Gene targeting in amyotrophic lateral sclerosis using causality-based feature selection and machine learning
Abstract Background Amyotrophic lateral sclerosis (ALS) is a rare progressive neurodegenerative disease that affects upper and lower motor neurons. As the molecular basis of the disease is still elusive, the development of high-throughput sequencing technologies, combined with data mining techniques...
Ausführliche Beschreibung
Autor*in: |
Kyriaki Founta [verfasserIn] Dimitra Dafou [verfasserIn] Eirini Kanata [verfasserIn] Theodoros Sklaviadis [verfasserIn] Theodoros P. Zanos [verfasserIn] Anastasios Gounaris [verfasserIn] Konstantinos Xanthopoulos [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Molecular Medicine - BMC, 2002, 29(2023), 1, Seite 13 |
---|---|
Übergeordnetes Werk: |
volume:29 ; year:2023 ; number:1 ; pages:13 |
Links: |
---|
DOI / URN: |
10.1186/s10020-023-00603-y |
---|
Katalog-ID: |
DOAJ081395949 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ081395949 | ||
003 | DE-627 | ||
005 | 20230310213556.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230310s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s10020-023-00603-y |2 doi | |
035 | |a (DE-627)DOAJ081395949 | ||
035 | |a (DE-599)DOAJ45dc835205954bdfb5a4c43a066c6851 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RM1-950 | |
050 | 0 | |a QD415-436 | |
100 | 0 | |a Kyriaki Founta |e verfasserin |4 aut | |
245 | 1 | 0 | |a Gene targeting in amyotrophic lateral sclerosis using causality-based feature selection and machine learning |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Background Amyotrophic lateral sclerosis (ALS) is a rare progressive neurodegenerative disease that affects upper and lower motor neurons. As the molecular basis of the disease is still elusive, the development of high-throughput sequencing technologies, combined with data mining techniques and machine learning methods, could provide remarkable results in identifying pathogenetic mechanisms. High dimensionality is a major problem when applying machine learning techniques in biomedical data analysis, since a huge number of features is available for a limited number of samples. The aim of this study was to develop a methodology for training interpretable machine learning models in the classification of ALS and ALS-subtypes samples, using gene expression datasets. Methods We performed dimensionality reduction in gene expression data using a semi-automated preprocessing systematic gene selection procedure using Statistically Equivalent Signature (SES), a causality-based feature selection algorithm, followed by Boosted Regression Trees (XGBoost) and Random Forest to train the machine learning classifiers. The SHapley Additive exPlanations (SHAP values) were used for interpretation of the machine learning classifiers. The methodology was developed and tested using two distinct publicly available ALS RNA-seq datasets. We evaluated the performance of SES as a dimensionality reduction method against: (a) Least Absolute Shrinkage and Selection Operator (LASSO), and (b) Local Outlier Factor (LOF). Results The proposed methodology achieved 85.18% accuracy for the classification of cerebellum or frontal cortex samples as C9orf72-related familial ALS, sporadic ALS or healthy samples. Importantly, the genes identified as the most determinative have also been reported as disease-associated in ALS literature. When tested in the evaluation dataset, the methodology achieved 88.89% accuracy for the classification of sporadic ALS motor neuron samples. When LASSO was used as feature selection method instead of SES, the accuracy of the machine learning classifiers ranged from 74.07 to 96.30%, depending on tissue assessed, while LOF underperformed significantly (77.78% accuracy for the classification of pooled cerebellum and frontal cortex samples). Conclusions Using SES, we addressed the challenge of high dimensionality in gene expression data analysis, and we trained accurate machine learning ALS classifiers, specific for the gene expression patterns of different disease subtypes and tissue samples, while identifying disease-associated genes. | ||
650 | 4 | |a Gene expression | |
650 | 4 | |a Causality-based feature selection | |
650 | 4 | |a Dimensionality reduction | |
650 | 4 | |a Machine learning | |
653 | 0 | |a Therapeutics. Pharmacology | |
653 | 0 | |a Biochemistry | |
700 | 0 | |a Dimitra Dafou |e verfasserin |4 aut | |
700 | 0 | |a Eirini Kanata |e verfasserin |4 aut | |
700 | 0 | |a Theodoros Sklaviadis |e verfasserin |4 aut | |
700 | 0 | |a Theodoros P. Zanos |e verfasserin |4 aut | |
700 | 0 | |a Anastasios Gounaris |e verfasserin |4 aut | |
700 | 0 | |a Konstantinos Xanthopoulos |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Molecular Medicine |d BMC, 2002 |g 29(2023), 1, Seite 13 |w (DE-627)269539611 |w (DE-600)1475577-4 |x 15283658 |7 nnns |
773 | 1 | 8 | |g volume:29 |g year:2023 |g number:1 |g pages:13 |
856 | 4 | 0 | |u https://doi.org/10.1186/s10020-023-00603-y |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/45dc835205954bdfb5a4c43a066c6851 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1186/s10020-023-00603-y |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1528-3658 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 29 |j 2023 |e 1 |h 13 |
author_variant |
k f kf d d dd e k ek t s ts t p z tpz a g ag k x kx |
---|---|
matchkey_str |
article:15283658:2023----::eeagtniaytohcaeaslrsssncuaiyaefaue |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
RM |
publishDate |
2023 |
allfields |
10.1186/s10020-023-00603-y doi (DE-627)DOAJ081395949 (DE-599)DOAJ45dc835205954bdfb5a4c43a066c6851 DE-627 ger DE-627 rakwb eng RM1-950 QD415-436 Kyriaki Founta verfasserin aut Gene targeting in amyotrophic lateral sclerosis using causality-based feature selection and machine learning 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Amyotrophic lateral sclerosis (ALS) is a rare progressive neurodegenerative disease that affects upper and lower motor neurons. As the molecular basis of the disease is still elusive, the development of high-throughput sequencing technologies, combined with data mining techniques and machine learning methods, could provide remarkable results in identifying pathogenetic mechanisms. High dimensionality is a major problem when applying machine learning techniques in biomedical data analysis, since a huge number of features is available for a limited number of samples. The aim of this study was to develop a methodology for training interpretable machine learning models in the classification of ALS and ALS-subtypes samples, using gene expression datasets. Methods We performed dimensionality reduction in gene expression data using a semi-automated preprocessing systematic gene selection procedure using Statistically Equivalent Signature (SES), a causality-based feature selection algorithm, followed by Boosted Regression Trees (XGBoost) and Random Forest to train the machine learning classifiers. The SHapley Additive exPlanations (SHAP values) were used for interpretation of the machine learning classifiers. The methodology was developed and tested using two distinct publicly available ALS RNA-seq datasets. We evaluated the performance of SES as a dimensionality reduction method against: (a) Least Absolute Shrinkage and Selection Operator (LASSO), and (b) Local Outlier Factor (LOF). Results The proposed methodology achieved 85.18% accuracy for the classification of cerebellum or frontal cortex samples as C9orf72-related familial ALS, sporadic ALS or healthy samples. Importantly, the genes identified as the most determinative have also been reported as disease-associated in ALS literature. When tested in the evaluation dataset, the methodology achieved 88.89% accuracy for the classification of sporadic ALS motor neuron samples. When LASSO was used as feature selection method instead of SES, the accuracy of the machine learning classifiers ranged from 74.07 to 96.30%, depending on tissue assessed, while LOF underperformed significantly (77.78% accuracy for the classification of pooled cerebellum and frontal cortex samples). Conclusions Using SES, we addressed the challenge of high dimensionality in gene expression data analysis, and we trained accurate machine learning ALS classifiers, specific for the gene expression patterns of different disease subtypes and tissue samples, while identifying disease-associated genes. Gene expression Causality-based feature selection Dimensionality reduction Machine learning Therapeutics. Pharmacology Biochemistry Dimitra Dafou verfasserin aut Eirini Kanata verfasserin aut Theodoros Sklaviadis verfasserin aut Theodoros P. Zanos verfasserin aut Anastasios Gounaris verfasserin aut Konstantinos Xanthopoulos verfasserin aut In Molecular Medicine BMC, 2002 29(2023), 1, Seite 13 (DE-627)269539611 (DE-600)1475577-4 15283658 nnns volume:29 year:2023 number:1 pages:13 https://doi.org/10.1186/s10020-023-00603-y kostenfrei https://doaj.org/article/45dc835205954bdfb5a4c43a066c6851 kostenfrei https://doi.org/10.1186/s10020-023-00603-y kostenfrei https://doaj.org/toc/1528-3658 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 29 2023 1 13 |
spelling |
10.1186/s10020-023-00603-y doi (DE-627)DOAJ081395949 (DE-599)DOAJ45dc835205954bdfb5a4c43a066c6851 DE-627 ger DE-627 rakwb eng RM1-950 QD415-436 Kyriaki Founta verfasserin aut Gene targeting in amyotrophic lateral sclerosis using causality-based feature selection and machine learning 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Amyotrophic lateral sclerosis (ALS) is a rare progressive neurodegenerative disease that affects upper and lower motor neurons. As the molecular basis of the disease is still elusive, the development of high-throughput sequencing technologies, combined with data mining techniques and machine learning methods, could provide remarkable results in identifying pathogenetic mechanisms. High dimensionality is a major problem when applying machine learning techniques in biomedical data analysis, since a huge number of features is available for a limited number of samples. The aim of this study was to develop a methodology for training interpretable machine learning models in the classification of ALS and ALS-subtypes samples, using gene expression datasets. Methods We performed dimensionality reduction in gene expression data using a semi-automated preprocessing systematic gene selection procedure using Statistically Equivalent Signature (SES), a causality-based feature selection algorithm, followed by Boosted Regression Trees (XGBoost) and Random Forest to train the machine learning classifiers. The SHapley Additive exPlanations (SHAP values) were used for interpretation of the machine learning classifiers. The methodology was developed and tested using two distinct publicly available ALS RNA-seq datasets. We evaluated the performance of SES as a dimensionality reduction method against: (a) Least Absolute Shrinkage and Selection Operator (LASSO), and (b) Local Outlier Factor (LOF). Results The proposed methodology achieved 85.18% accuracy for the classification of cerebellum or frontal cortex samples as C9orf72-related familial ALS, sporadic ALS or healthy samples. Importantly, the genes identified as the most determinative have also been reported as disease-associated in ALS literature. When tested in the evaluation dataset, the methodology achieved 88.89% accuracy for the classification of sporadic ALS motor neuron samples. When LASSO was used as feature selection method instead of SES, the accuracy of the machine learning classifiers ranged from 74.07 to 96.30%, depending on tissue assessed, while LOF underperformed significantly (77.78% accuracy for the classification of pooled cerebellum and frontal cortex samples). Conclusions Using SES, we addressed the challenge of high dimensionality in gene expression data analysis, and we trained accurate machine learning ALS classifiers, specific for the gene expression patterns of different disease subtypes and tissue samples, while identifying disease-associated genes. Gene expression Causality-based feature selection Dimensionality reduction Machine learning Therapeutics. Pharmacology Biochemistry Dimitra Dafou verfasserin aut Eirini Kanata verfasserin aut Theodoros Sklaviadis verfasserin aut Theodoros P. Zanos verfasserin aut Anastasios Gounaris verfasserin aut Konstantinos Xanthopoulos verfasserin aut In Molecular Medicine BMC, 2002 29(2023), 1, Seite 13 (DE-627)269539611 (DE-600)1475577-4 15283658 nnns volume:29 year:2023 number:1 pages:13 https://doi.org/10.1186/s10020-023-00603-y kostenfrei https://doaj.org/article/45dc835205954bdfb5a4c43a066c6851 kostenfrei https://doi.org/10.1186/s10020-023-00603-y kostenfrei https://doaj.org/toc/1528-3658 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 29 2023 1 13 |
allfields_unstemmed |
10.1186/s10020-023-00603-y doi (DE-627)DOAJ081395949 (DE-599)DOAJ45dc835205954bdfb5a4c43a066c6851 DE-627 ger DE-627 rakwb eng RM1-950 QD415-436 Kyriaki Founta verfasserin aut Gene targeting in amyotrophic lateral sclerosis using causality-based feature selection and machine learning 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Amyotrophic lateral sclerosis (ALS) is a rare progressive neurodegenerative disease that affects upper and lower motor neurons. As the molecular basis of the disease is still elusive, the development of high-throughput sequencing technologies, combined with data mining techniques and machine learning methods, could provide remarkable results in identifying pathogenetic mechanisms. High dimensionality is a major problem when applying machine learning techniques in biomedical data analysis, since a huge number of features is available for a limited number of samples. The aim of this study was to develop a methodology for training interpretable machine learning models in the classification of ALS and ALS-subtypes samples, using gene expression datasets. Methods We performed dimensionality reduction in gene expression data using a semi-automated preprocessing systematic gene selection procedure using Statistically Equivalent Signature (SES), a causality-based feature selection algorithm, followed by Boosted Regression Trees (XGBoost) and Random Forest to train the machine learning classifiers. The SHapley Additive exPlanations (SHAP values) were used for interpretation of the machine learning classifiers. The methodology was developed and tested using two distinct publicly available ALS RNA-seq datasets. We evaluated the performance of SES as a dimensionality reduction method against: (a) Least Absolute Shrinkage and Selection Operator (LASSO), and (b) Local Outlier Factor (LOF). Results The proposed methodology achieved 85.18% accuracy for the classification of cerebellum or frontal cortex samples as C9orf72-related familial ALS, sporadic ALS or healthy samples. Importantly, the genes identified as the most determinative have also been reported as disease-associated in ALS literature. When tested in the evaluation dataset, the methodology achieved 88.89% accuracy for the classification of sporadic ALS motor neuron samples. When LASSO was used as feature selection method instead of SES, the accuracy of the machine learning classifiers ranged from 74.07 to 96.30%, depending on tissue assessed, while LOF underperformed significantly (77.78% accuracy for the classification of pooled cerebellum and frontal cortex samples). Conclusions Using SES, we addressed the challenge of high dimensionality in gene expression data analysis, and we trained accurate machine learning ALS classifiers, specific for the gene expression patterns of different disease subtypes and tissue samples, while identifying disease-associated genes. Gene expression Causality-based feature selection Dimensionality reduction Machine learning Therapeutics. Pharmacology Biochemistry Dimitra Dafou verfasserin aut Eirini Kanata verfasserin aut Theodoros Sklaviadis verfasserin aut Theodoros P. Zanos verfasserin aut Anastasios Gounaris verfasserin aut Konstantinos Xanthopoulos verfasserin aut In Molecular Medicine BMC, 2002 29(2023), 1, Seite 13 (DE-627)269539611 (DE-600)1475577-4 15283658 nnns volume:29 year:2023 number:1 pages:13 https://doi.org/10.1186/s10020-023-00603-y kostenfrei https://doaj.org/article/45dc835205954bdfb5a4c43a066c6851 kostenfrei https://doi.org/10.1186/s10020-023-00603-y kostenfrei https://doaj.org/toc/1528-3658 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 29 2023 1 13 |
allfieldsGer |
10.1186/s10020-023-00603-y doi (DE-627)DOAJ081395949 (DE-599)DOAJ45dc835205954bdfb5a4c43a066c6851 DE-627 ger DE-627 rakwb eng RM1-950 QD415-436 Kyriaki Founta verfasserin aut Gene targeting in amyotrophic lateral sclerosis using causality-based feature selection and machine learning 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Amyotrophic lateral sclerosis (ALS) is a rare progressive neurodegenerative disease that affects upper and lower motor neurons. As the molecular basis of the disease is still elusive, the development of high-throughput sequencing technologies, combined with data mining techniques and machine learning methods, could provide remarkable results in identifying pathogenetic mechanisms. High dimensionality is a major problem when applying machine learning techniques in biomedical data analysis, since a huge number of features is available for a limited number of samples. The aim of this study was to develop a methodology for training interpretable machine learning models in the classification of ALS and ALS-subtypes samples, using gene expression datasets. Methods We performed dimensionality reduction in gene expression data using a semi-automated preprocessing systematic gene selection procedure using Statistically Equivalent Signature (SES), a causality-based feature selection algorithm, followed by Boosted Regression Trees (XGBoost) and Random Forest to train the machine learning classifiers. The SHapley Additive exPlanations (SHAP values) were used for interpretation of the machine learning classifiers. The methodology was developed and tested using two distinct publicly available ALS RNA-seq datasets. We evaluated the performance of SES as a dimensionality reduction method against: (a) Least Absolute Shrinkage and Selection Operator (LASSO), and (b) Local Outlier Factor (LOF). Results The proposed methodology achieved 85.18% accuracy for the classification of cerebellum or frontal cortex samples as C9orf72-related familial ALS, sporadic ALS or healthy samples. Importantly, the genes identified as the most determinative have also been reported as disease-associated in ALS literature. When tested in the evaluation dataset, the methodology achieved 88.89% accuracy for the classification of sporadic ALS motor neuron samples. When LASSO was used as feature selection method instead of SES, the accuracy of the machine learning classifiers ranged from 74.07 to 96.30%, depending on tissue assessed, while LOF underperformed significantly (77.78% accuracy for the classification of pooled cerebellum and frontal cortex samples). Conclusions Using SES, we addressed the challenge of high dimensionality in gene expression data analysis, and we trained accurate machine learning ALS classifiers, specific for the gene expression patterns of different disease subtypes and tissue samples, while identifying disease-associated genes. Gene expression Causality-based feature selection Dimensionality reduction Machine learning Therapeutics. Pharmacology Biochemistry Dimitra Dafou verfasserin aut Eirini Kanata verfasserin aut Theodoros Sklaviadis verfasserin aut Theodoros P. Zanos verfasserin aut Anastasios Gounaris verfasserin aut Konstantinos Xanthopoulos verfasserin aut In Molecular Medicine BMC, 2002 29(2023), 1, Seite 13 (DE-627)269539611 (DE-600)1475577-4 15283658 nnns volume:29 year:2023 number:1 pages:13 https://doi.org/10.1186/s10020-023-00603-y kostenfrei https://doaj.org/article/45dc835205954bdfb5a4c43a066c6851 kostenfrei https://doi.org/10.1186/s10020-023-00603-y kostenfrei https://doaj.org/toc/1528-3658 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 29 2023 1 13 |
allfieldsSound |
10.1186/s10020-023-00603-y doi (DE-627)DOAJ081395949 (DE-599)DOAJ45dc835205954bdfb5a4c43a066c6851 DE-627 ger DE-627 rakwb eng RM1-950 QD415-436 Kyriaki Founta verfasserin aut Gene targeting in amyotrophic lateral sclerosis using causality-based feature selection and machine learning 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Background Amyotrophic lateral sclerosis (ALS) is a rare progressive neurodegenerative disease that affects upper and lower motor neurons. As the molecular basis of the disease is still elusive, the development of high-throughput sequencing technologies, combined with data mining techniques and machine learning methods, could provide remarkable results in identifying pathogenetic mechanisms. High dimensionality is a major problem when applying machine learning techniques in biomedical data analysis, since a huge number of features is available for a limited number of samples. The aim of this study was to develop a methodology for training interpretable machine learning models in the classification of ALS and ALS-subtypes samples, using gene expression datasets. Methods We performed dimensionality reduction in gene expression data using a semi-automated preprocessing systematic gene selection procedure using Statistically Equivalent Signature (SES), a causality-based feature selection algorithm, followed by Boosted Regression Trees (XGBoost) and Random Forest to train the machine learning classifiers. The SHapley Additive exPlanations (SHAP values) were used for interpretation of the machine learning classifiers. The methodology was developed and tested using two distinct publicly available ALS RNA-seq datasets. We evaluated the performance of SES as a dimensionality reduction method against: (a) Least Absolute Shrinkage and Selection Operator (LASSO), and (b) Local Outlier Factor (LOF). Results The proposed methodology achieved 85.18% accuracy for the classification of cerebellum or frontal cortex samples as C9orf72-related familial ALS, sporadic ALS or healthy samples. Importantly, the genes identified as the most determinative have also been reported as disease-associated in ALS literature. When tested in the evaluation dataset, the methodology achieved 88.89% accuracy for the classification of sporadic ALS motor neuron samples. When LASSO was used as feature selection method instead of SES, the accuracy of the machine learning classifiers ranged from 74.07 to 96.30%, depending on tissue assessed, while LOF underperformed significantly (77.78% accuracy for the classification of pooled cerebellum and frontal cortex samples). Conclusions Using SES, we addressed the challenge of high dimensionality in gene expression data analysis, and we trained accurate machine learning ALS classifiers, specific for the gene expression patterns of different disease subtypes and tissue samples, while identifying disease-associated genes. Gene expression Causality-based feature selection Dimensionality reduction Machine learning Therapeutics. Pharmacology Biochemistry Dimitra Dafou verfasserin aut Eirini Kanata verfasserin aut Theodoros Sklaviadis verfasserin aut Theodoros P. Zanos verfasserin aut Anastasios Gounaris verfasserin aut Konstantinos Xanthopoulos verfasserin aut In Molecular Medicine BMC, 2002 29(2023), 1, Seite 13 (DE-627)269539611 (DE-600)1475577-4 15283658 nnns volume:29 year:2023 number:1 pages:13 https://doi.org/10.1186/s10020-023-00603-y kostenfrei https://doaj.org/article/45dc835205954bdfb5a4c43a066c6851 kostenfrei https://doi.org/10.1186/s10020-023-00603-y kostenfrei https://doaj.org/toc/1528-3658 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 29 2023 1 13 |
language |
English |
source |
In Molecular Medicine 29(2023), 1, Seite 13 volume:29 year:2023 number:1 pages:13 |
sourceStr |
In Molecular Medicine 29(2023), 1, Seite 13 volume:29 year:2023 number:1 pages:13 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Gene expression Causality-based feature selection Dimensionality reduction Machine learning Therapeutics. Pharmacology Biochemistry |
isfreeaccess_bool |
true |
container_title |
Molecular Medicine |
authorswithroles_txt_mv |
Kyriaki Founta @@aut@@ Dimitra Dafou @@aut@@ Eirini Kanata @@aut@@ Theodoros Sklaviadis @@aut@@ Theodoros P. Zanos @@aut@@ Anastasios Gounaris @@aut@@ Konstantinos Xanthopoulos @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
269539611 |
id |
DOAJ081395949 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ081395949</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310213556.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s10020-023-00603-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ081395949</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ45dc835205954bdfb5a4c43a066c6851</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RM1-950</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD415-436</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kyriaki Founta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gene targeting in amyotrophic lateral sclerosis using causality-based feature selection and machine learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background Amyotrophic lateral sclerosis (ALS) is a rare progressive neurodegenerative disease that affects upper and lower motor neurons. As the molecular basis of the disease is still elusive, the development of high-throughput sequencing technologies, combined with data mining techniques and machine learning methods, could provide remarkable results in identifying pathogenetic mechanisms. High dimensionality is a major problem when applying machine learning techniques in biomedical data analysis, since a huge number of features is available for a limited number of samples. The aim of this study was to develop a methodology for training interpretable machine learning models in the classification of ALS and ALS-subtypes samples, using gene expression datasets. Methods We performed dimensionality reduction in gene expression data using a semi-automated preprocessing systematic gene selection procedure using Statistically Equivalent Signature (SES), a causality-based feature selection algorithm, followed by Boosted Regression Trees (XGBoost) and Random Forest to train the machine learning classifiers. The SHapley Additive exPlanations (SHAP values) were used for interpretation of the machine learning classifiers. The methodology was developed and tested using two distinct publicly available ALS RNA-seq datasets. We evaluated the performance of SES as a dimensionality reduction method against: (a) Least Absolute Shrinkage and Selection Operator (LASSO), and (b) Local Outlier Factor (LOF). Results The proposed methodology achieved 85.18% accuracy for the classification of cerebellum or frontal cortex samples as C9orf72-related familial ALS, sporadic ALS or healthy samples. Importantly, the genes identified as the most determinative have also been reported as disease-associated in ALS literature. When tested in the evaluation dataset, the methodology achieved 88.89% accuracy for the classification of sporadic ALS motor neuron samples. When LASSO was used as feature selection method instead of SES, the accuracy of the machine learning classifiers ranged from 74.07 to 96.30%, depending on tissue assessed, while LOF underperformed significantly (77.78% accuracy for the classification of pooled cerebellum and frontal cortex samples). Conclusions Using SES, we addressed the challenge of high dimensionality in gene expression data analysis, and we trained accurate machine learning ALS classifiers, specific for the gene expression patterns of different disease subtypes and tissue samples, while identifying disease-associated genes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gene expression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Causality-based feature selection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dimensionality reduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Therapeutics. Pharmacology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biochemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dimitra Dafou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Eirini Kanata</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Theodoros Sklaviadis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Theodoros P. Zanos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anastasios Gounaris</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Konstantinos Xanthopoulos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Molecular Medicine</subfield><subfield code="d">BMC, 2002</subfield><subfield code="g">29(2023), 1, Seite 13</subfield><subfield code="w">(DE-627)269539611</subfield><subfield code="w">(DE-600)1475577-4</subfield><subfield code="x">15283658</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:29</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s10020-023-00603-y</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/45dc835205954bdfb5a4c43a066c6851</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s10020-023-00603-y</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1528-3658</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">29</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="h">13</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Kyriaki Founta |
spellingShingle |
Kyriaki Founta misc RM1-950 misc QD415-436 misc Gene expression misc Causality-based feature selection misc Dimensionality reduction misc Machine learning misc Therapeutics. Pharmacology misc Biochemistry Gene targeting in amyotrophic lateral sclerosis using causality-based feature selection and machine learning |
authorStr |
Kyriaki Founta |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)269539611 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RM1-950 |
illustrated |
Not Illustrated |
issn |
15283658 |
topic_title |
RM1-950 QD415-436 Gene targeting in amyotrophic lateral sclerosis using causality-based feature selection and machine learning Gene expression Causality-based feature selection Dimensionality reduction Machine learning |
topic |
misc RM1-950 misc QD415-436 misc Gene expression misc Causality-based feature selection misc Dimensionality reduction misc Machine learning misc Therapeutics. Pharmacology misc Biochemistry |
topic_unstemmed |
misc RM1-950 misc QD415-436 misc Gene expression misc Causality-based feature selection misc Dimensionality reduction misc Machine learning misc Therapeutics. Pharmacology misc Biochemistry |
topic_browse |
misc RM1-950 misc QD415-436 misc Gene expression misc Causality-based feature selection misc Dimensionality reduction misc Machine learning misc Therapeutics. Pharmacology misc Biochemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Molecular Medicine |
hierarchy_parent_id |
269539611 |
hierarchy_top_title |
Molecular Medicine |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)269539611 (DE-600)1475577-4 |
title |
Gene targeting in amyotrophic lateral sclerosis using causality-based feature selection and machine learning |
ctrlnum |
(DE-627)DOAJ081395949 (DE-599)DOAJ45dc835205954bdfb5a4c43a066c6851 |
title_full |
Gene targeting in amyotrophic lateral sclerosis using causality-based feature selection and machine learning |
author_sort |
Kyriaki Founta |
journal |
Molecular Medicine |
journalStr |
Molecular Medicine |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
13 |
author_browse |
Kyriaki Founta Dimitra Dafou Eirini Kanata Theodoros Sklaviadis Theodoros P. Zanos Anastasios Gounaris Konstantinos Xanthopoulos |
container_volume |
29 |
class |
RM1-950 QD415-436 |
format_se |
Elektronische Aufsätze |
author-letter |
Kyriaki Founta |
doi_str_mv |
10.1186/s10020-023-00603-y |
author2-role |
verfasserin |
title_sort |
gene targeting in amyotrophic lateral sclerosis using causality-based feature selection and machine learning |
callnumber |
RM1-950 |
title_auth |
Gene targeting in amyotrophic lateral sclerosis using causality-based feature selection and machine learning |
abstract |
Abstract Background Amyotrophic lateral sclerosis (ALS) is a rare progressive neurodegenerative disease that affects upper and lower motor neurons. As the molecular basis of the disease is still elusive, the development of high-throughput sequencing technologies, combined with data mining techniques and machine learning methods, could provide remarkable results in identifying pathogenetic mechanisms. High dimensionality is a major problem when applying machine learning techniques in biomedical data analysis, since a huge number of features is available for a limited number of samples. The aim of this study was to develop a methodology for training interpretable machine learning models in the classification of ALS and ALS-subtypes samples, using gene expression datasets. Methods We performed dimensionality reduction in gene expression data using a semi-automated preprocessing systematic gene selection procedure using Statistically Equivalent Signature (SES), a causality-based feature selection algorithm, followed by Boosted Regression Trees (XGBoost) and Random Forest to train the machine learning classifiers. The SHapley Additive exPlanations (SHAP values) were used for interpretation of the machine learning classifiers. The methodology was developed and tested using two distinct publicly available ALS RNA-seq datasets. We evaluated the performance of SES as a dimensionality reduction method against: (a) Least Absolute Shrinkage and Selection Operator (LASSO), and (b) Local Outlier Factor (LOF). Results The proposed methodology achieved 85.18% accuracy for the classification of cerebellum or frontal cortex samples as C9orf72-related familial ALS, sporadic ALS or healthy samples. Importantly, the genes identified as the most determinative have also been reported as disease-associated in ALS literature. When tested in the evaluation dataset, the methodology achieved 88.89% accuracy for the classification of sporadic ALS motor neuron samples. When LASSO was used as feature selection method instead of SES, the accuracy of the machine learning classifiers ranged from 74.07 to 96.30%, depending on tissue assessed, while LOF underperformed significantly (77.78% accuracy for the classification of pooled cerebellum and frontal cortex samples). Conclusions Using SES, we addressed the challenge of high dimensionality in gene expression data analysis, and we trained accurate machine learning ALS classifiers, specific for the gene expression patterns of different disease subtypes and tissue samples, while identifying disease-associated genes. |
abstractGer |
Abstract Background Amyotrophic lateral sclerosis (ALS) is a rare progressive neurodegenerative disease that affects upper and lower motor neurons. As the molecular basis of the disease is still elusive, the development of high-throughput sequencing technologies, combined with data mining techniques and machine learning methods, could provide remarkable results in identifying pathogenetic mechanisms. High dimensionality is a major problem when applying machine learning techniques in biomedical data analysis, since a huge number of features is available for a limited number of samples. The aim of this study was to develop a methodology for training interpretable machine learning models in the classification of ALS and ALS-subtypes samples, using gene expression datasets. Methods We performed dimensionality reduction in gene expression data using a semi-automated preprocessing systematic gene selection procedure using Statistically Equivalent Signature (SES), a causality-based feature selection algorithm, followed by Boosted Regression Trees (XGBoost) and Random Forest to train the machine learning classifiers. The SHapley Additive exPlanations (SHAP values) were used for interpretation of the machine learning classifiers. The methodology was developed and tested using two distinct publicly available ALS RNA-seq datasets. We evaluated the performance of SES as a dimensionality reduction method against: (a) Least Absolute Shrinkage and Selection Operator (LASSO), and (b) Local Outlier Factor (LOF). Results The proposed methodology achieved 85.18% accuracy for the classification of cerebellum or frontal cortex samples as C9orf72-related familial ALS, sporadic ALS or healthy samples. Importantly, the genes identified as the most determinative have also been reported as disease-associated in ALS literature. When tested in the evaluation dataset, the methodology achieved 88.89% accuracy for the classification of sporadic ALS motor neuron samples. When LASSO was used as feature selection method instead of SES, the accuracy of the machine learning classifiers ranged from 74.07 to 96.30%, depending on tissue assessed, while LOF underperformed significantly (77.78% accuracy for the classification of pooled cerebellum and frontal cortex samples). Conclusions Using SES, we addressed the challenge of high dimensionality in gene expression data analysis, and we trained accurate machine learning ALS classifiers, specific for the gene expression patterns of different disease subtypes and tissue samples, while identifying disease-associated genes. |
abstract_unstemmed |
Abstract Background Amyotrophic lateral sclerosis (ALS) is a rare progressive neurodegenerative disease that affects upper and lower motor neurons. As the molecular basis of the disease is still elusive, the development of high-throughput sequencing technologies, combined with data mining techniques and machine learning methods, could provide remarkable results in identifying pathogenetic mechanisms. High dimensionality is a major problem when applying machine learning techniques in biomedical data analysis, since a huge number of features is available for a limited number of samples. The aim of this study was to develop a methodology for training interpretable machine learning models in the classification of ALS and ALS-subtypes samples, using gene expression datasets. Methods We performed dimensionality reduction in gene expression data using a semi-automated preprocessing systematic gene selection procedure using Statistically Equivalent Signature (SES), a causality-based feature selection algorithm, followed by Boosted Regression Trees (XGBoost) and Random Forest to train the machine learning classifiers. The SHapley Additive exPlanations (SHAP values) were used for interpretation of the machine learning classifiers. The methodology was developed and tested using two distinct publicly available ALS RNA-seq datasets. We evaluated the performance of SES as a dimensionality reduction method against: (a) Least Absolute Shrinkage and Selection Operator (LASSO), and (b) Local Outlier Factor (LOF). Results The proposed methodology achieved 85.18% accuracy for the classification of cerebellum or frontal cortex samples as C9orf72-related familial ALS, sporadic ALS or healthy samples. Importantly, the genes identified as the most determinative have also been reported as disease-associated in ALS literature. When tested in the evaluation dataset, the methodology achieved 88.89% accuracy for the classification of sporadic ALS motor neuron samples. When LASSO was used as feature selection method instead of SES, the accuracy of the machine learning classifiers ranged from 74.07 to 96.30%, depending on tissue assessed, while LOF underperformed significantly (77.78% accuracy for the classification of pooled cerebellum and frontal cortex samples). Conclusions Using SES, we addressed the challenge of high dimensionality in gene expression data analysis, and we trained accurate machine learning ALS classifiers, specific for the gene expression patterns of different disease subtypes and tissue samples, while identifying disease-associated genes. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Gene targeting in amyotrophic lateral sclerosis using causality-based feature selection and machine learning |
url |
https://doi.org/10.1186/s10020-023-00603-y https://doaj.org/article/45dc835205954bdfb5a4c43a066c6851 https://doaj.org/toc/1528-3658 |
remote_bool |
true |
author2 |
Dimitra Dafou Eirini Kanata Theodoros Sklaviadis Theodoros P. Zanos Anastasios Gounaris Konstantinos Xanthopoulos |
author2Str |
Dimitra Dafou Eirini Kanata Theodoros Sklaviadis Theodoros P. Zanos Anastasios Gounaris Konstantinos Xanthopoulos |
ppnlink |
269539611 |
callnumber-subject |
RM - Therapeutics and Pharmacology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s10020-023-00603-y |
callnumber-a |
RM1-950 |
up_date |
2024-07-03T19:44:54.743Z |
_version_ |
1803588358371278848 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ081395949</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310213556.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s10020-023-00603-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ081395949</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ45dc835205954bdfb5a4c43a066c6851</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RM1-950</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD415-436</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kyriaki Founta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gene targeting in amyotrophic lateral sclerosis using causality-based feature selection and machine learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Background Amyotrophic lateral sclerosis (ALS) is a rare progressive neurodegenerative disease that affects upper and lower motor neurons. As the molecular basis of the disease is still elusive, the development of high-throughput sequencing technologies, combined with data mining techniques and machine learning methods, could provide remarkable results in identifying pathogenetic mechanisms. High dimensionality is a major problem when applying machine learning techniques in biomedical data analysis, since a huge number of features is available for a limited number of samples. The aim of this study was to develop a methodology for training interpretable machine learning models in the classification of ALS and ALS-subtypes samples, using gene expression datasets. Methods We performed dimensionality reduction in gene expression data using a semi-automated preprocessing systematic gene selection procedure using Statistically Equivalent Signature (SES), a causality-based feature selection algorithm, followed by Boosted Regression Trees (XGBoost) and Random Forest to train the machine learning classifiers. The SHapley Additive exPlanations (SHAP values) were used for interpretation of the machine learning classifiers. The methodology was developed and tested using two distinct publicly available ALS RNA-seq datasets. We evaluated the performance of SES as a dimensionality reduction method against: (a) Least Absolute Shrinkage and Selection Operator (LASSO), and (b) Local Outlier Factor (LOF). Results The proposed methodology achieved 85.18% accuracy for the classification of cerebellum or frontal cortex samples as C9orf72-related familial ALS, sporadic ALS or healthy samples. Importantly, the genes identified as the most determinative have also been reported as disease-associated in ALS literature. When tested in the evaluation dataset, the methodology achieved 88.89% accuracy for the classification of sporadic ALS motor neuron samples. When LASSO was used as feature selection method instead of SES, the accuracy of the machine learning classifiers ranged from 74.07 to 96.30%, depending on tissue assessed, while LOF underperformed significantly (77.78% accuracy for the classification of pooled cerebellum and frontal cortex samples). Conclusions Using SES, we addressed the challenge of high dimensionality in gene expression data analysis, and we trained accurate machine learning ALS classifiers, specific for the gene expression patterns of different disease subtypes and tissue samples, while identifying disease-associated genes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gene expression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Causality-based feature selection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dimensionality reduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Therapeutics. Pharmacology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biochemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dimitra Dafou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Eirini Kanata</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Theodoros Sklaviadis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Theodoros P. Zanos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Anastasios Gounaris</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Konstantinos Xanthopoulos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Molecular Medicine</subfield><subfield code="d">BMC, 2002</subfield><subfield code="g">29(2023), 1, Seite 13</subfield><subfield code="w">(DE-627)269539611</subfield><subfield code="w">(DE-600)1475577-4</subfield><subfield code="x">15283658</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:29</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s10020-023-00603-y</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/45dc835205954bdfb5a4c43a066c6851</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1186/s10020-023-00603-y</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1528-3658</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">29</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="h">13</subfield></datafield></record></collection>
|
score |
7.399599 |