Enhanced Signed Graph Neural Network with Node Polarity
Signed graph neural networks learn low-dimensional representations for nodes in signed networks with positive and negative links, which helps with many downstream tasks like link prediction. However, most existing signed graph neural networks ignore individual characteristics of nodes and thus limit...
Ausführliche Beschreibung
Autor*in: |
Jiawang Chen [verfasserIn] Zhi Qiao [verfasserIn] Jun Yan [verfasserIn] Zhenqiang Wu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Entropy - MDPI AG, 2003, 25(2022), 1, p 38 |
---|---|
Übergeordnetes Werk: |
volume:25 ; year:2022 ; number:1, p 38 |
Links: |
---|
DOI / URN: |
10.3390/e25010038 |
---|
Katalog-ID: |
DOAJ081808739 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ081808739 | ||
003 | DE-627 | ||
005 | 20240414133900.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230310s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/e25010038 |2 doi | |
035 | |a (DE-627)DOAJ081808739 | ||
035 | |a (DE-599)DOAJc98c9dc160c1431c93d36794280d9fed | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QB460-466 | |
050 | 0 | |a QC1-999 | |
100 | 0 | |a Jiawang Chen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Enhanced Signed Graph Neural Network with Node Polarity |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Signed graph neural networks learn low-dimensional representations for nodes in signed networks with positive and negative links, which helps with many downstream tasks like link prediction. However, most existing signed graph neural networks ignore individual characteristics of nodes and thus limit the ability to learn the underlying structure of real signed graphs. To address this limitation, a deep graph neural network framework SiNP to learn Signed network embedding with Node Polarity is proposed. To be more explicit, a node-signed property metric mechanism is developed to encode the individual characteristics of the nodes. In addition, a graph convolution layer is added so that both positive and negative information from neighboring nodes can be combined. The final embedding of nodes is produced by concatenating the outcomes of these two portions. Finally, extensive experiments have been conducted on four significant real-world signed network datasets to demonstrate the efficiency and superiority of the proposed method in comparison to the state-of-the-art. | ||
650 | 4 | |a signed network | |
650 | 4 | |a network embedding | |
650 | 4 | |a graph neural network | |
650 | 4 | |a node polarity | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
653 | 0 | |a Astrophysics | |
653 | 0 | |a Physics | |
700 | 0 | |a Zhi Qiao |e verfasserin |4 aut | |
700 | 0 | |a Jun Yan |e verfasserin |4 aut | |
700 | 0 | |a Zhenqiang Wu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Entropy |d MDPI AG, 2003 |g 25(2022), 1, p 38 |w (DE-627)316340359 |w (DE-600)2014734-X |x 10994300 |7 nnns |
773 | 1 | 8 | |g volume:25 |g year:2022 |g number:1, p 38 |
856 | 4 | 0 | |u https://doi.org/10.3390/e25010038 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/c98c9dc160c1431c93d36794280d9fed |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1099-4300/25/1/38 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1099-4300 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 25 |j 2022 |e 1, p 38 |
author_variant |
j c jc z q zq j y jy z w zw |
---|---|
matchkey_str |
article:10994300:2022----::nacdindrpnuantokih |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QB |
publishDate |
2022 |
allfields |
10.3390/e25010038 doi (DE-627)DOAJ081808739 (DE-599)DOAJc98c9dc160c1431c93d36794280d9fed DE-627 ger DE-627 rakwb eng QB460-466 QC1-999 Jiawang Chen verfasserin aut Enhanced Signed Graph Neural Network with Node Polarity 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Signed graph neural networks learn low-dimensional representations for nodes in signed networks with positive and negative links, which helps with many downstream tasks like link prediction. However, most existing signed graph neural networks ignore individual characteristics of nodes and thus limit the ability to learn the underlying structure of real signed graphs. To address this limitation, a deep graph neural network framework SiNP to learn Signed network embedding with Node Polarity is proposed. To be more explicit, a node-signed property metric mechanism is developed to encode the individual characteristics of the nodes. In addition, a graph convolution layer is added so that both positive and negative information from neighboring nodes can be combined. The final embedding of nodes is produced by concatenating the outcomes of these two portions. Finally, extensive experiments have been conducted on four significant real-world signed network datasets to demonstrate the efficiency and superiority of the proposed method in comparison to the state-of-the-art. signed network network embedding graph neural network node polarity Science Q Astrophysics Physics Zhi Qiao verfasserin aut Jun Yan verfasserin aut Zhenqiang Wu verfasserin aut In Entropy MDPI AG, 2003 25(2022), 1, p 38 (DE-627)316340359 (DE-600)2014734-X 10994300 nnns volume:25 year:2022 number:1, p 38 https://doi.org/10.3390/e25010038 kostenfrei https://doaj.org/article/c98c9dc160c1431c93d36794280d9fed kostenfrei https://www.mdpi.com/1099-4300/25/1/38 kostenfrei https://doaj.org/toc/1099-4300 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2022 1, p 38 |
spelling |
10.3390/e25010038 doi (DE-627)DOAJ081808739 (DE-599)DOAJc98c9dc160c1431c93d36794280d9fed DE-627 ger DE-627 rakwb eng QB460-466 QC1-999 Jiawang Chen verfasserin aut Enhanced Signed Graph Neural Network with Node Polarity 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Signed graph neural networks learn low-dimensional representations for nodes in signed networks with positive and negative links, which helps with many downstream tasks like link prediction. However, most existing signed graph neural networks ignore individual characteristics of nodes and thus limit the ability to learn the underlying structure of real signed graphs. To address this limitation, a deep graph neural network framework SiNP to learn Signed network embedding with Node Polarity is proposed. To be more explicit, a node-signed property metric mechanism is developed to encode the individual characteristics of the nodes. In addition, a graph convolution layer is added so that both positive and negative information from neighboring nodes can be combined. The final embedding of nodes is produced by concatenating the outcomes of these two portions. Finally, extensive experiments have been conducted on four significant real-world signed network datasets to demonstrate the efficiency and superiority of the proposed method in comparison to the state-of-the-art. signed network network embedding graph neural network node polarity Science Q Astrophysics Physics Zhi Qiao verfasserin aut Jun Yan verfasserin aut Zhenqiang Wu verfasserin aut In Entropy MDPI AG, 2003 25(2022), 1, p 38 (DE-627)316340359 (DE-600)2014734-X 10994300 nnns volume:25 year:2022 number:1, p 38 https://doi.org/10.3390/e25010038 kostenfrei https://doaj.org/article/c98c9dc160c1431c93d36794280d9fed kostenfrei https://www.mdpi.com/1099-4300/25/1/38 kostenfrei https://doaj.org/toc/1099-4300 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2022 1, p 38 |
allfields_unstemmed |
10.3390/e25010038 doi (DE-627)DOAJ081808739 (DE-599)DOAJc98c9dc160c1431c93d36794280d9fed DE-627 ger DE-627 rakwb eng QB460-466 QC1-999 Jiawang Chen verfasserin aut Enhanced Signed Graph Neural Network with Node Polarity 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Signed graph neural networks learn low-dimensional representations for nodes in signed networks with positive and negative links, which helps with many downstream tasks like link prediction. However, most existing signed graph neural networks ignore individual characteristics of nodes and thus limit the ability to learn the underlying structure of real signed graphs. To address this limitation, a deep graph neural network framework SiNP to learn Signed network embedding with Node Polarity is proposed. To be more explicit, a node-signed property metric mechanism is developed to encode the individual characteristics of the nodes. In addition, a graph convolution layer is added so that both positive and negative information from neighboring nodes can be combined. The final embedding of nodes is produced by concatenating the outcomes of these two portions. Finally, extensive experiments have been conducted on four significant real-world signed network datasets to demonstrate the efficiency and superiority of the proposed method in comparison to the state-of-the-art. signed network network embedding graph neural network node polarity Science Q Astrophysics Physics Zhi Qiao verfasserin aut Jun Yan verfasserin aut Zhenqiang Wu verfasserin aut In Entropy MDPI AG, 2003 25(2022), 1, p 38 (DE-627)316340359 (DE-600)2014734-X 10994300 nnns volume:25 year:2022 number:1, p 38 https://doi.org/10.3390/e25010038 kostenfrei https://doaj.org/article/c98c9dc160c1431c93d36794280d9fed kostenfrei https://www.mdpi.com/1099-4300/25/1/38 kostenfrei https://doaj.org/toc/1099-4300 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2022 1, p 38 |
allfieldsGer |
10.3390/e25010038 doi (DE-627)DOAJ081808739 (DE-599)DOAJc98c9dc160c1431c93d36794280d9fed DE-627 ger DE-627 rakwb eng QB460-466 QC1-999 Jiawang Chen verfasserin aut Enhanced Signed Graph Neural Network with Node Polarity 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Signed graph neural networks learn low-dimensional representations for nodes in signed networks with positive and negative links, which helps with many downstream tasks like link prediction. However, most existing signed graph neural networks ignore individual characteristics of nodes and thus limit the ability to learn the underlying structure of real signed graphs. To address this limitation, a deep graph neural network framework SiNP to learn Signed network embedding with Node Polarity is proposed. To be more explicit, a node-signed property metric mechanism is developed to encode the individual characteristics of the nodes. In addition, a graph convolution layer is added so that both positive and negative information from neighboring nodes can be combined. The final embedding of nodes is produced by concatenating the outcomes of these two portions. Finally, extensive experiments have been conducted on four significant real-world signed network datasets to demonstrate the efficiency and superiority of the proposed method in comparison to the state-of-the-art. signed network network embedding graph neural network node polarity Science Q Astrophysics Physics Zhi Qiao verfasserin aut Jun Yan verfasserin aut Zhenqiang Wu verfasserin aut In Entropy MDPI AG, 2003 25(2022), 1, p 38 (DE-627)316340359 (DE-600)2014734-X 10994300 nnns volume:25 year:2022 number:1, p 38 https://doi.org/10.3390/e25010038 kostenfrei https://doaj.org/article/c98c9dc160c1431c93d36794280d9fed kostenfrei https://www.mdpi.com/1099-4300/25/1/38 kostenfrei https://doaj.org/toc/1099-4300 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2022 1, p 38 |
allfieldsSound |
10.3390/e25010038 doi (DE-627)DOAJ081808739 (DE-599)DOAJc98c9dc160c1431c93d36794280d9fed DE-627 ger DE-627 rakwb eng QB460-466 QC1-999 Jiawang Chen verfasserin aut Enhanced Signed Graph Neural Network with Node Polarity 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Signed graph neural networks learn low-dimensional representations for nodes in signed networks with positive and negative links, which helps with many downstream tasks like link prediction. However, most existing signed graph neural networks ignore individual characteristics of nodes and thus limit the ability to learn the underlying structure of real signed graphs. To address this limitation, a deep graph neural network framework SiNP to learn Signed network embedding with Node Polarity is proposed. To be more explicit, a node-signed property metric mechanism is developed to encode the individual characteristics of the nodes. In addition, a graph convolution layer is added so that both positive and negative information from neighboring nodes can be combined. The final embedding of nodes is produced by concatenating the outcomes of these two portions. Finally, extensive experiments have been conducted on four significant real-world signed network datasets to demonstrate the efficiency and superiority of the proposed method in comparison to the state-of-the-art. signed network network embedding graph neural network node polarity Science Q Astrophysics Physics Zhi Qiao verfasserin aut Jun Yan verfasserin aut Zhenqiang Wu verfasserin aut In Entropy MDPI AG, 2003 25(2022), 1, p 38 (DE-627)316340359 (DE-600)2014734-X 10994300 nnns volume:25 year:2022 number:1, p 38 https://doi.org/10.3390/e25010038 kostenfrei https://doaj.org/article/c98c9dc160c1431c93d36794280d9fed kostenfrei https://www.mdpi.com/1099-4300/25/1/38 kostenfrei https://doaj.org/toc/1099-4300 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 25 2022 1, p 38 |
language |
English |
source |
In Entropy 25(2022), 1, p 38 volume:25 year:2022 number:1, p 38 |
sourceStr |
In Entropy 25(2022), 1, p 38 volume:25 year:2022 number:1, p 38 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
signed network network embedding graph neural network node polarity Science Q Astrophysics Physics |
isfreeaccess_bool |
true |
container_title |
Entropy |
authorswithroles_txt_mv |
Jiawang Chen @@aut@@ Zhi Qiao @@aut@@ Jun Yan @@aut@@ Zhenqiang Wu @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
316340359 |
id |
DOAJ081808739 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ081808739</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414133900.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/e25010038</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ081808739</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc98c9dc160c1431c93d36794280d9fed</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jiawang Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhanced Signed Graph Neural Network with Node Polarity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Signed graph neural networks learn low-dimensional representations for nodes in signed networks with positive and negative links, which helps with many downstream tasks like link prediction. However, most existing signed graph neural networks ignore individual characteristics of nodes and thus limit the ability to learn the underlying structure of real signed graphs. To address this limitation, a deep graph neural network framework SiNP to learn Signed network embedding with Node Polarity is proposed. To be more explicit, a node-signed property metric mechanism is developed to encode the individual characteristics of the nodes. In addition, a graph convolution layer is added so that both positive and negative information from neighboring nodes can be combined. The final embedding of nodes is produced by concatenating the outcomes of these two portions. Finally, extensive experiments have been conducted on four significant real-world signed network datasets to demonstrate the efficiency and superiority of the proposed method in comparison to the state-of-the-art.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">signed network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">network embedding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">graph neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">node polarity</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhi Qiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jun Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhenqiang Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Entropy</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">25(2022), 1, p 38</subfield><subfield code="w">(DE-627)316340359</subfield><subfield code="w">(DE-600)2014734-X</subfield><subfield code="x">10994300</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1, p 38</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/e25010038</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c98c9dc160c1431c93d36794280d9fed</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1099-4300/25/1/38</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1099-4300</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2022</subfield><subfield code="e">1, p 38</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Jiawang Chen |
spellingShingle |
Jiawang Chen misc QB460-466 misc QC1-999 misc signed network misc network embedding misc graph neural network misc node polarity misc Science misc Q misc Astrophysics misc Physics Enhanced Signed Graph Neural Network with Node Polarity |
authorStr |
Jiawang Chen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)316340359 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QB460-466 |
illustrated |
Not Illustrated |
issn |
10994300 |
topic_title |
QB460-466 QC1-999 Enhanced Signed Graph Neural Network with Node Polarity signed network network embedding graph neural network node polarity |
topic |
misc QB460-466 misc QC1-999 misc signed network misc network embedding misc graph neural network misc node polarity misc Science misc Q misc Astrophysics misc Physics |
topic_unstemmed |
misc QB460-466 misc QC1-999 misc signed network misc network embedding misc graph neural network misc node polarity misc Science misc Q misc Astrophysics misc Physics |
topic_browse |
misc QB460-466 misc QC1-999 misc signed network misc network embedding misc graph neural network misc node polarity misc Science misc Q misc Astrophysics misc Physics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Entropy |
hierarchy_parent_id |
316340359 |
hierarchy_top_title |
Entropy |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)316340359 (DE-600)2014734-X |
title |
Enhanced Signed Graph Neural Network with Node Polarity |
ctrlnum |
(DE-627)DOAJ081808739 (DE-599)DOAJc98c9dc160c1431c93d36794280d9fed |
title_full |
Enhanced Signed Graph Neural Network with Node Polarity |
author_sort |
Jiawang Chen |
journal |
Entropy |
journalStr |
Entropy |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Jiawang Chen Zhi Qiao Jun Yan Zhenqiang Wu |
container_volume |
25 |
class |
QB460-466 QC1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Jiawang Chen |
doi_str_mv |
10.3390/e25010038 |
author2-role |
verfasserin |
title_sort |
enhanced signed graph neural network with node polarity |
callnumber |
QB460-466 |
title_auth |
Enhanced Signed Graph Neural Network with Node Polarity |
abstract |
Signed graph neural networks learn low-dimensional representations for nodes in signed networks with positive and negative links, which helps with many downstream tasks like link prediction. However, most existing signed graph neural networks ignore individual characteristics of nodes and thus limit the ability to learn the underlying structure of real signed graphs. To address this limitation, a deep graph neural network framework SiNP to learn Signed network embedding with Node Polarity is proposed. To be more explicit, a node-signed property metric mechanism is developed to encode the individual characteristics of the nodes. In addition, a graph convolution layer is added so that both positive and negative information from neighboring nodes can be combined. The final embedding of nodes is produced by concatenating the outcomes of these two portions. Finally, extensive experiments have been conducted on four significant real-world signed network datasets to demonstrate the efficiency and superiority of the proposed method in comparison to the state-of-the-art. |
abstractGer |
Signed graph neural networks learn low-dimensional representations for nodes in signed networks with positive and negative links, which helps with many downstream tasks like link prediction. However, most existing signed graph neural networks ignore individual characteristics of nodes and thus limit the ability to learn the underlying structure of real signed graphs. To address this limitation, a deep graph neural network framework SiNP to learn Signed network embedding with Node Polarity is proposed. To be more explicit, a node-signed property metric mechanism is developed to encode the individual characteristics of the nodes. In addition, a graph convolution layer is added so that both positive and negative information from neighboring nodes can be combined. The final embedding of nodes is produced by concatenating the outcomes of these two portions. Finally, extensive experiments have been conducted on four significant real-world signed network datasets to demonstrate the efficiency and superiority of the proposed method in comparison to the state-of-the-art. |
abstract_unstemmed |
Signed graph neural networks learn low-dimensional representations for nodes in signed networks with positive and negative links, which helps with many downstream tasks like link prediction. However, most existing signed graph neural networks ignore individual characteristics of nodes and thus limit the ability to learn the underlying structure of real signed graphs. To address this limitation, a deep graph neural network framework SiNP to learn Signed network embedding with Node Polarity is proposed. To be more explicit, a node-signed property metric mechanism is developed to encode the individual characteristics of the nodes. In addition, a graph convolution layer is added so that both positive and negative information from neighboring nodes can be combined. The final embedding of nodes is produced by concatenating the outcomes of these two portions. Finally, extensive experiments have been conducted on four significant real-world signed network datasets to demonstrate the efficiency and superiority of the proposed method in comparison to the state-of-the-art. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 38 |
title_short |
Enhanced Signed Graph Neural Network with Node Polarity |
url |
https://doi.org/10.3390/e25010038 https://doaj.org/article/c98c9dc160c1431c93d36794280d9fed https://www.mdpi.com/1099-4300/25/1/38 https://doaj.org/toc/1099-4300 |
remote_bool |
true |
author2 |
Zhi Qiao Jun Yan Zhenqiang Wu |
author2Str |
Zhi Qiao Jun Yan Zhenqiang Wu |
ppnlink |
316340359 |
callnumber-subject |
QB - Astronomy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/e25010038 |
callnumber-a |
QB460-466 |
up_date |
2024-07-03T22:04:27.379Z |
_version_ |
1803597137713299456 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ081808739</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414133900.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230310s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/e25010038</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ081808739</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc98c9dc160c1431c93d36794280d9fed</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QB460-466</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jiawang Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhanced Signed Graph Neural Network with Node Polarity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Signed graph neural networks learn low-dimensional representations for nodes in signed networks with positive and negative links, which helps with many downstream tasks like link prediction. However, most existing signed graph neural networks ignore individual characteristics of nodes and thus limit the ability to learn the underlying structure of real signed graphs. To address this limitation, a deep graph neural network framework SiNP to learn Signed network embedding with Node Polarity is proposed. To be more explicit, a node-signed property metric mechanism is developed to encode the individual characteristics of the nodes. In addition, a graph convolution layer is added so that both positive and negative information from neighboring nodes can be combined. The final embedding of nodes is produced by concatenating the outcomes of these two portions. Finally, extensive experiments have been conducted on four significant real-world signed network datasets to demonstrate the efficiency and superiority of the proposed method in comparison to the state-of-the-art.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">signed network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">network embedding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">graph neural network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">node polarity</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhi Qiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jun Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhenqiang Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Entropy</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">25(2022), 1, p 38</subfield><subfield code="w">(DE-627)316340359</subfield><subfield code="w">(DE-600)2014734-X</subfield><subfield code="x">10994300</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1, p 38</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/e25010038</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c98c9dc160c1431c93d36794280d9fed</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1099-4300/25/1/38</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1099-4300</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2022</subfield><subfield code="e">1, p 38</subfield></datafield></record></collection>
|
score |
7.4011183 |