Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients
IntroductionArtificial Intelligence (AI) methods are being increasingly investigated as a means to generate predictive models applicable in the clinical practice. In this study, we developed a model to predict the efficacy of immunotherapy (IO) in patients with advanced non-small cell lung cancer (N...
Ausführliche Beschreibung
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Frontiers in Oncology - Frontiers Media S.A., 2012, 12(2023) |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2023 |
Links: |
---|
DOI / URN: |
10.3389/fonc.2022.1078822 |
---|
Katalog-ID: |
DOAJ081622465 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ081622465 | ||
003 | DE-627 | ||
005 | 20230310220850.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230310s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/fonc.2022.1078822 |2 doi | |
035 | |a (DE-627)DOAJ081622465 | ||
035 | |a (DE-599)DOAJc99b6a5fcaed44e39c58687c3976c7f5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RC254-282 | |
100 | 0 | |a Arsela Prelaj |e verfasserin |4 aut | |
245 | 1 | 0 | |a Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a IntroductionArtificial Intelligence (AI) methods are being increasingly investigated as a means to generate predictive models applicable in the clinical practice. In this study, we developed a model to predict the efficacy of immunotherapy (IO) in patients with advanced non-small cell lung cancer (NSCLC) using eXplainable AI (XAI) Machine Learning (ML) methods.MethodsWe prospectively collected real-world data from patients with an advanced NSCLC condition receiving immune-checkpoint inhibitors (ICIs) either as a single agent or in combination with chemotherapy. With regards to six different outcomes - Disease Control Rate (DCR), Objective Response Rate (ORR), 6 and 24-month Overall Survival (OS6 and OS24), 3-months Progression-Free Survival (PFS3) and Time to Treatment Failure (TTF3) - we evaluated five different classification ML models: CatBoost (CB), Logistic Regression (LR), Neural Network (NN), Random Forest (RF) and Support Vector Machine (SVM). We used the Shapley Additive Explanation (SHAP) values to explain model predictions.ResultsOf 480 patients included in the study 407 received immunotherapy and 73 chemo- and immunotherapy. From all the ML models, CB performed the best for OS6 and TTF3, (accuracy 0.83 and 0.81, respectively). CB and LR reached accuracy of 0.75 and 0.73 for the outcome DCR. SHAP for CB demonstrated that the feature that strongly influences models’ prediction for all three outcomes was Neutrophil to Lymphocyte Ratio (NLR). Performance Status (ECOG-PS) was an important feature for the outcomes OS6 and TTF3, while PD-L1, Line of IO and chemo-immunotherapy appeared to be more important in predicting DCR.ConclusionsIn this study we developed a ML algorithm based on real-world data, explained by SHAP techniques, and able to accurately predict the efficacy of immunotherapy in sets of NSCLC patients. | ||
650 | 4 | |a non-small cell lung cancer | |
650 | 4 | |a immunotherapy | |
650 | 4 | |a machine learning | |
650 | 4 | |a explainable artificial intelligence | |
650 | 4 | |a treatment | |
653 | 0 | |a Neoplasms. Tumors. Oncology. Including cancer and carcinogens | |
700 | 0 | |a Arsela Prelaj |e verfasserin |4 aut | |
700 | 0 | |a Edoardo Gregorio Galli |e verfasserin |4 aut | |
700 | 0 | |a Edoardo Gregorio Galli |e verfasserin |4 aut | |
700 | 0 | |a Edoardo Gregorio Galli |e verfasserin |4 aut | |
700 | 0 | |a Vanja Miskovic |e verfasserin |4 aut | |
700 | 0 | |a Mattia Pesenti |e verfasserin |4 aut | |
700 | 0 | |a Giuseppe Viscardi |e verfasserin |4 aut | |
700 | 0 | |a Giuseppe Viscardi |e verfasserin |4 aut | |
700 | 0 | |a Benedetta Pedica |e verfasserin |4 aut | |
700 | 0 | |a Laura Mazzeo |e verfasserin |4 aut | |
700 | 0 | |a Laura Mazzeo |e verfasserin |4 aut | |
700 | 0 | |a Laura Mazzeo |e verfasserin |4 aut | |
700 | 0 | |a Achille Bottiglieri |e verfasserin |4 aut | |
700 | 0 | |a Achille Bottiglieri |e verfasserin |4 aut | |
700 | 0 | |a Leonardo Provenzano |e verfasserin |4 aut | |
700 | 0 | |a Leonardo Provenzano |e verfasserin |4 aut | |
700 | 0 | |a Andrea Spagnoletti |e verfasserin |4 aut | |
700 | 0 | |a Andrea Spagnoletti |e verfasserin |4 aut | |
700 | 0 | |a Roberto Marinacci |e verfasserin |4 aut | |
700 | 0 | |a Alessandro De Toma |e verfasserin |4 aut | |
700 | 0 | |a Claudia Proto |e verfasserin |4 aut | |
700 | 0 | |a Roberto Ferrara |e verfasserin |4 aut | |
700 | 0 | |a Marta Brambilla |e verfasserin |4 aut | |
700 | 0 | |a Mario Occhipinti |e verfasserin |4 aut | |
700 | 0 | |a Sara Manglaviti |e verfasserin |4 aut | |
700 | 0 | |a Giulia Galli |e verfasserin |4 aut | |
700 | 0 | |a Diego Signorelli |e verfasserin |4 aut | |
700 | 0 | |a Diego Signorelli |e verfasserin |4 aut | |
700 | 0 | |a Claudia Giani |e verfasserin |4 aut | |
700 | 0 | |a Claudia Giani |e verfasserin |4 aut | |
700 | 0 | |a Teresa Beninato |e verfasserin |4 aut | |
700 | 0 | |a Teresa Beninato |e verfasserin |4 aut | |
700 | 0 | |a Chiara Carlotta Pircher |e verfasserin |4 aut | |
700 | 0 | |a Chiara Carlotta Pircher |e verfasserin |4 aut | |
700 | 0 | |a Alessandro Rametta |e verfasserin |4 aut | |
700 | 0 | |a Alessandro Rametta |e verfasserin |4 aut | |
700 | 0 | |a Sokol Kosta |e verfasserin |4 aut | |
700 | 0 | |a Michele Zanitti |e verfasserin |4 aut | |
700 | 0 | |a Maria Rosa Di Mauro |e verfasserin |4 aut | |
700 | 0 | |a Arturo Rinaldi |e verfasserin |4 aut | |
700 | 0 | |a Settimio Di Gregorio |e verfasserin |4 aut | |
700 | 0 | |a Martinetti Antonia |e verfasserin |4 aut | |
700 | 0 | |a Marina Chiara Garassino |e verfasserin |4 aut | |
700 | 0 | |a Marina Chiara Garassino |e verfasserin |4 aut | |
700 | 0 | |a Filippo G. M. de Braud |e verfasserin |4 aut | |
700 | 0 | |a Filippo G. M. de Braud |e verfasserin |4 aut | |
700 | 0 | |a Marcello Restelli |e verfasserin |4 aut | |
700 | 0 | |a Giuseppe Lo Russo |e verfasserin |4 aut | |
700 | 0 | |a Monica Ganzinelli |e verfasserin |4 aut | |
700 | 0 | |a Francesco Trovò |e verfasserin |4 aut | |
700 | 0 | |a Alessandra Laura Giulia Pedrocchi |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Oncology |d Frontiers Media S.A., 2012 |g 12(2023) |w (DE-627)684965518 |w (DE-600)2649216-7 |x 2234943X |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2023 |
856 | 4 | 0 | |u https://doi.org/10.3389/fonc.2022.1078822 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/c99b6a5fcaed44e39c58687c3976c7f5 |z kostenfrei |
856 | 4 | 0 | |u https://www.frontiersin.org/articles/10.3389/fonc.2022.1078822/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2234-943X |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2023 |
author_variant |
a p ap a p ap e g g egg e g g egg e g g egg v m vm m p mp g v gv g v gv b p bp l m lm l m lm l m lm a b ab a b ab l p lp l p lp a s as a s as r m rm a d t adt c p cp r f rf m b mb m o mo s m sm g g gg d s ds d s ds c g cg c g cg t b tb t b tb c c p ccp c c p ccp a r ar a r ar s k sk m z mz m r d m mrdm a r ar s d g sdg m a ma m c g mcg m c g mcg f g m d b fgmdb f g m d b fgmdb m r mr g l r glr m g mg f t ft a l g p algp |
---|---|
matchkey_str |
article:2234943X:2023----::eloldttbidxlialtutotyriiilnelgneoesopeitooimn |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
RC |
publishDate |
2023 |
allfields |
10.3389/fonc.2022.1078822 doi (DE-627)DOAJ081622465 (DE-599)DOAJc99b6a5fcaed44e39c58687c3976c7f5 DE-627 ger DE-627 rakwb eng RC254-282 Arsela Prelaj verfasserin aut Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier IntroductionArtificial Intelligence (AI) methods are being increasingly investigated as a means to generate predictive models applicable in the clinical practice. In this study, we developed a model to predict the efficacy of immunotherapy (IO) in patients with advanced non-small cell lung cancer (NSCLC) using eXplainable AI (XAI) Machine Learning (ML) methods.MethodsWe prospectively collected real-world data from patients with an advanced NSCLC condition receiving immune-checkpoint inhibitors (ICIs) either as a single agent or in combination with chemotherapy. With regards to six different outcomes - Disease Control Rate (DCR), Objective Response Rate (ORR), 6 and 24-month Overall Survival (OS6 and OS24), 3-months Progression-Free Survival (PFS3) and Time to Treatment Failure (TTF3) - we evaluated five different classification ML models: CatBoost (CB), Logistic Regression (LR), Neural Network (NN), Random Forest (RF) and Support Vector Machine (SVM). We used the Shapley Additive Explanation (SHAP) values to explain model predictions.ResultsOf 480 patients included in the study 407 received immunotherapy and 73 chemo- and immunotherapy. From all the ML models, CB performed the best for OS6 and TTF3, (accuracy 0.83 and 0.81, respectively). CB and LR reached accuracy of 0.75 and 0.73 for the outcome DCR. SHAP for CB demonstrated that the feature that strongly influences models’ prediction for all three outcomes was Neutrophil to Lymphocyte Ratio (NLR). Performance Status (ECOG-PS) was an important feature for the outcomes OS6 and TTF3, while PD-L1, Line of IO and chemo-immunotherapy appeared to be more important in predicting DCR.ConclusionsIn this study we developed a ML algorithm based on real-world data, explained by SHAP techniques, and able to accurately predict the efficacy of immunotherapy in sets of NSCLC patients. non-small cell lung cancer immunotherapy machine learning explainable artificial intelligence treatment Neoplasms. Tumors. Oncology. Including cancer and carcinogens Arsela Prelaj verfasserin aut Edoardo Gregorio Galli verfasserin aut Edoardo Gregorio Galli verfasserin aut Edoardo Gregorio Galli verfasserin aut Vanja Miskovic verfasserin aut Mattia Pesenti verfasserin aut Giuseppe Viscardi verfasserin aut Giuseppe Viscardi verfasserin aut Benedetta Pedica verfasserin aut Laura Mazzeo verfasserin aut Laura Mazzeo verfasserin aut Laura Mazzeo verfasserin aut Achille Bottiglieri verfasserin aut Achille Bottiglieri verfasserin aut Leonardo Provenzano verfasserin aut Leonardo Provenzano verfasserin aut Andrea Spagnoletti verfasserin aut Andrea Spagnoletti verfasserin aut Roberto Marinacci verfasserin aut Alessandro De Toma verfasserin aut Claudia Proto verfasserin aut Roberto Ferrara verfasserin aut Marta Brambilla verfasserin aut Mario Occhipinti verfasserin aut Sara Manglaviti verfasserin aut Giulia Galli verfasserin aut Diego Signorelli verfasserin aut Diego Signorelli verfasserin aut Claudia Giani verfasserin aut Claudia Giani verfasserin aut Teresa Beninato verfasserin aut Teresa Beninato verfasserin aut Chiara Carlotta Pircher verfasserin aut Chiara Carlotta Pircher verfasserin aut Alessandro Rametta verfasserin aut Alessandro Rametta verfasserin aut Sokol Kosta verfasserin aut Michele Zanitti verfasserin aut Maria Rosa Di Mauro verfasserin aut Arturo Rinaldi verfasserin aut Settimio Di Gregorio verfasserin aut Martinetti Antonia verfasserin aut Marina Chiara Garassino verfasserin aut Marina Chiara Garassino verfasserin aut Filippo G. M. de Braud verfasserin aut Filippo G. M. de Braud verfasserin aut Marcello Restelli verfasserin aut Giuseppe Lo Russo verfasserin aut Monica Ganzinelli verfasserin aut Francesco Trovò verfasserin aut Alessandra Laura Giulia Pedrocchi verfasserin aut In Frontiers in Oncology Frontiers Media S.A., 2012 12(2023) (DE-627)684965518 (DE-600)2649216-7 2234943X nnns volume:12 year:2023 https://doi.org/10.3389/fonc.2022.1078822 kostenfrei https://doaj.org/article/c99b6a5fcaed44e39c58687c3976c7f5 kostenfrei https://www.frontiersin.org/articles/10.3389/fonc.2022.1078822/full kostenfrei https://doaj.org/toc/2234-943X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 |
spelling |
10.3389/fonc.2022.1078822 doi (DE-627)DOAJ081622465 (DE-599)DOAJc99b6a5fcaed44e39c58687c3976c7f5 DE-627 ger DE-627 rakwb eng RC254-282 Arsela Prelaj verfasserin aut Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier IntroductionArtificial Intelligence (AI) methods are being increasingly investigated as a means to generate predictive models applicable in the clinical practice. In this study, we developed a model to predict the efficacy of immunotherapy (IO) in patients with advanced non-small cell lung cancer (NSCLC) using eXplainable AI (XAI) Machine Learning (ML) methods.MethodsWe prospectively collected real-world data from patients with an advanced NSCLC condition receiving immune-checkpoint inhibitors (ICIs) either as a single agent or in combination with chemotherapy. With regards to six different outcomes - Disease Control Rate (DCR), Objective Response Rate (ORR), 6 and 24-month Overall Survival (OS6 and OS24), 3-months Progression-Free Survival (PFS3) and Time to Treatment Failure (TTF3) - we evaluated five different classification ML models: CatBoost (CB), Logistic Regression (LR), Neural Network (NN), Random Forest (RF) and Support Vector Machine (SVM). We used the Shapley Additive Explanation (SHAP) values to explain model predictions.ResultsOf 480 patients included in the study 407 received immunotherapy and 73 chemo- and immunotherapy. From all the ML models, CB performed the best for OS6 and TTF3, (accuracy 0.83 and 0.81, respectively). CB and LR reached accuracy of 0.75 and 0.73 for the outcome DCR. SHAP for CB demonstrated that the feature that strongly influences models’ prediction for all three outcomes was Neutrophil to Lymphocyte Ratio (NLR). Performance Status (ECOG-PS) was an important feature for the outcomes OS6 and TTF3, while PD-L1, Line of IO and chemo-immunotherapy appeared to be more important in predicting DCR.ConclusionsIn this study we developed a ML algorithm based on real-world data, explained by SHAP techniques, and able to accurately predict the efficacy of immunotherapy in sets of NSCLC patients. non-small cell lung cancer immunotherapy machine learning explainable artificial intelligence treatment Neoplasms. Tumors. Oncology. Including cancer and carcinogens Arsela Prelaj verfasserin aut Edoardo Gregorio Galli verfasserin aut Edoardo Gregorio Galli verfasserin aut Edoardo Gregorio Galli verfasserin aut Vanja Miskovic verfasserin aut Mattia Pesenti verfasserin aut Giuseppe Viscardi verfasserin aut Giuseppe Viscardi verfasserin aut Benedetta Pedica verfasserin aut Laura Mazzeo verfasserin aut Laura Mazzeo verfasserin aut Laura Mazzeo verfasserin aut Achille Bottiglieri verfasserin aut Achille Bottiglieri verfasserin aut Leonardo Provenzano verfasserin aut Leonardo Provenzano verfasserin aut Andrea Spagnoletti verfasserin aut Andrea Spagnoletti verfasserin aut Roberto Marinacci verfasserin aut Alessandro De Toma verfasserin aut Claudia Proto verfasserin aut Roberto Ferrara verfasserin aut Marta Brambilla verfasserin aut Mario Occhipinti verfasserin aut Sara Manglaviti verfasserin aut Giulia Galli verfasserin aut Diego Signorelli verfasserin aut Diego Signorelli verfasserin aut Claudia Giani verfasserin aut Claudia Giani verfasserin aut Teresa Beninato verfasserin aut Teresa Beninato verfasserin aut Chiara Carlotta Pircher verfasserin aut Chiara Carlotta Pircher verfasserin aut Alessandro Rametta verfasserin aut Alessandro Rametta verfasserin aut Sokol Kosta verfasserin aut Michele Zanitti verfasserin aut Maria Rosa Di Mauro verfasserin aut Arturo Rinaldi verfasserin aut Settimio Di Gregorio verfasserin aut Martinetti Antonia verfasserin aut Marina Chiara Garassino verfasserin aut Marina Chiara Garassino verfasserin aut Filippo G. M. de Braud verfasserin aut Filippo G. M. de Braud verfasserin aut Marcello Restelli verfasserin aut Giuseppe Lo Russo verfasserin aut Monica Ganzinelli verfasserin aut Francesco Trovò verfasserin aut Alessandra Laura Giulia Pedrocchi verfasserin aut In Frontiers in Oncology Frontiers Media S.A., 2012 12(2023) (DE-627)684965518 (DE-600)2649216-7 2234943X nnns volume:12 year:2023 https://doi.org/10.3389/fonc.2022.1078822 kostenfrei https://doaj.org/article/c99b6a5fcaed44e39c58687c3976c7f5 kostenfrei https://www.frontiersin.org/articles/10.3389/fonc.2022.1078822/full kostenfrei https://doaj.org/toc/2234-943X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 |
allfields_unstemmed |
10.3389/fonc.2022.1078822 doi (DE-627)DOAJ081622465 (DE-599)DOAJc99b6a5fcaed44e39c58687c3976c7f5 DE-627 ger DE-627 rakwb eng RC254-282 Arsela Prelaj verfasserin aut Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier IntroductionArtificial Intelligence (AI) methods are being increasingly investigated as a means to generate predictive models applicable in the clinical practice. In this study, we developed a model to predict the efficacy of immunotherapy (IO) in patients with advanced non-small cell lung cancer (NSCLC) using eXplainable AI (XAI) Machine Learning (ML) methods.MethodsWe prospectively collected real-world data from patients with an advanced NSCLC condition receiving immune-checkpoint inhibitors (ICIs) either as a single agent or in combination with chemotherapy. With regards to six different outcomes - Disease Control Rate (DCR), Objective Response Rate (ORR), 6 and 24-month Overall Survival (OS6 and OS24), 3-months Progression-Free Survival (PFS3) and Time to Treatment Failure (TTF3) - we evaluated five different classification ML models: CatBoost (CB), Logistic Regression (LR), Neural Network (NN), Random Forest (RF) and Support Vector Machine (SVM). We used the Shapley Additive Explanation (SHAP) values to explain model predictions.ResultsOf 480 patients included in the study 407 received immunotherapy and 73 chemo- and immunotherapy. From all the ML models, CB performed the best for OS6 and TTF3, (accuracy 0.83 and 0.81, respectively). CB and LR reached accuracy of 0.75 and 0.73 for the outcome DCR. SHAP for CB demonstrated that the feature that strongly influences models’ prediction for all three outcomes was Neutrophil to Lymphocyte Ratio (NLR). Performance Status (ECOG-PS) was an important feature for the outcomes OS6 and TTF3, while PD-L1, Line of IO and chemo-immunotherapy appeared to be more important in predicting DCR.ConclusionsIn this study we developed a ML algorithm based on real-world data, explained by SHAP techniques, and able to accurately predict the efficacy of immunotherapy in sets of NSCLC patients. non-small cell lung cancer immunotherapy machine learning explainable artificial intelligence treatment Neoplasms. Tumors. Oncology. Including cancer and carcinogens Arsela Prelaj verfasserin aut Edoardo Gregorio Galli verfasserin aut Edoardo Gregorio Galli verfasserin aut Edoardo Gregorio Galli verfasserin aut Vanja Miskovic verfasserin aut Mattia Pesenti verfasserin aut Giuseppe Viscardi verfasserin aut Giuseppe Viscardi verfasserin aut Benedetta Pedica verfasserin aut Laura Mazzeo verfasserin aut Laura Mazzeo verfasserin aut Laura Mazzeo verfasserin aut Achille Bottiglieri verfasserin aut Achille Bottiglieri verfasserin aut Leonardo Provenzano verfasserin aut Leonardo Provenzano verfasserin aut Andrea Spagnoletti verfasserin aut Andrea Spagnoletti verfasserin aut Roberto Marinacci verfasserin aut Alessandro De Toma verfasserin aut Claudia Proto verfasserin aut Roberto Ferrara verfasserin aut Marta Brambilla verfasserin aut Mario Occhipinti verfasserin aut Sara Manglaviti verfasserin aut Giulia Galli verfasserin aut Diego Signorelli verfasserin aut Diego Signorelli verfasserin aut Claudia Giani verfasserin aut Claudia Giani verfasserin aut Teresa Beninato verfasserin aut Teresa Beninato verfasserin aut Chiara Carlotta Pircher verfasserin aut Chiara Carlotta Pircher verfasserin aut Alessandro Rametta verfasserin aut Alessandro Rametta verfasserin aut Sokol Kosta verfasserin aut Michele Zanitti verfasserin aut Maria Rosa Di Mauro verfasserin aut Arturo Rinaldi verfasserin aut Settimio Di Gregorio verfasserin aut Martinetti Antonia verfasserin aut Marina Chiara Garassino verfasserin aut Marina Chiara Garassino verfasserin aut Filippo G. M. de Braud verfasserin aut Filippo G. M. de Braud verfasserin aut Marcello Restelli verfasserin aut Giuseppe Lo Russo verfasserin aut Monica Ganzinelli verfasserin aut Francesco Trovò verfasserin aut Alessandra Laura Giulia Pedrocchi verfasserin aut In Frontiers in Oncology Frontiers Media S.A., 2012 12(2023) (DE-627)684965518 (DE-600)2649216-7 2234943X nnns volume:12 year:2023 https://doi.org/10.3389/fonc.2022.1078822 kostenfrei https://doaj.org/article/c99b6a5fcaed44e39c58687c3976c7f5 kostenfrei https://www.frontiersin.org/articles/10.3389/fonc.2022.1078822/full kostenfrei https://doaj.org/toc/2234-943X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 |
allfieldsGer |
10.3389/fonc.2022.1078822 doi (DE-627)DOAJ081622465 (DE-599)DOAJc99b6a5fcaed44e39c58687c3976c7f5 DE-627 ger DE-627 rakwb eng RC254-282 Arsela Prelaj verfasserin aut Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier IntroductionArtificial Intelligence (AI) methods are being increasingly investigated as a means to generate predictive models applicable in the clinical practice. In this study, we developed a model to predict the efficacy of immunotherapy (IO) in patients with advanced non-small cell lung cancer (NSCLC) using eXplainable AI (XAI) Machine Learning (ML) methods.MethodsWe prospectively collected real-world data from patients with an advanced NSCLC condition receiving immune-checkpoint inhibitors (ICIs) either as a single agent or in combination with chemotherapy. With regards to six different outcomes - Disease Control Rate (DCR), Objective Response Rate (ORR), 6 and 24-month Overall Survival (OS6 and OS24), 3-months Progression-Free Survival (PFS3) and Time to Treatment Failure (TTF3) - we evaluated five different classification ML models: CatBoost (CB), Logistic Regression (LR), Neural Network (NN), Random Forest (RF) and Support Vector Machine (SVM). We used the Shapley Additive Explanation (SHAP) values to explain model predictions.ResultsOf 480 patients included in the study 407 received immunotherapy and 73 chemo- and immunotherapy. From all the ML models, CB performed the best for OS6 and TTF3, (accuracy 0.83 and 0.81, respectively). CB and LR reached accuracy of 0.75 and 0.73 for the outcome DCR. SHAP for CB demonstrated that the feature that strongly influences models’ prediction for all three outcomes was Neutrophil to Lymphocyte Ratio (NLR). Performance Status (ECOG-PS) was an important feature for the outcomes OS6 and TTF3, while PD-L1, Line of IO and chemo-immunotherapy appeared to be more important in predicting DCR.ConclusionsIn this study we developed a ML algorithm based on real-world data, explained by SHAP techniques, and able to accurately predict the efficacy of immunotherapy in sets of NSCLC patients. non-small cell lung cancer immunotherapy machine learning explainable artificial intelligence treatment Neoplasms. Tumors. Oncology. Including cancer and carcinogens Arsela Prelaj verfasserin aut Edoardo Gregorio Galli verfasserin aut Edoardo Gregorio Galli verfasserin aut Edoardo Gregorio Galli verfasserin aut Vanja Miskovic verfasserin aut Mattia Pesenti verfasserin aut Giuseppe Viscardi verfasserin aut Giuseppe Viscardi verfasserin aut Benedetta Pedica verfasserin aut Laura Mazzeo verfasserin aut Laura Mazzeo verfasserin aut Laura Mazzeo verfasserin aut Achille Bottiglieri verfasserin aut Achille Bottiglieri verfasserin aut Leonardo Provenzano verfasserin aut Leonardo Provenzano verfasserin aut Andrea Spagnoletti verfasserin aut Andrea Spagnoletti verfasserin aut Roberto Marinacci verfasserin aut Alessandro De Toma verfasserin aut Claudia Proto verfasserin aut Roberto Ferrara verfasserin aut Marta Brambilla verfasserin aut Mario Occhipinti verfasserin aut Sara Manglaviti verfasserin aut Giulia Galli verfasserin aut Diego Signorelli verfasserin aut Diego Signorelli verfasserin aut Claudia Giani verfasserin aut Claudia Giani verfasserin aut Teresa Beninato verfasserin aut Teresa Beninato verfasserin aut Chiara Carlotta Pircher verfasserin aut Chiara Carlotta Pircher verfasserin aut Alessandro Rametta verfasserin aut Alessandro Rametta verfasserin aut Sokol Kosta verfasserin aut Michele Zanitti verfasserin aut Maria Rosa Di Mauro verfasserin aut Arturo Rinaldi verfasserin aut Settimio Di Gregorio verfasserin aut Martinetti Antonia verfasserin aut Marina Chiara Garassino verfasserin aut Marina Chiara Garassino verfasserin aut Filippo G. M. de Braud verfasserin aut Filippo G. M. de Braud verfasserin aut Marcello Restelli verfasserin aut Giuseppe Lo Russo verfasserin aut Monica Ganzinelli verfasserin aut Francesco Trovò verfasserin aut Alessandra Laura Giulia Pedrocchi verfasserin aut In Frontiers in Oncology Frontiers Media S.A., 2012 12(2023) (DE-627)684965518 (DE-600)2649216-7 2234943X nnns volume:12 year:2023 https://doi.org/10.3389/fonc.2022.1078822 kostenfrei https://doaj.org/article/c99b6a5fcaed44e39c58687c3976c7f5 kostenfrei https://www.frontiersin.org/articles/10.3389/fonc.2022.1078822/full kostenfrei https://doaj.org/toc/2234-943X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 |
allfieldsSound |
10.3389/fonc.2022.1078822 doi (DE-627)DOAJ081622465 (DE-599)DOAJc99b6a5fcaed44e39c58687c3976c7f5 DE-627 ger DE-627 rakwb eng RC254-282 Arsela Prelaj verfasserin aut Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier IntroductionArtificial Intelligence (AI) methods are being increasingly investigated as a means to generate predictive models applicable in the clinical practice. In this study, we developed a model to predict the efficacy of immunotherapy (IO) in patients with advanced non-small cell lung cancer (NSCLC) using eXplainable AI (XAI) Machine Learning (ML) methods.MethodsWe prospectively collected real-world data from patients with an advanced NSCLC condition receiving immune-checkpoint inhibitors (ICIs) either as a single agent or in combination with chemotherapy. With regards to six different outcomes - Disease Control Rate (DCR), Objective Response Rate (ORR), 6 and 24-month Overall Survival (OS6 and OS24), 3-months Progression-Free Survival (PFS3) and Time to Treatment Failure (TTF3) - we evaluated five different classification ML models: CatBoost (CB), Logistic Regression (LR), Neural Network (NN), Random Forest (RF) and Support Vector Machine (SVM). We used the Shapley Additive Explanation (SHAP) values to explain model predictions.ResultsOf 480 patients included in the study 407 received immunotherapy and 73 chemo- and immunotherapy. From all the ML models, CB performed the best for OS6 and TTF3, (accuracy 0.83 and 0.81, respectively). CB and LR reached accuracy of 0.75 and 0.73 for the outcome DCR. SHAP for CB demonstrated that the feature that strongly influences models’ prediction for all three outcomes was Neutrophil to Lymphocyte Ratio (NLR). Performance Status (ECOG-PS) was an important feature for the outcomes OS6 and TTF3, while PD-L1, Line of IO and chemo-immunotherapy appeared to be more important in predicting DCR.ConclusionsIn this study we developed a ML algorithm based on real-world data, explained by SHAP techniques, and able to accurately predict the efficacy of immunotherapy in sets of NSCLC patients. non-small cell lung cancer immunotherapy machine learning explainable artificial intelligence treatment Neoplasms. Tumors. Oncology. Including cancer and carcinogens Arsela Prelaj verfasserin aut Edoardo Gregorio Galli verfasserin aut Edoardo Gregorio Galli verfasserin aut Edoardo Gregorio Galli verfasserin aut Vanja Miskovic verfasserin aut Mattia Pesenti verfasserin aut Giuseppe Viscardi verfasserin aut Giuseppe Viscardi verfasserin aut Benedetta Pedica verfasserin aut Laura Mazzeo verfasserin aut Laura Mazzeo verfasserin aut Laura Mazzeo verfasserin aut Achille Bottiglieri verfasserin aut Achille Bottiglieri verfasserin aut Leonardo Provenzano verfasserin aut Leonardo Provenzano verfasserin aut Andrea Spagnoletti verfasserin aut Andrea Spagnoletti verfasserin aut Roberto Marinacci verfasserin aut Alessandro De Toma verfasserin aut Claudia Proto verfasserin aut Roberto Ferrara verfasserin aut Marta Brambilla verfasserin aut Mario Occhipinti verfasserin aut Sara Manglaviti verfasserin aut Giulia Galli verfasserin aut Diego Signorelli verfasserin aut Diego Signorelli verfasserin aut Claudia Giani verfasserin aut Claudia Giani verfasserin aut Teresa Beninato verfasserin aut Teresa Beninato verfasserin aut Chiara Carlotta Pircher verfasserin aut Chiara Carlotta Pircher verfasserin aut Alessandro Rametta verfasserin aut Alessandro Rametta verfasserin aut Sokol Kosta verfasserin aut Michele Zanitti verfasserin aut Maria Rosa Di Mauro verfasserin aut Arturo Rinaldi verfasserin aut Settimio Di Gregorio verfasserin aut Martinetti Antonia verfasserin aut Marina Chiara Garassino verfasserin aut Marina Chiara Garassino verfasserin aut Filippo G. M. de Braud verfasserin aut Filippo G. M. de Braud verfasserin aut Marcello Restelli verfasserin aut Giuseppe Lo Russo verfasserin aut Monica Ganzinelli verfasserin aut Francesco Trovò verfasserin aut Alessandra Laura Giulia Pedrocchi verfasserin aut In Frontiers in Oncology Frontiers Media S.A., 2012 12(2023) (DE-627)684965518 (DE-600)2649216-7 2234943X nnns volume:12 year:2023 https://doi.org/10.3389/fonc.2022.1078822 kostenfrei https://doaj.org/article/c99b6a5fcaed44e39c58687c3976c7f5 kostenfrei https://www.frontiersin.org/articles/10.3389/fonc.2022.1078822/full kostenfrei https://doaj.org/toc/2234-943X Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 |
language |
English |
source |
In Frontiers in Oncology 12(2023) volume:12 year:2023 |
sourceStr |
In Frontiers in Oncology 12(2023) volume:12 year:2023 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
non-small cell lung cancer immunotherapy machine learning explainable artificial intelligence treatment Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
isfreeaccess_bool |
true |
container_title |
Frontiers in Oncology |
authorswithroles_txt_mv |
Arsela Prelaj @@aut@@ Edoardo Gregorio Galli @@aut@@ Vanja Miskovic @@aut@@ Mattia Pesenti @@aut@@ Giuseppe Viscardi @@aut@@ Benedetta Pedica @@aut@@ Laura Mazzeo @@aut@@ Achille Bottiglieri @@aut@@ Leonardo Provenzano @@aut@@ Andrea Spagnoletti @@aut@@ Roberto Marinacci @@aut@@ Alessandro De Toma @@aut@@ Claudia Proto @@aut@@ Roberto Ferrara @@aut@@ Marta Brambilla @@aut@@ Mario Occhipinti @@aut@@ Sara Manglaviti @@aut@@ Giulia Galli @@aut@@ Diego Signorelli @@aut@@ Claudia Giani @@aut@@ Teresa Beninato @@aut@@ Chiara Carlotta Pircher @@aut@@ Alessandro Rametta @@aut@@ Sokol Kosta @@aut@@ Michele Zanitti @@aut@@ Maria Rosa Di Mauro @@aut@@ Arturo Rinaldi @@aut@@ Settimio Di Gregorio @@aut@@ Martinetti Antonia @@aut@@ Marina Chiara Garassino @@aut@@ Filippo G. M. de Braud @@aut@@ Marcello Restelli @@aut@@ Giuseppe Lo Russo @@aut@@ Monica Ganzinelli @@aut@@ Francesco Trovò @@aut@@ Alessandra Laura Giulia Pedrocchi @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
684965518 |
id |
DOAJ081622465 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ081622465</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310220850.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fonc.2022.1078822</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ081622465</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc99b6a5fcaed44e39c58687c3976c7f5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC254-282</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Arsela Prelaj</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">IntroductionArtificial Intelligence (AI) methods are being increasingly investigated as a means to generate predictive models applicable in the clinical practice. In this study, we developed a model to predict the efficacy of immunotherapy (IO) in patients with advanced non-small cell lung cancer (NSCLC) using eXplainable AI (XAI) Machine Learning (ML) methods.MethodsWe prospectively collected real-world data from patients with an advanced NSCLC condition receiving immune-checkpoint inhibitors (ICIs) either as a single agent or in combination with chemotherapy. With regards to six different outcomes - Disease Control Rate (DCR), Objective Response Rate (ORR), 6 and 24-month Overall Survival (OS6 and OS24), 3-months Progression-Free Survival (PFS3) and Time to Treatment Failure (TTF3) - we evaluated five different classification ML models: CatBoost (CB), Logistic Regression (LR), Neural Network (NN), Random Forest (RF) and Support Vector Machine (SVM). We used the Shapley Additive Explanation (SHAP) values to explain model predictions.ResultsOf 480 patients included in the study 407 received immunotherapy and 73 chemo- and immunotherapy. From all the ML models, CB performed the best for OS6 and TTF3, (accuracy 0.83 and 0.81, respectively). CB and LR reached accuracy of 0.75 and 0.73 for the outcome DCR. SHAP for CB demonstrated that the feature that strongly influences models’ prediction for all three outcomes was Neutrophil to Lymphocyte Ratio (NLR). Performance Status (ECOG-PS) was an important feature for the outcomes OS6 and TTF3, while PD-L1, Line of IO and chemo-immunotherapy appeared to be more important in predicting DCR.ConclusionsIn this study we developed a ML algorithm based on real-world data, explained by SHAP techniques, and able to accurately predict the efficacy of immunotherapy in sets of NSCLC patients.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non-small cell lung cancer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">immunotherapy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">explainable artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">treatment</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neoplasms. Tumors. Oncology. Including cancer and carcinogens</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arsela Prelaj</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Edoardo Gregorio Galli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Edoardo Gregorio Galli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Edoardo Gregorio Galli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vanja Miskovic</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mattia Pesenti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giuseppe Viscardi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giuseppe Viscardi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Benedetta Pedica</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Laura Mazzeo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Laura Mazzeo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Laura Mazzeo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Achille Bottiglieri</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Achille Bottiglieri</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Leonardo Provenzano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Leonardo Provenzano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrea Spagnoletti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrea Spagnoletti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Roberto Marinacci</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alessandro De Toma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claudia Proto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Roberto Ferrara</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marta Brambilla</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mario Occhipinti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sara Manglaviti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giulia Galli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Diego Signorelli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Diego Signorelli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claudia Giani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claudia Giani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Teresa Beninato</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Teresa Beninato</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chiara Carlotta Pircher</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chiara Carlotta Pircher</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alessandro Rametta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alessandro Rametta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sokol Kosta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Michele Zanitti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maria Rosa Di Mauro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arturo Rinaldi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Settimio Di Gregorio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Martinetti Antonia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marina Chiara Garassino</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marina Chiara Garassino</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Filippo G. M. de Braud</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Filippo G. M. de Braud</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marcello Restelli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giuseppe Lo Russo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Monica Ganzinelli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Francesco Trovò</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alessandra Laura Giulia Pedrocchi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Oncology</subfield><subfield code="d">Frontiers Media S.A., 2012</subfield><subfield code="g">12(2023)</subfield><subfield code="w">(DE-627)684965518</subfield><subfield code="w">(DE-600)2649216-7</subfield><subfield code="x">2234943X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2023</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fonc.2022.1078822</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c99b6a5fcaed44e39c58687c3976c7f5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fonc.2022.1078822/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2234-943X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2023</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Arsela Prelaj |
spellingShingle |
Arsela Prelaj misc RC254-282 misc non-small cell lung cancer misc immunotherapy misc machine learning misc explainable artificial intelligence misc treatment misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients |
authorStr |
Arsela Prelaj |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)684965518 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RC254-282 |
illustrated |
Not Illustrated |
issn |
2234943X |
topic_title |
RC254-282 Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients non-small cell lung cancer immunotherapy machine learning explainable artificial intelligence treatment |
topic |
misc RC254-282 misc non-small cell lung cancer misc immunotherapy misc machine learning misc explainable artificial intelligence misc treatment misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
topic_unstemmed |
misc RC254-282 misc non-small cell lung cancer misc immunotherapy misc machine learning misc explainable artificial intelligence misc treatment misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
topic_browse |
misc RC254-282 misc non-small cell lung cancer misc immunotherapy misc machine learning misc explainable artificial intelligence misc treatment misc Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Oncology |
hierarchy_parent_id |
684965518 |
hierarchy_top_title |
Frontiers in Oncology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)684965518 (DE-600)2649216-7 |
title |
Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients |
ctrlnum |
(DE-627)DOAJ081622465 (DE-599)DOAJc99b6a5fcaed44e39c58687c3976c7f5 |
title_full |
Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients |
author_sort |
Arsela Prelaj |
journal |
Frontiers in Oncology |
journalStr |
Frontiers in Oncology |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Arsela Prelaj Edoardo Gregorio Galli Vanja Miskovic Mattia Pesenti Giuseppe Viscardi Benedetta Pedica Laura Mazzeo Achille Bottiglieri Leonardo Provenzano Andrea Spagnoletti Roberto Marinacci Alessandro De Toma Claudia Proto Roberto Ferrara Marta Brambilla Mario Occhipinti Sara Manglaviti Giulia Galli Diego Signorelli Claudia Giani Teresa Beninato Chiara Carlotta Pircher Alessandro Rametta Sokol Kosta Michele Zanitti Maria Rosa Di Mauro Arturo Rinaldi Settimio Di Gregorio Martinetti Antonia Marina Chiara Garassino Filippo G. M. de Braud Marcello Restelli Giuseppe Lo Russo Monica Ganzinelli Francesco Trovò Alessandra Laura Giulia Pedrocchi |
container_volume |
12 |
class |
RC254-282 |
format_se |
Elektronische Aufsätze |
author-letter |
Arsela Prelaj |
doi_str_mv |
10.3389/fonc.2022.1078822 |
author2-role |
verfasserin |
title_sort |
real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in nsclc patients |
callnumber |
RC254-282 |
title_auth |
Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients |
abstract |
IntroductionArtificial Intelligence (AI) methods are being increasingly investigated as a means to generate predictive models applicable in the clinical practice. In this study, we developed a model to predict the efficacy of immunotherapy (IO) in patients with advanced non-small cell lung cancer (NSCLC) using eXplainable AI (XAI) Machine Learning (ML) methods.MethodsWe prospectively collected real-world data from patients with an advanced NSCLC condition receiving immune-checkpoint inhibitors (ICIs) either as a single agent or in combination with chemotherapy. With regards to six different outcomes - Disease Control Rate (DCR), Objective Response Rate (ORR), 6 and 24-month Overall Survival (OS6 and OS24), 3-months Progression-Free Survival (PFS3) and Time to Treatment Failure (TTF3) - we evaluated five different classification ML models: CatBoost (CB), Logistic Regression (LR), Neural Network (NN), Random Forest (RF) and Support Vector Machine (SVM). We used the Shapley Additive Explanation (SHAP) values to explain model predictions.ResultsOf 480 patients included in the study 407 received immunotherapy and 73 chemo- and immunotherapy. From all the ML models, CB performed the best for OS6 and TTF3, (accuracy 0.83 and 0.81, respectively). CB and LR reached accuracy of 0.75 and 0.73 for the outcome DCR. SHAP for CB demonstrated that the feature that strongly influences models’ prediction for all three outcomes was Neutrophil to Lymphocyte Ratio (NLR). Performance Status (ECOG-PS) was an important feature for the outcomes OS6 and TTF3, while PD-L1, Line of IO and chemo-immunotherapy appeared to be more important in predicting DCR.ConclusionsIn this study we developed a ML algorithm based on real-world data, explained by SHAP techniques, and able to accurately predict the efficacy of immunotherapy in sets of NSCLC patients. |
abstractGer |
IntroductionArtificial Intelligence (AI) methods are being increasingly investigated as a means to generate predictive models applicable in the clinical practice. In this study, we developed a model to predict the efficacy of immunotherapy (IO) in patients with advanced non-small cell lung cancer (NSCLC) using eXplainable AI (XAI) Machine Learning (ML) methods.MethodsWe prospectively collected real-world data from patients with an advanced NSCLC condition receiving immune-checkpoint inhibitors (ICIs) either as a single agent or in combination with chemotherapy. With regards to six different outcomes - Disease Control Rate (DCR), Objective Response Rate (ORR), 6 and 24-month Overall Survival (OS6 and OS24), 3-months Progression-Free Survival (PFS3) and Time to Treatment Failure (TTF3) - we evaluated five different classification ML models: CatBoost (CB), Logistic Regression (LR), Neural Network (NN), Random Forest (RF) and Support Vector Machine (SVM). We used the Shapley Additive Explanation (SHAP) values to explain model predictions.ResultsOf 480 patients included in the study 407 received immunotherapy and 73 chemo- and immunotherapy. From all the ML models, CB performed the best for OS6 and TTF3, (accuracy 0.83 and 0.81, respectively). CB and LR reached accuracy of 0.75 and 0.73 for the outcome DCR. SHAP for CB demonstrated that the feature that strongly influences models’ prediction for all three outcomes was Neutrophil to Lymphocyte Ratio (NLR). Performance Status (ECOG-PS) was an important feature for the outcomes OS6 and TTF3, while PD-L1, Line of IO and chemo-immunotherapy appeared to be more important in predicting DCR.ConclusionsIn this study we developed a ML algorithm based on real-world data, explained by SHAP techniques, and able to accurately predict the efficacy of immunotherapy in sets of NSCLC patients. |
abstract_unstemmed |
IntroductionArtificial Intelligence (AI) methods are being increasingly investigated as a means to generate predictive models applicable in the clinical practice. In this study, we developed a model to predict the efficacy of immunotherapy (IO) in patients with advanced non-small cell lung cancer (NSCLC) using eXplainable AI (XAI) Machine Learning (ML) methods.MethodsWe prospectively collected real-world data from patients with an advanced NSCLC condition receiving immune-checkpoint inhibitors (ICIs) either as a single agent or in combination with chemotherapy. With regards to six different outcomes - Disease Control Rate (DCR), Objective Response Rate (ORR), 6 and 24-month Overall Survival (OS6 and OS24), 3-months Progression-Free Survival (PFS3) and Time to Treatment Failure (TTF3) - we evaluated five different classification ML models: CatBoost (CB), Logistic Regression (LR), Neural Network (NN), Random Forest (RF) and Support Vector Machine (SVM). We used the Shapley Additive Explanation (SHAP) values to explain model predictions.ResultsOf 480 patients included in the study 407 received immunotherapy and 73 chemo- and immunotherapy. From all the ML models, CB performed the best for OS6 and TTF3, (accuracy 0.83 and 0.81, respectively). CB and LR reached accuracy of 0.75 and 0.73 for the outcome DCR. SHAP for CB demonstrated that the feature that strongly influences models’ prediction for all three outcomes was Neutrophil to Lymphocyte Ratio (NLR). Performance Status (ECOG-PS) was an important feature for the outcomes OS6 and TTF3, while PD-L1, Line of IO and chemo-immunotherapy appeared to be more important in predicting DCR.ConclusionsIn this study we developed a ML algorithm based on real-world data, explained by SHAP techniques, and able to accurately predict the efficacy of immunotherapy in sets of NSCLC patients. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients |
url |
https://doi.org/10.3389/fonc.2022.1078822 https://doaj.org/article/c99b6a5fcaed44e39c58687c3976c7f5 https://www.frontiersin.org/articles/10.3389/fonc.2022.1078822/full https://doaj.org/toc/2234-943X |
remote_bool |
true |
author2 |
Arsela Prelaj Edoardo Gregorio Galli Vanja Miskovic Mattia Pesenti Giuseppe Viscardi Benedetta Pedica Laura Mazzeo Achille Bottiglieri Leonardo Provenzano Andrea Spagnoletti Roberto Marinacci Alessandro De Toma Claudia Proto Roberto Ferrara Marta Brambilla Mario Occhipinti Sara Manglaviti Giulia Galli Diego Signorelli Claudia Giani Teresa Beninato Chiara Carlotta Pircher Alessandro Rametta Sokol Kosta Michele Zanitti Maria Rosa Di Mauro Arturo Rinaldi Settimio Di Gregorio Martinetti Antonia Marina Chiara Garassino Filippo G. M. de Braud Marcello Restelli Giuseppe Lo Russo Monica Ganzinelli Francesco Trovò Alessandra Laura Giulia Pedrocchi |
author2Str |
Arsela Prelaj Edoardo Gregorio Galli Vanja Miskovic Mattia Pesenti Giuseppe Viscardi Benedetta Pedica Laura Mazzeo Achille Bottiglieri Leonardo Provenzano Andrea Spagnoletti Roberto Marinacci Alessandro De Toma Claudia Proto Roberto Ferrara Marta Brambilla Mario Occhipinti Sara Manglaviti Giulia Galli Diego Signorelli Claudia Giani Teresa Beninato Chiara Carlotta Pircher Alessandro Rametta Sokol Kosta Michele Zanitti Maria Rosa Di Mauro Arturo Rinaldi Settimio Di Gregorio Martinetti Antonia Marina Chiara Garassino Filippo G. M. de Braud Marcello Restelli Giuseppe Lo Russo Monica Ganzinelli Francesco Trovò Alessandra Laura Giulia Pedrocchi |
ppnlink |
684965518 |
callnumber-subject |
RC - Internal Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/fonc.2022.1078822 |
callnumber-a |
RC254-282 |
up_date |
2024-07-03T20:58:37.443Z |
_version_ |
1803592995904159744 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ081622465</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230310220850.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fonc.2022.1078822</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ081622465</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc99b6a5fcaed44e39c58687c3976c7f5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RC254-282</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Arsela Prelaj</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Real-world data to build explainable trustworthy artificial intelligence models for prediction of immunotherapy efficacy in NSCLC patients</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">IntroductionArtificial Intelligence (AI) methods are being increasingly investigated as a means to generate predictive models applicable in the clinical practice. In this study, we developed a model to predict the efficacy of immunotherapy (IO) in patients with advanced non-small cell lung cancer (NSCLC) using eXplainable AI (XAI) Machine Learning (ML) methods.MethodsWe prospectively collected real-world data from patients with an advanced NSCLC condition receiving immune-checkpoint inhibitors (ICIs) either as a single agent or in combination with chemotherapy. With regards to six different outcomes - Disease Control Rate (DCR), Objective Response Rate (ORR), 6 and 24-month Overall Survival (OS6 and OS24), 3-months Progression-Free Survival (PFS3) and Time to Treatment Failure (TTF3) - we evaluated five different classification ML models: CatBoost (CB), Logistic Regression (LR), Neural Network (NN), Random Forest (RF) and Support Vector Machine (SVM). We used the Shapley Additive Explanation (SHAP) values to explain model predictions.ResultsOf 480 patients included in the study 407 received immunotherapy and 73 chemo- and immunotherapy. From all the ML models, CB performed the best for OS6 and TTF3, (accuracy 0.83 and 0.81, respectively). CB and LR reached accuracy of 0.75 and 0.73 for the outcome DCR. SHAP for CB demonstrated that the feature that strongly influences models’ prediction for all three outcomes was Neutrophil to Lymphocyte Ratio (NLR). Performance Status (ECOG-PS) was an important feature for the outcomes OS6 and TTF3, while PD-L1, Line of IO and chemo-immunotherapy appeared to be more important in predicting DCR.ConclusionsIn this study we developed a ML algorithm based on real-world data, explained by SHAP techniques, and able to accurately predict the efficacy of immunotherapy in sets of NSCLC patients.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">non-small cell lung cancer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">immunotherapy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">explainable artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">treatment</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neoplasms. Tumors. Oncology. Including cancer and carcinogens</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arsela Prelaj</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Edoardo Gregorio Galli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Edoardo Gregorio Galli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Edoardo Gregorio Galli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vanja Miskovic</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mattia Pesenti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giuseppe Viscardi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giuseppe Viscardi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Benedetta Pedica</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Laura Mazzeo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Laura Mazzeo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Laura Mazzeo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Achille Bottiglieri</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Achille Bottiglieri</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Leonardo Provenzano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Leonardo Provenzano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrea Spagnoletti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Andrea Spagnoletti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Roberto Marinacci</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alessandro De Toma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claudia Proto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Roberto Ferrara</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marta Brambilla</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mario Occhipinti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sara Manglaviti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giulia Galli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Diego Signorelli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Diego Signorelli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claudia Giani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claudia Giani</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Teresa Beninato</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Teresa Beninato</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chiara Carlotta Pircher</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chiara Carlotta Pircher</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alessandro Rametta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alessandro Rametta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sokol Kosta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Michele Zanitti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maria Rosa Di Mauro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Arturo Rinaldi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Settimio Di Gregorio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Martinetti Antonia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marina Chiara Garassino</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marina Chiara Garassino</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Filippo G. M. de Braud</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Filippo G. M. de Braud</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marcello Restelli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giuseppe Lo Russo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Monica Ganzinelli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Francesco Trovò</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alessandra Laura Giulia Pedrocchi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Oncology</subfield><subfield code="d">Frontiers Media S.A., 2012</subfield><subfield code="g">12(2023)</subfield><subfield code="w">(DE-627)684965518</subfield><subfield code="w">(DE-600)2649216-7</subfield><subfield code="x">2234943X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2023</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fonc.2022.1078822</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c99b6a5fcaed44e39c58687c3976c7f5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fonc.2022.1078822/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2234-943X</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2023</subfield></datafield></record></collection>
|
score |
7.4021015 |