognizes video segments containing out-of-the-ordinary motions or objects. Most recent techniques in video anomaly detection have focused on reconstruction and prediction methods; however, in practice, frame reconstruction methods deliver suboptimal results due to the outstanding generalization abilities of convolutional neural networks when reconstructing abnormal frames. Meanwhile, frame prediction methods have drawn much attention and are a powerful way of simulating the dynamics of natural scenes. This paper provides a new unsupervised frame prediction-based algorithm for anomaly detection that improves overall performance. Our suggested strategy follows a U-Net-like architecture that employs a Time-distributed 2D CNN-based encoder and 2D CNN-based decoder. A memory module is used in the design to retrieve and store the most relevant prototypical pattern of the normal scenario in the memory slots during training giving our model the capacity to produce poor predictions in the case of unusual input. For the memory module to fully retain normal semantic patterns on multiple scales, we propose an upstream multi-branch structure composed of dilated convolutions to extract contextual information. We also provide a multi-path structure that, as a great substitute for the optical flow loss function, directly includes temporal information into the network design. Experiments on the UCSD Ped1, UCSD Ped2, and CUHK Avenue benchmark datasets revealed that our design outperforms most competing models.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Video anomaly detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">U-Net</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">future frame prediction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">memory networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">surveillance videos</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mehran Yazdi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">11(2023), Seite 9295-9310</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2023</subfield><subfield code="g">pages:9295-9310</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2023.3237028</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/42e3f3203e6a4ec5a19d4d2701543f62</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/10017243/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2023</subfield><subfield code="h">9295-9310</subfield></datafield></record></collection>
|
score |
7.400299 |