Multiscale modeling of the effective viscoplastic behavior of $\protect \mathrm{Mg}_2\protect \mathrm{SiO}_4$ wadsleyite: bridging atomic and polycrystal scales
The viscoplastic behavior of polycrystalline $\mathrm{Mg}_{2}\mathrm{SiO}_{4}$ wadsleyite aggregates, a major high pressure phase of the mantle transition zone of the Earth (depth range: 410–520 km), is obtained by properly bridging several scale transition models. At the very fine nanometric scale...
Ausführliche Beschreibung
Autor*in: |
Castelnau, O. [verfasserIn] Derrien, K. [verfasserIn] Ritterbex, S. [verfasserIn] Carrez, P. [verfasserIn] Cordier, P. [verfasserIn] Moulinec, H. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch ; Französisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Comptes Rendus. Mécanique - Académie des sciences, 2022, 348(2021), 10-11, Seite 827-846 |
---|---|
Übergeordnetes Werk: |
volume:348 ; year:2021 ; number:10-11 ; pages:827-846 |
Links: |
---|
DOI / URN: |
10.5802/crmeca.61 |
---|
Katalog-ID: |
DOAJ08269432X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ08269432X | ||
003 | DE-627 | ||
005 | 20240414124441.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.5802/crmeca.61 |2 doi | |
035 | |a (DE-627)DOAJ08269432X | ||
035 | |a (DE-599)DOAJad56a71969a14fb89b13b86162683d32 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng |a fre | ||
050 | 0 | |a TA401-492 | |
100 | 0 | |a Castelnau, O. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Multiscale modeling of the effective viscoplastic behavior of $\protect \mathrm{Mg}_2\protect \mathrm{SiO}_4$ wadsleyite: bridging atomic and polycrystal scales |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The viscoplastic behavior of polycrystalline $\mathrm{Mg}_{2}\mathrm{SiO}_{4}$ wadsleyite aggregates, a major high pressure phase of the mantle transition zone of the Earth (depth range: 410–520 km), is obtained by properly bridging several scale transition models. At the very fine nanometric scale corresponding to the dislocation core structure, the behavior of thermally activated plastic slip is modeled for strain-rates relevant for laboratory experimental conditions, at high pressure and for a wide range of temperatures, based on the Peierls–Nabarro–Galerkin model. Corresponding single slip reference resolved shear stresses and associated constitutive equations are deduced from Orowan’s equation in order to describe the average viscoplastic behavior at the grain scale, for the easiest slip systems. These data have been implemented in two grain-polycrystal scale transition models, a mean-field one (the recent Fully-Optimized Second-Order Viscoplastic Self-Consistent scheme of [1]) allowing rapid evaluation of the effective viscosity of polycrystalline aggregates, and a full-field (FFT based [2, 3]) method allowing investigating stress and strain-rate localization in typical microstructures and heterogeneous activation of slip systems within grains. Calculations have been performed at pressure and temperatures relevant for in-situ conditions. Results are in very good agreement with available mechanical tests conducted at strain-rates typical for laboratory experiments. | ||
650 | 4 | |a Earth mantle | |
650 | 4 | |a Multiscale modelling | |
650 | 4 | |a Dislocations | |
650 | 4 | |a Polycrystal | |
650 | 4 | |a Viscoplasticity | |
653 | 0 | |a Materials of engineering and construction. Mechanics of materials | |
700 | 0 | |a Derrien, K. |e verfasserin |4 aut | |
700 | 0 | |a Ritterbex, S. |e verfasserin |4 aut | |
700 | 0 | |a Carrez, P. |e verfasserin |4 aut | |
700 | 0 | |a Cordier, P. |e verfasserin |4 aut | |
700 | 0 | |a Moulinec, H. |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Comptes Rendus. Mécanique |d Académie des sciences, 2022 |g 348(2021), 10-11, Seite 827-846 |w (DE-627)348585381 |w (DE-600)2079504-X |x 18737234 |7 nnns |
773 | 1 | 8 | |g volume:348 |g year:2021 |g number:10-11 |g pages:827-846 |
856 | 4 | 0 | |u https://doi.org/10.5802/crmeca.61 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/ad56a71969a14fb89b13b86162683d32 |z kostenfrei |
856 | 4 | 0 | |u https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.61/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1873-7234 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_165 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 348 |j 2021 |e 10-11 |h 827-846 |
author_variant |
o c oc k d kd s r sr p c pc p c pc h m hm |
---|---|
matchkey_str |
article:18737234:2021----::utsaeoeigfhefcieicpatceairfrtcmtrm_poetahmi_wdlyt |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TA |
publishDate |
2021 |
allfields |
10.5802/crmeca.61 doi (DE-627)DOAJ08269432X (DE-599)DOAJad56a71969a14fb89b13b86162683d32 DE-627 ger DE-627 rakwb eng fre TA401-492 Castelnau, O. verfasserin aut Multiscale modeling of the effective viscoplastic behavior of $\protect \mathrm{Mg}_2\protect \mathrm{SiO}_4$ wadsleyite: bridging atomic and polycrystal scales 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The viscoplastic behavior of polycrystalline $\mathrm{Mg}_{2}\mathrm{SiO}_{4}$ wadsleyite aggregates, a major high pressure phase of the mantle transition zone of the Earth (depth range: 410–520 km), is obtained by properly bridging several scale transition models. At the very fine nanometric scale corresponding to the dislocation core structure, the behavior of thermally activated plastic slip is modeled for strain-rates relevant for laboratory experimental conditions, at high pressure and for a wide range of temperatures, based on the Peierls–Nabarro–Galerkin model. Corresponding single slip reference resolved shear stresses and associated constitutive equations are deduced from Orowan’s equation in order to describe the average viscoplastic behavior at the grain scale, for the easiest slip systems. These data have been implemented in two grain-polycrystal scale transition models, a mean-field one (the recent Fully-Optimized Second-Order Viscoplastic Self-Consistent scheme of [1]) allowing rapid evaluation of the effective viscosity of polycrystalline aggregates, and a full-field (FFT based [2, 3]) method allowing investigating stress and strain-rate localization in typical microstructures and heterogeneous activation of slip systems within grains. Calculations have been performed at pressure and temperatures relevant for in-situ conditions. Results are in very good agreement with available mechanical tests conducted at strain-rates typical for laboratory experiments. Earth mantle Multiscale modelling Dislocations Polycrystal Viscoplasticity Materials of engineering and construction. Mechanics of materials Derrien, K. verfasserin aut Ritterbex, S. verfasserin aut Carrez, P. verfasserin aut Cordier, P. verfasserin aut Moulinec, H. verfasserin aut In Comptes Rendus. Mécanique Académie des sciences, 2022 348(2021), 10-11, Seite 827-846 (DE-627)348585381 (DE-600)2079504-X 18737234 nnns volume:348 year:2021 number:10-11 pages:827-846 https://doi.org/10.5802/crmeca.61 kostenfrei https://doaj.org/article/ad56a71969a14fb89b13b86162683d32 kostenfrei https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.61/ kostenfrei https://doaj.org/toc/1873-7234 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 348 2021 10-11 827-846 |
spelling |
10.5802/crmeca.61 doi (DE-627)DOAJ08269432X (DE-599)DOAJad56a71969a14fb89b13b86162683d32 DE-627 ger DE-627 rakwb eng fre TA401-492 Castelnau, O. verfasserin aut Multiscale modeling of the effective viscoplastic behavior of $\protect \mathrm{Mg}_2\protect \mathrm{SiO}_4$ wadsleyite: bridging atomic and polycrystal scales 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The viscoplastic behavior of polycrystalline $\mathrm{Mg}_{2}\mathrm{SiO}_{4}$ wadsleyite aggregates, a major high pressure phase of the mantle transition zone of the Earth (depth range: 410–520 km), is obtained by properly bridging several scale transition models. At the very fine nanometric scale corresponding to the dislocation core structure, the behavior of thermally activated plastic slip is modeled for strain-rates relevant for laboratory experimental conditions, at high pressure and for a wide range of temperatures, based on the Peierls–Nabarro–Galerkin model. Corresponding single slip reference resolved shear stresses and associated constitutive equations are deduced from Orowan’s equation in order to describe the average viscoplastic behavior at the grain scale, for the easiest slip systems. These data have been implemented in two grain-polycrystal scale transition models, a mean-field one (the recent Fully-Optimized Second-Order Viscoplastic Self-Consistent scheme of [1]) allowing rapid evaluation of the effective viscosity of polycrystalline aggregates, and a full-field (FFT based [2, 3]) method allowing investigating stress and strain-rate localization in typical microstructures and heterogeneous activation of slip systems within grains. Calculations have been performed at pressure and temperatures relevant for in-situ conditions. Results are in very good agreement with available mechanical tests conducted at strain-rates typical for laboratory experiments. Earth mantle Multiscale modelling Dislocations Polycrystal Viscoplasticity Materials of engineering and construction. Mechanics of materials Derrien, K. verfasserin aut Ritterbex, S. verfasserin aut Carrez, P. verfasserin aut Cordier, P. verfasserin aut Moulinec, H. verfasserin aut In Comptes Rendus. Mécanique Académie des sciences, 2022 348(2021), 10-11, Seite 827-846 (DE-627)348585381 (DE-600)2079504-X 18737234 nnns volume:348 year:2021 number:10-11 pages:827-846 https://doi.org/10.5802/crmeca.61 kostenfrei https://doaj.org/article/ad56a71969a14fb89b13b86162683d32 kostenfrei https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.61/ kostenfrei https://doaj.org/toc/1873-7234 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 348 2021 10-11 827-846 |
allfields_unstemmed |
10.5802/crmeca.61 doi (DE-627)DOAJ08269432X (DE-599)DOAJad56a71969a14fb89b13b86162683d32 DE-627 ger DE-627 rakwb eng fre TA401-492 Castelnau, O. verfasserin aut Multiscale modeling of the effective viscoplastic behavior of $\protect \mathrm{Mg}_2\protect \mathrm{SiO}_4$ wadsleyite: bridging atomic and polycrystal scales 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The viscoplastic behavior of polycrystalline $\mathrm{Mg}_{2}\mathrm{SiO}_{4}$ wadsleyite aggregates, a major high pressure phase of the mantle transition zone of the Earth (depth range: 410–520 km), is obtained by properly bridging several scale transition models. At the very fine nanometric scale corresponding to the dislocation core structure, the behavior of thermally activated plastic slip is modeled for strain-rates relevant for laboratory experimental conditions, at high pressure and for a wide range of temperatures, based on the Peierls–Nabarro–Galerkin model. Corresponding single slip reference resolved shear stresses and associated constitutive equations are deduced from Orowan’s equation in order to describe the average viscoplastic behavior at the grain scale, for the easiest slip systems. These data have been implemented in two grain-polycrystal scale transition models, a mean-field one (the recent Fully-Optimized Second-Order Viscoplastic Self-Consistent scheme of [1]) allowing rapid evaluation of the effective viscosity of polycrystalline aggregates, and a full-field (FFT based [2, 3]) method allowing investigating stress and strain-rate localization in typical microstructures and heterogeneous activation of slip systems within grains. Calculations have been performed at pressure and temperatures relevant for in-situ conditions. Results are in very good agreement with available mechanical tests conducted at strain-rates typical for laboratory experiments. Earth mantle Multiscale modelling Dislocations Polycrystal Viscoplasticity Materials of engineering and construction. Mechanics of materials Derrien, K. verfasserin aut Ritterbex, S. verfasserin aut Carrez, P. verfasserin aut Cordier, P. verfasserin aut Moulinec, H. verfasserin aut In Comptes Rendus. Mécanique Académie des sciences, 2022 348(2021), 10-11, Seite 827-846 (DE-627)348585381 (DE-600)2079504-X 18737234 nnns volume:348 year:2021 number:10-11 pages:827-846 https://doi.org/10.5802/crmeca.61 kostenfrei https://doaj.org/article/ad56a71969a14fb89b13b86162683d32 kostenfrei https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.61/ kostenfrei https://doaj.org/toc/1873-7234 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 348 2021 10-11 827-846 |
allfieldsGer |
10.5802/crmeca.61 doi (DE-627)DOAJ08269432X (DE-599)DOAJad56a71969a14fb89b13b86162683d32 DE-627 ger DE-627 rakwb eng fre TA401-492 Castelnau, O. verfasserin aut Multiscale modeling of the effective viscoplastic behavior of $\protect \mathrm{Mg}_2\protect \mathrm{SiO}_4$ wadsleyite: bridging atomic and polycrystal scales 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The viscoplastic behavior of polycrystalline $\mathrm{Mg}_{2}\mathrm{SiO}_{4}$ wadsleyite aggregates, a major high pressure phase of the mantle transition zone of the Earth (depth range: 410–520 km), is obtained by properly bridging several scale transition models. At the very fine nanometric scale corresponding to the dislocation core structure, the behavior of thermally activated plastic slip is modeled for strain-rates relevant for laboratory experimental conditions, at high pressure and for a wide range of temperatures, based on the Peierls–Nabarro–Galerkin model. Corresponding single slip reference resolved shear stresses and associated constitutive equations are deduced from Orowan’s equation in order to describe the average viscoplastic behavior at the grain scale, for the easiest slip systems. These data have been implemented in two grain-polycrystal scale transition models, a mean-field one (the recent Fully-Optimized Second-Order Viscoplastic Self-Consistent scheme of [1]) allowing rapid evaluation of the effective viscosity of polycrystalline aggregates, and a full-field (FFT based [2, 3]) method allowing investigating stress and strain-rate localization in typical microstructures and heterogeneous activation of slip systems within grains. Calculations have been performed at pressure and temperatures relevant for in-situ conditions. Results are in very good agreement with available mechanical tests conducted at strain-rates typical for laboratory experiments. Earth mantle Multiscale modelling Dislocations Polycrystal Viscoplasticity Materials of engineering and construction. Mechanics of materials Derrien, K. verfasserin aut Ritterbex, S. verfasserin aut Carrez, P. verfasserin aut Cordier, P. verfasserin aut Moulinec, H. verfasserin aut In Comptes Rendus. Mécanique Académie des sciences, 2022 348(2021), 10-11, Seite 827-846 (DE-627)348585381 (DE-600)2079504-X 18737234 nnns volume:348 year:2021 number:10-11 pages:827-846 https://doi.org/10.5802/crmeca.61 kostenfrei https://doaj.org/article/ad56a71969a14fb89b13b86162683d32 kostenfrei https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.61/ kostenfrei https://doaj.org/toc/1873-7234 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 348 2021 10-11 827-846 |
allfieldsSound |
10.5802/crmeca.61 doi (DE-627)DOAJ08269432X (DE-599)DOAJad56a71969a14fb89b13b86162683d32 DE-627 ger DE-627 rakwb eng fre TA401-492 Castelnau, O. verfasserin aut Multiscale modeling of the effective viscoplastic behavior of $\protect \mathrm{Mg}_2\protect \mathrm{SiO}_4$ wadsleyite: bridging atomic and polycrystal scales 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The viscoplastic behavior of polycrystalline $\mathrm{Mg}_{2}\mathrm{SiO}_{4}$ wadsleyite aggregates, a major high pressure phase of the mantle transition zone of the Earth (depth range: 410–520 km), is obtained by properly bridging several scale transition models. At the very fine nanometric scale corresponding to the dislocation core structure, the behavior of thermally activated plastic slip is modeled for strain-rates relevant for laboratory experimental conditions, at high pressure and for a wide range of temperatures, based on the Peierls–Nabarro–Galerkin model. Corresponding single slip reference resolved shear stresses and associated constitutive equations are deduced from Orowan’s equation in order to describe the average viscoplastic behavior at the grain scale, for the easiest slip systems. These data have been implemented in two grain-polycrystal scale transition models, a mean-field one (the recent Fully-Optimized Second-Order Viscoplastic Self-Consistent scheme of [1]) allowing rapid evaluation of the effective viscosity of polycrystalline aggregates, and a full-field (FFT based [2, 3]) method allowing investigating stress and strain-rate localization in typical microstructures and heterogeneous activation of slip systems within grains. Calculations have been performed at pressure and temperatures relevant for in-situ conditions. Results are in very good agreement with available mechanical tests conducted at strain-rates typical for laboratory experiments. Earth mantle Multiscale modelling Dislocations Polycrystal Viscoplasticity Materials of engineering and construction. Mechanics of materials Derrien, K. verfasserin aut Ritterbex, S. verfasserin aut Carrez, P. verfasserin aut Cordier, P. verfasserin aut Moulinec, H. verfasserin aut In Comptes Rendus. Mécanique Académie des sciences, 2022 348(2021), 10-11, Seite 827-846 (DE-627)348585381 (DE-600)2079504-X 18737234 nnns volume:348 year:2021 number:10-11 pages:827-846 https://doi.org/10.5802/crmeca.61 kostenfrei https://doaj.org/article/ad56a71969a14fb89b13b86162683d32 kostenfrei https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.61/ kostenfrei https://doaj.org/toc/1873-7234 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 348 2021 10-11 827-846 |
language |
English French |
source |
In Comptes Rendus. Mécanique 348(2021), 10-11, Seite 827-846 volume:348 year:2021 number:10-11 pages:827-846 |
sourceStr |
In Comptes Rendus. Mécanique 348(2021), 10-11, Seite 827-846 volume:348 year:2021 number:10-11 pages:827-846 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Earth mantle Multiscale modelling Dislocations Polycrystal Viscoplasticity Materials of engineering and construction. Mechanics of materials |
isfreeaccess_bool |
true |
container_title |
Comptes Rendus. Mécanique |
authorswithroles_txt_mv |
Castelnau, O. @@aut@@ Derrien, K. @@aut@@ Ritterbex, S. @@aut@@ Carrez, P. @@aut@@ Cordier, P. @@aut@@ Moulinec, H. @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
348585381 |
id |
DOAJ08269432X |
language_de |
englisch franzoesisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ08269432X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414124441.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.5802/crmeca.61</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ08269432X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJad56a71969a14fb89b13b86162683d32</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">fre</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Castelnau, O.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiscale modeling of the effective viscoplastic behavior of $\protect \mathrm{Mg}_2\protect \mathrm{SiO}_4$ wadsleyite: bridging atomic and polycrystal scales</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The viscoplastic behavior of polycrystalline $\mathrm{Mg}_{2}\mathrm{SiO}_{4}$ wadsleyite aggregates, a major high pressure phase of the mantle transition zone of the Earth (depth range: 410–520 km), is obtained by properly bridging several scale transition models. At the very fine nanometric scale corresponding to the dislocation core structure, the behavior of thermally activated plastic slip is modeled for strain-rates relevant for laboratory experimental conditions, at high pressure and for a wide range of temperatures, based on the Peierls–Nabarro–Galerkin model. Corresponding single slip reference resolved shear stresses and associated constitutive equations are deduced from Orowan’s equation in order to describe the average viscoplastic behavior at the grain scale, for the easiest slip systems. These data have been implemented in two grain-polycrystal scale transition models, a mean-field one (the recent Fully-Optimized Second-Order Viscoplastic Self-Consistent scheme of [1]) allowing rapid evaluation of the effective viscosity of polycrystalline aggregates, and a full-field (FFT based [2, 3]) method allowing investigating stress and strain-rate localization in typical microstructures and heterogeneous activation of slip systems within grains. Calculations have been performed at pressure and temperatures relevant for in-situ conditions. Results are in very good agreement with available mechanical tests conducted at strain-rates typical for laboratory experiments.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Earth mantle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiscale modelling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dislocations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polycrystal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscoplasticity</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Derrien, K.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ritterbex, S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Carrez, P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cordier, P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Moulinec, H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Comptes Rendus. Mécanique</subfield><subfield code="d">Académie des sciences, 2022</subfield><subfield code="g">348(2021), 10-11, Seite 827-846</subfield><subfield code="w">(DE-627)348585381</subfield><subfield code="w">(DE-600)2079504-X</subfield><subfield code="x">18737234</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:348</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:10-11</subfield><subfield code="g">pages:827-846</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.5802/crmeca.61</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ad56a71969a14fb89b13b86162683d32</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.61/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1873-7234</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">348</subfield><subfield code="j">2021</subfield><subfield code="e">10-11</subfield><subfield code="h">827-846</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Castelnau, O. |
spellingShingle |
Castelnau, O. misc TA401-492 misc Earth mantle misc Multiscale modelling misc Dislocations misc Polycrystal misc Viscoplasticity misc Materials of engineering and construction. Mechanics of materials Multiscale modeling of the effective viscoplastic behavior of $\protect \mathrm{Mg}_2\protect \mathrm{SiO}_4$ wadsleyite: bridging atomic and polycrystal scales |
authorStr |
Castelnau, O. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)348585381 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA401-492 |
illustrated |
Not Illustrated |
issn |
18737234 |
topic_title |
TA401-492 Multiscale modeling of the effective viscoplastic behavior of $\protect \mathrm{Mg}_2\protect \mathrm{SiO}_4$ wadsleyite: bridging atomic and polycrystal scales Earth mantle Multiscale modelling Dislocations Polycrystal Viscoplasticity |
topic |
misc TA401-492 misc Earth mantle misc Multiscale modelling misc Dislocations misc Polycrystal misc Viscoplasticity misc Materials of engineering and construction. Mechanics of materials |
topic_unstemmed |
misc TA401-492 misc Earth mantle misc Multiscale modelling misc Dislocations misc Polycrystal misc Viscoplasticity misc Materials of engineering and construction. Mechanics of materials |
topic_browse |
misc TA401-492 misc Earth mantle misc Multiscale modelling misc Dislocations misc Polycrystal misc Viscoplasticity misc Materials of engineering and construction. Mechanics of materials |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Comptes Rendus. Mécanique |
hierarchy_parent_id |
348585381 |
hierarchy_top_title |
Comptes Rendus. Mécanique |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)348585381 (DE-600)2079504-X |
title |
Multiscale modeling of the effective viscoplastic behavior of $\protect \mathrm{Mg}_2\protect \mathrm{SiO}_4$ wadsleyite: bridging atomic and polycrystal scales |
ctrlnum |
(DE-627)DOAJ08269432X (DE-599)DOAJad56a71969a14fb89b13b86162683d32 |
title_full |
Multiscale modeling of the effective viscoplastic behavior of $\protect \mathrm{Mg}_2\protect \mathrm{SiO}_4$ wadsleyite: bridging atomic and polycrystal scales |
author_sort |
Castelnau, O. |
journal |
Comptes Rendus. Mécanique |
journalStr |
Comptes Rendus. Mécanique |
callnumber-first-code |
T |
lang_code |
eng fre |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
827 |
author_browse |
Castelnau, O. Derrien, K. Ritterbex, S. Carrez, P. Cordier, P. Moulinec, H. |
container_volume |
348 |
class |
TA401-492 |
format_se |
Elektronische Aufsätze |
author-letter |
Castelnau, O. |
doi_str_mv |
10.5802/crmeca.61 |
author2-role |
verfasserin |
title_sort |
multiscale modeling of the effective viscoplastic behavior of $\protect \mathrm{mg}_2\protect \mathrm{sio}_4$ wadsleyite: bridging atomic and polycrystal scales |
callnumber |
TA401-492 |
title_auth |
Multiscale modeling of the effective viscoplastic behavior of $\protect \mathrm{Mg}_2\protect \mathrm{SiO}_4$ wadsleyite: bridging atomic and polycrystal scales |
abstract |
The viscoplastic behavior of polycrystalline $\mathrm{Mg}_{2}\mathrm{SiO}_{4}$ wadsleyite aggregates, a major high pressure phase of the mantle transition zone of the Earth (depth range: 410–520 km), is obtained by properly bridging several scale transition models. At the very fine nanometric scale corresponding to the dislocation core structure, the behavior of thermally activated plastic slip is modeled for strain-rates relevant for laboratory experimental conditions, at high pressure and for a wide range of temperatures, based on the Peierls–Nabarro–Galerkin model. Corresponding single slip reference resolved shear stresses and associated constitutive equations are deduced from Orowan’s equation in order to describe the average viscoplastic behavior at the grain scale, for the easiest slip systems. These data have been implemented in two grain-polycrystal scale transition models, a mean-field one (the recent Fully-Optimized Second-Order Viscoplastic Self-Consistent scheme of [1]) allowing rapid evaluation of the effective viscosity of polycrystalline aggregates, and a full-field (FFT based [2, 3]) method allowing investigating stress and strain-rate localization in typical microstructures and heterogeneous activation of slip systems within grains. Calculations have been performed at pressure and temperatures relevant for in-situ conditions. Results are in very good agreement with available mechanical tests conducted at strain-rates typical for laboratory experiments. |
abstractGer |
The viscoplastic behavior of polycrystalline $\mathrm{Mg}_{2}\mathrm{SiO}_{4}$ wadsleyite aggregates, a major high pressure phase of the mantle transition zone of the Earth (depth range: 410–520 km), is obtained by properly bridging several scale transition models. At the very fine nanometric scale corresponding to the dislocation core structure, the behavior of thermally activated plastic slip is modeled for strain-rates relevant for laboratory experimental conditions, at high pressure and for a wide range of temperatures, based on the Peierls–Nabarro–Galerkin model. Corresponding single slip reference resolved shear stresses and associated constitutive equations are deduced from Orowan’s equation in order to describe the average viscoplastic behavior at the grain scale, for the easiest slip systems. These data have been implemented in two grain-polycrystal scale transition models, a mean-field one (the recent Fully-Optimized Second-Order Viscoplastic Self-Consistent scheme of [1]) allowing rapid evaluation of the effective viscosity of polycrystalline aggregates, and a full-field (FFT based [2, 3]) method allowing investigating stress and strain-rate localization in typical microstructures and heterogeneous activation of slip systems within grains. Calculations have been performed at pressure and temperatures relevant for in-situ conditions. Results are in very good agreement with available mechanical tests conducted at strain-rates typical for laboratory experiments. |
abstract_unstemmed |
The viscoplastic behavior of polycrystalline $\mathrm{Mg}_{2}\mathrm{SiO}_{4}$ wadsleyite aggregates, a major high pressure phase of the mantle transition zone of the Earth (depth range: 410–520 km), is obtained by properly bridging several scale transition models. At the very fine nanometric scale corresponding to the dislocation core structure, the behavior of thermally activated plastic slip is modeled for strain-rates relevant for laboratory experimental conditions, at high pressure and for a wide range of temperatures, based on the Peierls–Nabarro–Galerkin model. Corresponding single slip reference resolved shear stresses and associated constitutive equations are deduced from Orowan’s equation in order to describe the average viscoplastic behavior at the grain scale, for the easiest slip systems. These data have been implemented in two grain-polycrystal scale transition models, a mean-field one (the recent Fully-Optimized Second-Order Viscoplastic Self-Consistent scheme of [1]) allowing rapid evaluation of the effective viscosity of polycrystalline aggregates, and a full-field (FFT based [2, 3]) method allowing investigating stress and strain-rate localization in typical microstructures and heterogeneous activation of slip systems within grains. Calculations have been performed at pressure and temperatures relevant for in-situ conditions. Results are in very good agreement with available mechanical tests conducted at strain-rates typical for laboratory experiments. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2014 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
10-11 |
title_short |
Multiscale modeling of the effective viscoplastic behavior of $\protect \mathrm{Mg}_2\protect \mathrm{SiO}_4$ wadsleyite: bridging atomic and polycrystal scales |
url |
https://doi.org/10.5802/crmeca.61 https://doaj.org/article/ad56a71969a14fb89b13b86162683d32 https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.61/ https://doaj.org/toc/1873-7234 |
remote_bool |
true |
author2 |
Derrien, K. Ritterbex, S. Carrez, P. Cordier, P. Moulinec, H. |
author2Str |
Derrien, K. Ritterbex, S. Carrez, P. Cordier, P. Moulinec, H. |
ppnlink |
348585381 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.5802/crmeca.61 |
callnumber-a |
TA401-492 |
up_date |
2024-07-03T13:17:24.816Z |
_version_ |
1803563979055824896 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ08269432X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414124441.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.5802/crmeca.61</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ08269432X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJad56a71969a14fb89b13b86162683d32</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield><subfield code="a">fre</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA401-492</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Castelnau, O.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiscale modeling of the effective viscoplastic behavior of $\protect \mathrm{Mg}_2\protect \mathrm{SiO}_4$ wadsleyite: bridging atomic and polycrystal scales</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The viscoplastic behavior of polycrystalline $\mathrm{Mg}_{2}\mathrm{SiO}_{4}$ wadsleyite aggregates, a major high pressure phase of the mantle transition zone of the Earth (depth range: 410–520 km), is obtained by properly bridging several scale transition models. At the very fine nanometric scale corresponding to the dislocation core structure, the behavior of thermally activated plastic slip is modeled for strain-rates relevant for laboratory experimental conditions, at high pressure and for a wide range of temperatures, based on the Peierls–Nabarro–Galerkin model. Corresponding single slip reference resolved shear stresses and associated constitutive equations are deduced from Orowan’s equation in order to describe the average viscoplastic behavior at the grain scale, for the easiest slip systems. These data have been implemented in two grain-polycrystal scale transition models, a mean-field one (the recent Fully-Optimized Second-Order Viscoplastic Self-Consistent scheme of [1]) allowing rapid evaluation of the effective viscosity of polycrystalline aggregates, and a full-field (FFT based [2, 3]) method allowing investigating stress and strain-rate localization in typical microstructures and heterogeneous activation of slip systems within grains. Calculations have been performed at pressure and temperatures relevant for in-situ conditions. Results are in very good agreement with available mechanical tests conducted at strain-rates typical for laboratory experiments.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Earth mantle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiscale modelling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dislocations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polycrystal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscoplasticity</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Materials of engineering and construction. Mechanics of materials</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Derrien, K.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ritterbex, S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Carrez, P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cordier, P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Moulinec, H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Comptes Rendus. Mécanique</subfield><subfield code="d">Académie des sciences, 2022</subfield><subfield code="g">348(2021), 10-11, Seite 827-846</subfield><subfield code="w">(DE-627)348585381</subfield><subfield code="w">(DE-600)2079504-X</subfield><subfield code="x">18737234</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:348</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:10-11</subfield><subfield code="g">pages:827-846</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.5802/crmeca.61</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/ad56a71969a14fb89b13b86162683d32</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.61/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1873-7234</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">348</subfield><subfield code="j">2021</subfield><subfield code="e">10-11</subfield><subfield code="h">827-846</subfield></datafield></record></collection>
|
score |
7.4018955 |