Application of soft constrained machine learning algorithms for creep rupture prediction of an austenitic heat resistant steel Sanicro 25

Creep rupture extrapolation is crucial for high-temperature materials served in power plants. Many analytical models can be used for creep rupture analysis, and fundamental models are also available. Machine learning is also an alternative. However, unphysical prediction curves occur readily in comm...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Jun-Jing He [verfasserIn]

Rolf Sandström [verfasserIn]

Jing Zhang [verfasserIn]

Hai-Ying Qin [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Soft constrained machine learning

Creep rupture extrapolation

Austenitic stainless steels

Error analysis

Remaining creep life

Stability analysis

Übergeordnetes Werk:

In: Journal of Materials Research and Technology - Elsevier, 2015, 22(2023), Seite 923-937

Übergeordnetes Werk:

volume:22 ; year:2023 ; pages:923-937

Links:

Link aufrufen
Link aufrufen
Link aufrufen
Journal toc

DOI / URN:

10.1016/j.jmrt.2022.11.154

Katalog-ID:

DOAJ081513216

Nicht das Richtige dabei?

Schreiben Sie uns!