Microstructure Change, Nano-Hardness and Surface Modification of CN-G01 Beryllium Induced by Helium Ions
The helium effects in Chinese developed CN-G01 beryllium are important issues for its use in nuclear energy systems. In this work, the CN-G01 beryllium samples were irradiated with helium ions to fluences of 5.0 × 10<sup<16</sup< ions/cm<sup<2</sup< to 1.0 × 10<sup<18&l...
Ausführliche Beschreibung
Autor*in: |
Minghuan Cui [verfasserIn] Peng Jin [verfasserIn] Tielong Shen [verfasserIn] Yabin Zhu [verfasserIn] Lilong Pang [verfasserIn] Zhiguang Wang [verfasserIn] Xiaofang Luo [verfasserIn] Yongjin Feng [verfasserIn] Baoping Gong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Metals - MDPI AG, 2012, 13(2022), 1, p 60 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2022 ; number:1, p 60 |
Links: |
---|
DOI / URN: |
10.3390/met13010060 |
---|
Katalog-ID: |
DOAJ08174417X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ08174417X | ||
003 | DE-627 | ||
005 | 20240414120816.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230310s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/met13010060 |2 doi | |
035 | |a (DE-627)DOAJ08174417X | ||
035 | |a (DE-599)DOAJ1083dc4b5dc34aa59c1d69c1661cdc4b | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TN1-997 | |
100 | 0 | |a Minghuan Cui |e verfasserin |4 aut | |
245 | 1 | 0 | |a Microstructure Change, Nano-Hardness and Surface Modification of CN-G01 Beryllium Induced by Helium Ions |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The helium effects in Chinese developed CN-G01 beryllium are important issues for its use in nuclear energy systems. In this work, the CN-G01 beryllium samples were irradiated with helium ions to fluences of 5.0 × 10<sup<16</sup< ions/cm<sup<2</sup< to 1.0 × 10<sup<18</sup< ions/cm<sup<2</sup< at room temperature and investigated by techniques of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nano-indentation. It was found that the irradiation induced hardening of beryllium and the nano-hardness of the samples increased with increasing fluence of 5.0 × 10<sup<16</sup< ions/cm<sup<2</sup< to 1.0 × 10<sup<17</sup< ions/cm<sup<2</sup<. When the fluence reached 5.0 × 10<sup<17</sup< ions/cm<sup<2</sup< and 1.0 × 10<sup<18</sup< ions/cm<sup<2</sup<, helium irradiation induced serious surface blistering and its burst. TEM observation found that helium bubbles in the damage peak region became visible when the fluence reached 1.0 × 10<sup<17</sup< ions/cm<sup<2</sup<. With increasing fluence, helium bubbles became larger and connected into large cracks. The underlying physical mechanisms are discussed based on the helium behavior at low temperatures and the contributions of helium induced defects. This work will provide some new understanding on the irradiation resistance of CN-G01 beryllium and the helium effects in beryllium at low temperatures. | ||
650 | 4 | |a CN-G01 beryllium | |
650 | 4 | |a helium bubble | |
650 | 4 | |a hardness | |
650 | 4 | |a surface blister | |
653 | 0 | |a Mining engineering. Metallurgy | |
700 | 0 | |a Peng Jin |e verfasserin |4 aut | |
700 | 0 | |a Tielong Shen |e verfasserin |4 aut | |
700 | 0 | |a Yabin Zhu |e verfasserin |4 aut | |
700 | 0 | |a Lilong Pang |e verfasserin |4 aut | |
700 | 0 | |a Zhiguang Wang |e verfasserin |4 aut | |
700 | 0 | |a Xiaofang Luo |e verfasserin |4 aut | |
700 | 0 | |a Yongjin Feng |e verfasserin |4 aut | |
700 | 0 | |a Baoping Gong |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Metals |d MDPI AG, 2012 |g 13(2022), 1, p 60 |w (DE-627)718627172 |w (DE-600)2662252-X |x 20754701 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2022 |g number:1, p 60 |
856 | 4 | 0 | |u https://doi.org/10.3390/met13010060 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/1083dc4b5dc34aa59c1d69c1661cdc4b |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2075-4701/13/1/60 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2075-4701 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2022 |e 1, p 60 |
author_variant |
m c mc p j pj t s ts y z yz l p lp z w zw x l xl y f yf b g bg |
---|---|
matchkey_str |
article:20754701:2022----::irsrcuehneaoadesnsraeoiiainfn0brl |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TN |
publishDate |
2022 |
allfields |
10.3390/met13010060 doi (DE-627)DOAJ08174417X (DE-599)DOAJ1083dc4b5dc34aa59c1d69c1661cdc4b DE-627 ger DE-627 rakwb eng TN1-997 Minghuan Cui verfasserin aut Microstructure Change, Nano-Hardness and Surface Modification of CN-G01 Beryllium Induced by Helium Ions 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The helium effects in Chinese developed CN-G01 beryllium are important issues for its use in nuclear energy systems. In this work, the CN-G01 beryllium samples were irradiated with helium ions to fluences of 5.0 × 10<sup<16</sup< ions/cm<sup<2</sup< to 1.0 × 10<sup<18</sup< ions/cm<sup<2</sup< at room temperature and investigated by techniques of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nano-indentation. It was found that the irradiation induced hardening of beryllium and the nano-hardness of the samples increased with increasing fluence of 5.0 × 10<sup<16</sup< ions/cm<sup<2</sup< to 1.0 × 10<sup<17</sup< ions/cm<sup<2</sup<. When the fluence reached 5.0 × 10<sup<17</sup< ions/cm<sup<2</sup< and 1.0 × 10<sup<18</sup< ions/cm<sup<2</sup<, helium irradiation induced serious surface blistering and its burst. TEM observation found that helium bubbles in the damage peak region became visible when the fluence reached 1.0 × 10<sup<17</sup< ions/cm<sup<2</sup<. With increasing fluence, helium bubbles became larger and connected into large cracks. The underlying physical mechanisms are discussed based on the helium behavior at low temperatures and the contributions of helium induced defects. This work will provide some new understanding on the irradiation resistance of CN-G01 beryllium and the helium effects in beryllium at low temperatures. CN-G01 beryllium helium bubble hardness surface blister Mining engineering. Metallurgy Peng Jin verfasserin aut Tielong Shen verfasserin aut Yabin Zhu verfasserin aut Lilong Pang verfasserin aut Zhiguang Wang verfasserin aut Xiaofang Luo verfasserin aut Yongjin Feng verfasserin aut Baoping Gong verfasserin aut In Metals MDPI AG, 2012 13(2022), 1, p 60 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:13 year:2022 number:1, p 60 https://doi.org/10.3390/met13010060 kostenfrei https://doaj.org/article/1083dc4b5dc34aa59c1d69c1661cdc4b kostenfrei https://www.mdpi.com/2075-4701/13/1/60 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 1, p 60 |
spelling |
10.3390/met13010060 doi (DE-627)DOAJ08174417X (DE-599)DOAJ1083dc4b5dc34aa59c1d69c1661cdc4b DE-627 ger DE-627 rakwb eng TN1-997 Minghuan Cui verfasserin aut Microstructure Change, Nano-Hardness and Surface Modification of CN-G01 Beryllium Induced by Helium Ions 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The helium effects in Chinese developed CN-G01 beryllium are important issues for its use in nuclear energy systems. In this work, the CN-G01 beryllium samples were irradiated with helium ions to fluences of 5.0 × 10<sup<16</sup< ions/cm<sup<2</sup< to 1.0 × 10<sup<18</sup< ions/cm<sup<2</sup< at room temperature and investigated by techniques of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nano-indentation. It was found that the irradiation induced hardening of beryllium and the nano-hardness of the samples increased with increasing fluence of 5.0 × 10<sup<16</sup< ions/cm<sup<2</sup< to 1.0 × 10<sup<17</sup< ions/cm<sup<2</sup<. When the fluence reached 5.0 × 10<sup<17</sup< ions/cm<sup<2</sup< and 1.0 × 10<sup<18</sup< ions/cm<sup<2</sup<, helium irradiation induced serious surface blistering and its burst. TEM observation found that helium bubbles in the damage peak region became visible when the fluence reached 1.0 × 10<sup<17</sup< ions/cm<sup<2</sup<. With increasing fluence, helium bubbles became larger and connected into large cracks. The underlying physical mechanisms are discussed based on the helium behavior at low temperatures and the contributions of helium induced defects. This work will provide some new understanding on the irradiation resistance of CN-G01 beryllium and the helium effects in beryllium at low temperatures. CN-G01 beryllium helium bubble hardness surface blister Mining engineering. Metallurgy Peng Jin verfasserin aut Tielong Shen verfasserin aut Yabin Zhu verfasserin aut Lilong Pang verfasserin aut Zhiguang Wang verfasserin aut Xiaofang Luo verfasserin aut Yongjin Feng verfasserin aut Baoping Gong verfasserin aut In Metals MDPI AG, 2012 13(2022), 1, p 60 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:13 year:2022 number:1, p 60 https://doi.org/10.3390/met13010060 kostenfrei https://doaj.org/article/1083dc4b5dc34aa59c1d69c1661cdc4b kostenfrei https://www.mdpi.com/2075-4701/13/1/60 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 1, p 60 |
allfields_unstemmed |
10.3390/met13010060 doi (DE-627)DOAJ08174417X (DE-599)DOAJ1083dc4b5dc34aa59c1d69c1661cdc4b DE-627 ger DE-627 rakwb eng TN1-997 Minghuan Cui verfasserin aut Microstructure Change, Nano-Hardness and Surface Modification of CN-G01 Beryllium Induced by Helium Ions 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The helium effects in Chinese developed CN-G01 beryllium are important issues for its use in nuclear energy systems. In this work, the CN-G01 beryllium samples were irradiated with helium ions to fluences of 5.0 × 10<sup<16</sup< ions/cm<sup<2</sup< to 1.0 × 10<sup<18</sup< ions/cm<sup<2</sup< at room temperature and investigated by techniques of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nano-indentation. It was found that the irradiation induced hardening of beryllium and the nano-hardness of the samples increased with increasing fluence of 5.0 × 10<sup<16</sup< ions/cm<sup<2</sup< to 1.0 × 10<sup<17</sup< ions/cm<sup<2</sup<. When the fluence reached 5.0 × 10<sup<17</sup< ions/cm<sup<2</sup< and 1.0 × 10<sup<18</sup< ions/cm<sup<2</sup<, helium irradiation induced serious surface blistering and its burst. TEM observation found that helium bubbles in the damage peak region became visible when the fluence reached 1.0 × 10<sup<17</sup< ions/cm<sup<2</sup<. With increasing fluence, helium bubbles became larger and connected into large cracks. The underlying physical mechanisms are discussed based on the helium behavior at low temperatures and the contributions of helium induced defects. This work will provide some new understanding on the irradiation resistance of CN-G01 beryllium and the helium effects in beryllium at low temperatures. CN-G01 beryllium helium bubble hardness surface blister Mining engineering. Metallurgy Peng Jin verfasserin aut Tielong Shen verfasserin aut Yabin Zhu verfasserin aut Lilong Pang verfasserin aut Zhiguang Wang verfasserin aut Xiaofang Luo verfasserin aut Yongjin Feng verfasserin aut Baoping Gong verfasserin aut In Metals MDPI AG, 2012 13(2022), 1, p 60 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:13 year:2022 number:1, p 60 https://doi.org/10.3390/met13010060 kostenfrei https://doaj.org/article/1083dc4b5dc34aa59c1d69c1661cdc4b kostenfrei https://www.mdpi.com/2075-4701/13/1/60 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 1, p 60 |
allfieldsGer |
10.3390/met13010060 doi (DE-627)DOAJ08174417X (DE-599)DOAJ1083dc4b5dc34aa59c1d69c1661cdc4b DE-627 ger DE-627 rakwb eng TN1-997 Minghuan Cui verfasserin aut Microstructure Change, Nano-Hardness and Surface Modification of CN-G01 Beryllium Induced by Helium Ions 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The helium effects in Chinese developed CN-G01 beryllium are important issues for its use in nuclear energy systems. In this work, the CN-G01 beryllium samples were irradiated with helium ions to fluences of 5.0 × 10<sup<16</sup< ions/cm<sup<2</sup< to 1.0 × 10<sup<18</sup< ions/cm<sup<2</sup< at room temperature and investigated by techniques of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nano-indentation. It was found that the irradiation induced hardening of beryllium and the nano-hardness of the samples increased with increasing fluence of 5.0 × 10<sup<16</sup< ions/cm<sup<2</sup< to 1.0 × 10<sup<17</sup< ions/cm<sup<2</sup<. When the fluence reached 5.0 × 10<sup<17</sup< ions/cm<sup<2</sup< and 1.0 × 10<sup<18</sup< ions/cm<sup<2</sup<, helium irradiation induced serious surface blistering and its burst. TEM observation found that helium bubbles in the damage peak region became visible when the fluence reached 1.0 × 10<sup<17</sup< ions/cm<sup<2</sup<. With increasing fluence, helium bubbles became larger and connected into large cracks. The underlying physical mechanisms are discussed based on the helium behavior at low temperatures and the contributions of helium induced defects. This work will provide some new understanding on the irradiation resistance of CN-G01 beryllium and the helium effects in beryllium at low temperatures. CN-G01 beryllium helium bubble hardness surface blister Mining engineering. Metallurgy Peng Jin verfasserin aut Tielong Shen verfasserin aut Yabin Zhu verfasserin aut Lilong Pang verfasserin aut Zhiguang Wang verfasserin aut Xiaofang Luo verfasserin aut Yongjin Feng verfasserin aut Baoping Gong verfasserin aut In Metals MDPI AG, 2012 13(2022), 1, p 60 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:13 year:2022 number:1, p 60 https://doi.org/10.3390/met13010060 kostenfrei https://doaj.org/article/1083dc4b5dc34aa59c1d69c1661cdc4b kostenfrei https://www.mdpi.com/2075-4701/13/1/60 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 1, p 60 |
allfieldsSound |
10.3390/met13010060 doi (DE-627)DOAJ08174417X (DE-599)DOAJ1083dc4b5dc34aa59c1d69c1661cdc4b DE-627 ger DE-627 rakwb eng TN1-997 Minghuan Cui verfasserin aut Microstructure Change, Nano-Hardness and Surface Modification of CN-G01 Beryllium Induced by Helium Ions 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The helium effects in Chinese developed CN-G01 beryllium are important issues for its use in nuclear energy systems. In this work, the CN-G01 beryllium samples were irradiated with helium ions to fluences of 5.0 × 10<sup<16</sup< ions/cm<sup<2</sup< to 1.0 × 10<sup<18</sup< ions/cm<sup<2</sup< at room temperature and investigated by techniques of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nano-indentation. It was found that the irradiation induced hardening of beryllium and the nano-hardness of the samples increased with increasing fluence of 5.0 × 10<sup<16</sup< ions/cm<sup<2</sup< to 1.0 × 10<sup<17</sup< ions/cm<sup<2</sup<. When the fluence reached 5.0 × 10<sup<17</sup< ions/cm<sup<2</sup< and 1.0 × 10<sup<18</sup< ions/cm<sup<2</sup<, helium irradiation induced serious surface blistering and its burst. TEM observation found that helium bubbles in the damage peak region became visible when the fluence reached 1.0 × 10<sup<17</sup< ions/cm<sup<2</sup<. With increasing fluence, helium bubbles became larger and connected into large cracks. The underlying physical mechanisms are discussed based on the helium behavior at low temperatures and the contributions of helium induced defects. This work will provide some new understanding on the irradiation resistance of CN-G01 beryllium and the helium effects in beryllium at low temperatures. CN-G01 beryllium helium bubble hardness surface blister Mining engineering. Metallurgy Peng Jin verfasserin aut Tielong Shen verfasserin aut Yabin Zhu verfasserin aut Lilong Pang verfasserin aut Zhiguang Wang verfasserin aut Xiaofang Luo verfasserin aut Yongjin Feng verfasserin aut Baoping Gong verfasserin aut In Metals MDPI AG, 2012 13(2022), 1, p 60 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:13 year:2022 number:1, p 60 https://doi.org/10.3390/met13010060 kostenfrei https://doaj.org/article/1083dc4b5dc34aa59c1d69c1661cdc4b kostenfrei https://www.mdpi.com/2075-4701/13/1/60 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 1, p 60 |
language |
English |
source |
In Metals 13(2022), 1, p 60 volume:13 year:2022 number:1, p 60 |
sourceStr |
In Metals 13(2022), 1, p 60 volume:13 year:2022 number:1, p 60 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
CN-G01 beryllium helium bubble hardness surface blister Mining engineering. Metallurgy |
isfreeaccess_bool |
true |
container_title |
Metals |
authorswithroles_txt_mv |
Minghuan Cui @@aut@@ Peng Jin @@aut@@ Tielong Shen @@aut@@ Yabin Zhu @@aut@@ Lilong Pang @@aut@@ Zhiguang Wang @@aut@@ Xiaofang Luo @@aut@@ Yongjin Feng @@aut@@ Baoping Gong @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
718627172 |
id |
DOAJ08174417X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ08174417X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414120816.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/met13010060</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ08174417X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1083dc4b5dc34aa59c1d69c1661cdc4b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TN1-997</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Minghuan Cui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Microstructure Change, Nano-Hardness and Surface Modification of CN-G01 Beryllium Induced by Helium Ions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The helium effects in Chinese developed CN-G01 beryllium are important issues for its use in nuclear energy systems. In this work, the CN-G01 beryllium samples were irradiated with helium ions to fluences of 5.0 × 10<sup<16</sup< ions/cm<sup<2</sup< to 1.0 × 10<sup<18</sup< ions/cm<sup<2</sup< at room temperature and investigated by techniques of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nano-indentation. It was found that the irradiation induced hardening of beryllium and the nano-hardness of the samples increased with increasing fluence of 5.0 × 10<sup<16</sup< ions/cm<sup<2</sup< to 1.0 × 10<sup<17</sup< ions/cm<sup<2</sup<. When the fluence reached 5.0 × 10<sup<17</sup< ions/cm<sup<2</sup< and 1.0 × 10<sup<18</sup< ions/cm<sup<2</sup<, helium irradiation induced serious surface blistering and its burst. TEM observation found that helium bubbles in the damage peak region became visible when the fluence reached 1.0 × 10<sup<17</sup< ions/cm<sup<2</sup<. With increasing fluence, helium bubbles became larger and connected into large cracks. The underlying physical mechanisms are discussed based on the helium behavior at low temperatures and the contributions of helium induced defects. This work will provide some new understanding on the irradiation resistance of CN-G01 beryllium and the helium effects in beryllium at low temperatures.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CN-G01 beryllium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">helium bubble</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hardness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">surface blister</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mining engineering. Metallurgy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peng Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tielong Shen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yabin Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lilong Pang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhiguang Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaofang Luo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yongjin Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Baoping Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Metals</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2022), 1, p 60</subfield><subfield code="w">(DE-627)718627172</subfield><subfield code="w">(DE-600)2662252-X</subfield><subfield code="x">20754701</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1, p 60</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/met13010060</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1083dc4b5dc34aa59c1d69c1661cdc4b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-4701/13/1/60</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-4701</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2022</subfield><subfield code="e">1, p 60</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Minghuan Cui |
spellingShingle |
Minghuan Cui misc TN1-997 misc CN-G01 beryllium misc helium bubble misc hardness misc surface blister misc Mining engineering. Metallurgy Microstructure Change, Nano-Hardness and Surface Modification of CN-G01 Beryllium Induced by Helium Ions |
authorStr |
Minghuan Cui |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718627172 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TN1-997 |
illustrated |
Not Illustrated |
issn |
20754701 |
topic_title |
TN1-997 Microstructure Change, Nano-Hardness and Surface Modification of CN-G01 Beryllium Induced by Helium Ions CN-G01 beryllium helium bubble hardness surface blister |
topic |
misc TN1-997 misc CN-G01 beryllium misc helium bubble misc hardness misc surface blister misc Mining engineering. Metallurgy |
topic_unstemmed |
misc TN1-997 misc CN-G01 beryllium misc helium bubble misc hardness misc surface blister misc Mining engineering. Metallurgy |
topic_browse |
misc TN1-997 misc CN-G01 beryllium misc helium bubble misc hardness misc surface blister misc Mining engineering. Metallurgy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Metals |
hierarchy_parent_id |
718627172 |
hierarchy_top_title |
Metals |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718627172 (DE-600)2662252-X |
title |
Microstructure Change, Nano-Hardness and Surface Modification of CN-G01 Beryllium Induced by Helium Ions |
ctrlnum |
(DE-627)DOAJ08174417X (DE-599)DOAJ1083dc4b5dc34aa59c1d69c1661cdc4b |
title_full |
Microstructure Change, Nano-Hardness and Surface Modification of CN-G01 Beryllium Induced by Helium Ions |
author_sort |
Minghuan Cui |
journal |
Metals |
journalStr |
Metals |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Minghuan Cui Peng Jin Tielong Shen Yabin Zhu Lilong Pang Zhiguang Wang Xiaofang Luo Yongjin Feng Baoping Gong |
container_volume |
13 |
class |
TN1-997 |
format_se |
Elektronische Aufsätze |
author-letter |
Minghuan Cui |
doi_str_mv |
10.3390/met13010060 |
author2-role |
verfasserin |
title_sort |
microstructure change, nano-hardness and surface modification of cn-g01 beryllium induced by helium ions |
callnumber |
TN1-997 |
title_auth |
Microstructure Change, Nano-Hardness and Surface Modification of CN-G01 Beryllium Induced by Helium Ions |
abstract |
The helium effects in Chinese developed CN-G01 beryllium are important issues for its use in nuclear energy systems. In this work, the CN-G01 beryllium samples were irradiated with helium ions to fluences of 5.0 × 10<sup<16</sup< ions/cm<sup<2</sup< to 1.0 × 10<sup<18</sup< ions/cm<sup<2</sup< at room temperature and investigated by techniques of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nano-indentation. It was found that the irradiation induced hardening of beryllium and the nano-hardness of the samples increased with increasing fluence of 5.0 × 10<sup<16</sup< ions/cm<sup<2</sup< to 1.0 × 10<sup<17</sup< ions/cm<sup<2</sup<. When the fluence reached 5.0 × 10<sup<17</sup< ions/cm<sup<2</sup< and 1.0 × 10<sup<18</sup< ions/cm<sup<2</sup<, helium irradiation induced serious surface blistering and its burst. TEM observation found that helium bubbles in the damage peak region became visible when the fluence reached 1.0 × 10<sup<17</sup< ions/cm<sup<2</sup<. With increasing fluence, helium bubbles became larger and connected into large cracks. The underlying physical mechanisms are discussed based on the helium behavior at low temperatures and the contributions of helium induced defects. This work will provide some new understanding on the irradiation resistance of CN-G01 beryllium and the helium effects in beryllium at low temperatures. |
abstractGer |
The helium effects in Chinese developed CN-G01 beryllium are important issues for its use in nuclear energy systems. In this work, the CN-G01 beryllium samples were irradiated with helium ions to fluences of 5.0 × 10<sup<16</sup< ions/cm<sup<2</sup< to 1.0 × 10<sup<18</sup< ions/cm<sup<2</sup< at room temperature and investigated by techniques of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nano-indentation. It was found that the irradiation induced hardening of beryllium and the nano-hardness of the samples increased with increasing fluence of 5.0 × 10<sup<16</sup< ions/cm<sup<2</sup< to 1.0 × 10<sup<17</sup< ions/cm<sup<2</sup<. When the fluence reached 5.0 × 10<sup<17</sup< ions/cm<sup<2</sup< and 1.0 × 10<sup<18</sup< ions/cm<sup<2</sup<, helium irradiation induced serious surface blistering and its burst. TEM observation found that helium bubbles in the damage peak region became visible when the fluence reached 1.0 × 10<sup<17</sup< ions/cm<sup<2</sup<. With increasing fluence, helium bubbles became larger and connected into large cracks. The underlying physical mechanisms are discussed based on the helium behavior at low temperatures and the contributions of helium induced defects. This work will provide some new understanding on the irradiation resistance of CN-G01 beryllium and the helium effects in beryllium at low temperatures. |
abstract_unstemmed |
The helium effects in Chinese developed CN-G01 beryllium are important issues for its use in nuclear energy systems. In this work, the CN-G01 beryllium samples were irradiated with helium ions to fluences of 5.0 × 10<sup<16</sup< ions/cm<sup<2</sup< to 1.0 × 10<sup<18</sup< ions/cm<sup<2</sup< at room temperature and investigated by techniques of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nano-indentation. It was found that the irradiation induced hardening of beryllium and the nano-hardness of the samples increased with increasing fluence of 5.0 × 10<sup<16</sup< ions/cm<sup<2</sup< to 1.0 × 10<sup<17</sup< ions/cm<sup<2</sup<. When the fluence reached 5.0 × 10<sup<17</sup< ions/cm<sup<2</sup< and 1.0 × 10<sup<18</sup< ions/cm<sup<2</sup<, helium irradiation induced serious surface blistering and its burst. TEM observation found that helium bubbles in the damage peak region became visible when the fluence reached 1.0 × 10<sup<17</sup< ions/cm<sup<2</sup<. With increasing fluence, helium bubbles became larger and connected into large cracks. The underlying physical mechanisms are discussed based on the helium behavior at low temperatures and the contributions of helium induced defects. This work will provide some new understanding on the irradiation resistance of CN-G01 beryllium and the helium effects in beryllium at low temperatures. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 60 |
title_short |
Microstructure Change, Nano-Hardness and Surface Modification of CN-G01 Beryllium Induced by Helium Ions |
url |
https://doi.org/10.3390/met13010060 https://doaj.org/article/1083dc4b5dc34aa59c1d69c1661cdc4b https://www.mdpi.com/2075-4701/13/1/60 https://doaj.org/toc/2075-4701 |
remote_bool |
true |
author2 |
Peng Jin Tielong Shen Yabin Zhu Lilong Pang Zhiguang Wang Xiaofang Luo Yongjin Feng Baoping Gong |
author2Str |
Peng Jin Tielong Shen Yabin Zhu Lilong Pang Zhiguang Wang Xiaofang Luo Yongjin Feng Baoping Gong |
ppnlink |
718627172 |
callnumber-subject |
TN - Mining Engineering and Metallurgy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/met13010060 |
callnumber-a |
TN1-997 |
up_date |
2024-07-03T21:41:05.421Z |
_version_ |
1803595667654836224 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ08174417X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414120816.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/met13010060</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ08174417X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1083dc4b5dc34aa59c1d69c1661cdc4b</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TN1-997</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Minghuan Cui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Microstructure Change, Nano-Hardness and Surface Modification of CN-G01 Beryllium Induced by Helium Ions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The helium effects in Chinese developed CN-G01 beryllium are important issues for its use in nuclear energy systems. In this work, the CN-G01 beryllium samples were irradiated with helium ions to fluences of 5.0 × 10<sup<16</sup< ions/cm<sup<2</sup< to 1.0 × 10<sup<18</sup< ions/cm<sup<2</sup< at room temperature and investigated by techniques of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nano-indentation. It was found that the irradiation induced hardening of beryllium and the nano-hardness of the samples increased with increasing fluence of 5.0 × 10<sup<16</sup< ions/cm<sup<2</sup< to 1.0 × 10<sup<17</sup< ions/cm<sup<2</sup<. When the fluence reached 5.0 × 10<sup<17</sup< ions/cm<sup<2</sup< and 1.0 × 10<sup<18</sup< ions/cm<sup<2</sup<, helium irradiation induced serious surface blistering and its burst. TEM observation found that helium bubbles in the damage peak region became visible when the fluence reached 1.0 × 10<sup<17</sup< ions/cm<sup<2</sup<. With increasing fluence, helium bubbles became larger and connected into large cracks. The underlying physical mechanisms are discussed based on the helium behavior at low temperatures and the contributions of helium induced defects. This work will provide some new understanding on the irradiation resistance of CN-G01 beryllium and the helium effects in beryllium at low temperatures.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CN-G01 beryllium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">helium bubble</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hardness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">surface blister</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mining engineering. Metallurgy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peng Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tielong Shen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yabin Zhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lilong Pang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhiguang Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaofang Luo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yongjin Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Baoping Gong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Metals</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">13(2022), 1, p 60</subfield><subfield code="w">(DE-627)718627172</subfield><subfield code="w">(DE-600)2662252-X</subfield><subfield code="x">20754701</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1, p 60</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/met13010060</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1083dc4b5dc34aa59c1d69c1661cdc4b</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-4701/13/1/60</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-4701</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2022</subfield><subfield code="e">1, p 60</subfield></datafield></record></collection>
|
score |
7.401143 |