Energy saving strategy of cloud data computing based on convolutional neural network and policy gradient algorithm.
Cloud Data Computing (CDC) is conducive to precise energy-saving management of user data centers based on the real-time energy consumption monitoring of Information Technology equipment. This work aims to obtain the most suitable energy-saving strategies to achieve safe, intelligent, and visualized...
Ausführliche Beschreibung
Autor*in: |
Dexian Yang [verfasserIn] Jiong Yu [verfasserIn] Xusheng Du [verfasserIn] Zhenzhen He [verfasserIn] Ping Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Übergeordnetes Werk: |
In: PLoS ONE - Public Library of Science (PLoS), 2007, 17(2022), 12, p e0279649 |
---|---|
Übergeordnetes Werk: |
volume:17 ; year:2022 ; number:12, p e0279649 |
Links: |
---|
DOI / URN: |
10.1371/journal.pone.0279649 |
---|
Katalog-ID: |
DOAJ082733058 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ082733058 | ||
003 | DE-627 | ||
005 | 20230502113501.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1371/journal.pone.0279649 |2 doi | |
035 | |a (DE-627)DOAJ082733058 | ||
035 | |a (DE-599)DOAJcdf74a96d7b44bd39514c0480669e9a4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Dexian Yang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Energy saving strategy of cloud data computing based on convolutional neural network and policy gradient algorithm. |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Cloud Data Computing (CDC) is conducive to precise energy-saving management of user data centers based on the real-time energy consumption monitoring of Information Technology equipment. This work aims to obtain the most suitable energy-saving strategies to achieve safe, intelligent, and visualized energy management. First, the theory of Convolutional Neural Network (CNN) is discussed. Besides, an intelligent energy-saving model based on CNN is designed to ameliorate the variable energy consumption, load, and power consumption of the CDC data center. Then, the core idea of the policy gradient (PG) algorithm is introduced. In addition, a CDC task scheduling model is designed based on the PG algorithm, aiming at the uncertainty and volatility of the CDC scheduling tasks. Finally, the performance of different neural network models in the training process is analyzed from the perspective of total energy consumption and load optimization of the CDC center. At the same time, simulation is performed on the CDC task scheduling model based on the PG algorithm to analyze the task scheduling demand. The results demonstrate that the energy consumption of the CNN algorithm in the CDC energy-saving model is better than that of the Elman algorithm and the ecoCloud algorithm. Besides, the CNN algorithm reduces the number of virtual machine migrations in the CDC energy-saving model by 9.30% compared with the Elman algorithm. The Deep Deterministic Policy Gradient (DDPG) algorithm performs the best in task scheduling of the cloud data center, and the average response time of the DDPG algorithm is 141. In contrast, the Deep Q Network algorithm performs poorly. This paper proves that Deep Reinforcement Learning (DRL) and neural networks can reduce the energy consumption of CDC and improve the completion time of CDC tasks, offering a research reference for CDC resource scheduling. | ||
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Jiong Yu |e verfasserin |4 aut | |
700 | 0 | |a Xusheng Du |e verfasserin |4 aut | |
700 | 0 | |a Zhenzhen He |e verfasserin |4 aut | |
700 | 0 | |a Ping Li |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t PLoS ONE |d Public Library of Science (PLoS), 2007 |g 17(2022), 12, p e0279649 |w (DE-627)523574592 |w (DE-600)2267670-3 |x 19326203 |7 nnns |
773 | 1 | 8 | |g volume:17 |g year:2022 |g number:12, p e0279649 |
856 | 4 | 0 | |u https://doi.org/10.1371/journal.pone.0279649 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/cdf74a96d7b44bd39514c0480669e9a4 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1371/journal.pone.0279649 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1932-6203 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_34 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_235 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 17 |j 2022 |e 12, p e0279649 |
author_variant |
d y dy j y jy x d xd z h zh p l pl |
---|---|
matchkey_str |
article:19326203:2022----::nryaigtaeyfludtcmuigaeocnouinlerlewr |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1371/journal.pone.0279649 doi (DE-627)DOAJ082733058 (DE-599)DOAJcdf74a96d7b44bd39514c0480669e9a4 DE-627 ger DE-627 rakwb eng Dexian Yang verfasserin aut Energy saving strategy of cloud data computing based on convolutional neural network and policy gradient algorithm. 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cloud Data Computing (CDC) is conducive to precise energy-saving management of user data centers based on the real-time energy consumption monitoring of Information Technology equipment. This work aims to obtain the most suitable energy-saving strategies to achieve safe, intelligent, and visualized energy management. First, the theory of Convolutional Neural Network (CNN) is discussed. Besides, an intelligent energy-saving model based on CNN is designed to ameliorate the variable energy consumption, load, and power consumption of the CDC data center. Then, the core idea of the policy gradient (PG) algorithm is introduced. In addition, a CDC task scheduling model is designed based on the PG algorithm, aiming at the uncertainty and volatility of the CDC scheduling tasks. Finally, the performance of different neural network models in the training process is analyzed from the perspective of total energy consumption and load optimization of the CDC center. At the same time, simulation is performed on the CDC task scheduling model based on the PG algorithm to analyze the task scheduling demand. The results demonstrate that the energy consumption of the CNN algorithm in the CDC energy-saving model is better than that of the Elman algorithm and the ecoCloud algorithm. Besides, the CNN algorithm reduces the number of virtual machine migrations in the CDC energy-saving model by 9.30% compared with the Elman algorithm. The Deep Deterministic Policy Gradient (DDPG) algorithm performs the best in task scheduling of the cloud data center, and the average response time of the DDPG algorithm is 141. In contrast, the Deep Q Network algorithm performs poorly. This paper proves that Deep Reinforcement Learning (DRL) and neural networks can reduce the energy consumption of CDC and improve the completion time of CDC tasks, offering a research reference for CDC resource scheduling. Medicine R Science Q Jiong Yu verfasserin aut Xusheng Du verfasserin aut Zhenzhen He verfasserin aut Ping Li verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 17(2022), 12, p e0279649 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:17 year:2022 number:12, p e0279649 https://doi.org/10.1371/journal.pone.0279649 kostenfrei https://doaj.org/article/cdf74a96d7b44bd39514c0480669e9a4 kostenfrei https://doi.org/10.1371/journal.pone.0279649 kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2022 12, p e0279649 |
spelling |
10.1371/journal.pone.0279649 doi (DE-627)DOAJ082733058 (DE-599)DOAJcdf74a96d7b44bd39514c0480669e9a4 DE-627 ger DE-627 rakwb eng Dexian Yang verfasserin aut Energy saving strategy of cloud data computing based on convolutional neural network and policy gradient algorithm. 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cloud Data Computing (CDC) is conducive to precise energy-saving management of user data centers based on the real-time energy consumption monitoring of Information Technology equipment. This work aims to obtain the most suitable energy-saving strategies to achieve safe, intelligent, and visualized energy management. First, the theory of Convolutional Neural Network (CNN) is discussed. Besides, an intelligent energy-saving model based on CNN is designed to ameliorate the variable energy consumption, load, and power consumption of the CDC data center. Then, the core idea of the policy gradient (PG) algorithm is introduced. In addition, a CDC task scheduling model is designed based on the PG algorithm, aiming at the uncertainty and volatility of the CDC scheduling tasks. Finally, the performance of different neural network models in the training process is analyzed from the perspective of total energy consumption and load optimization of the CDC center. At the same time, simulation is performed on the CDC task scheduling model based on the PG algorithm to analyze the task scheduling demand. The results demonstrate that the energy consumption of the CNN algorithm in the CDC energy-saving model is better than that of the Elman algorithm and the ecoCloud algorithm. Besides, the CNN algorithm reduces the number of virtual machine migrations in the CDC energy-saving model by 9.30% compared with the Elman algorithm. The Deep Deterministic Policy Gradient (DDPG) algorithm performs the best in task scheduling of the cloud data center, and the average response time of the DDPG algorithm is 141. In contrast, the Deep Q Network algorithm performs poorly. This paper proves that Deep Reinforcement Learning (DRL) and neural networks can reduce the energy consumption of CDC and improve the completion time of CDC tasks, offering a research reference for CDC resource scheduling. Medicine R Science Q Jiong Yu verfasserin aut Xusheng Du verfasserin aut Zhenzhen He verfasserin aut Ping Li verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 17(2022), 12, p e0279649 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:17 year:2022 number:12, p e0279649 https://doi.org/10.1371/journal.pone.0279649 kostenfrei https://doaj.org/article/cdf74a96d7b44bd39514c0480669e9a4 kostenfrei https://doi.org/10.1371/journal.pone.0279649 kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2022 12, p e0279649 |
allfields_unstemmed |
10.1371/journal.pone.0279649 doi (DE-627)DOAJ082733058 (DE-599)DOAJcdf74a96d7b44bd39514c0480669e9a4 DE-627 ger DE-627 rakwb eng Dexian Yang verfasserin aut Energy saving strategy of cloud data computing based on convolutional neural network and policy gradient algorithm. 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cloud Data Computing (CDC) is conducive to precise energy-saving management of user data centers based on the real-time energy consumption monitoring of Information Technology equipment. This work aims to obtain the most suitable energy-saving strategies to achieve safe, intelligent, and visualized energy management. First, the theory of Convolutional Neural Network (CNN) is discussed. Besides, an intelligent energy-saving model based on CNN is designed to ameliorate the variable energy consumption, load, and power consumption of the CDC data center. Then, the core idea of the policy gradient (PG) algorithm is introduced. In addition, a CDC task scheduling model is designed based on the PG algorithm, aiming at the uncertainty and volatility of the CDC scheduling tasks. Finally, the performance of different neural network models in the training process is analyzed from the perspective of total energy consumption and load optimization of the CDC center. At the same time, simulation is performed on the CDC task scheduling model based on the PG algorithm to analyze the task scheduling demand. The results demonstrate that the energy consumption of the CNN algorithm in the CDC energy-saving model is better than that of the Elman algorithm and the ecoCloud algorithm. Besides, the CNN algorithm reduces the number of virtual machine migrations in the CDC energy-saving model by 9.30% compared with the Elman algorithm. The Deep Deterministic Policy Gradient (DDPG) algorithm performs the best in task scheduling of the cloud data center, and the average response time of the DDPG algorithm is 141. In contrast, the Deep Q Network algorithm performs poorly. This paper proves that Deep Reinforcement Learning (DRL) and neural networks can reduce the energy consumption of CDC and improve the completion time of CDC tasks, offering a research reference for CDC resource scheduling. Medicine R Science Q Jiong Yu verfasserin aut Xusheng Du verfasserin aut Zhenzhen He verfasserin aut Ping Li verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 17(2022), 12, p e0279649 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:17 year:2022 number:12, p e0279649 https://doi.org/10.1371/journal.pone.0279649 kostenfrei https://doaj.org/article/cdf74a96d7b44bd39514c0480669e9a4 kostenfrei https://doi.org/10.1371/journal.pone.0279649 kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2022 12, p e0279649 |
allfieldsGer |
10.1371/journal.pone.0279649 doi (DE-627)DOAJ082733058 (DE-599)DOAJcdf74a96d7b44bd39514c0480669e9a4 DE-627 ger DE-627 rakwb eng Dexian Yang verfasserin aut Energy saving strategy of cloud data computing based on convolutional neural network and policy gradient algorithm. 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cloud Data Computing (CDC) is conducive to precise energy-saving management of user data centers based on the real-time energy consumption monitoring of Information Technology equipment. This work aims to obtain the most suitable energy-saving strategies to achieve safe, intelligent, and visualized energy management. First, the theory of Convolutional Neural Network (CNN) is discussed. Besides, an intelligent energy-saving model based on CNN is designed to ameliorate the variable energy consumption, load, and power consumption of the CDC data center. Then, the core idea of the policy gradient (PG) algorithm is introduced. In addition, a CDC task scheduling model is designed based on the PG algorithm, aiming at the uncertainty and volatility of the CDC scheduling tasks. Finally, the performance of different neural network models in the training process is analyzed from the perspective of total energy consumption and load optimization of the CDC center. At the same time, simulation is performed on the CDC task scheduling model based on the PG algorithm to analyze the task scheduling demand. The results demonstrate that the energy consumption of the CNN algorithm in the CDC energy-saving model is better than that of the Elman algorithm and the ecoCloud algorithm. Besides, the CNN algorithm reduces the number of virtual machine migrations in the CDC energy-saving model by 9.30% compared with the Elman algorithm. The Deep Deterministic Policy Gradient (DDPG) algorithm performs the best in task scheduling of the cloud data center, and the average response time of the DDPG algorithm is 141. In contrast, the Deep Q Network algorithm performs poorly. This paper proves that Deep Reinforcement Learning (DRL) and neural networks can reduce the energy consumption of CDC and improve the completion time of CDC tasks, offering a research reference for CDC resource scheduling. Medicine R Science Q Jiong Yu verfasserin aut Xusheng Du verfasserin aut Zhenzhen He verfasserin aut Ping Li verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 17(2022), 12, p e0279649 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:17 year:2022 number:12, p e0279649 https://doi.org/10.1371/journal.pone.0279649 kostenfrei https://doaj.org/article/cdf74a96d7b44bd39514c0480669e9a4 kostenfrei https://doi.org/10.1371/journal.pone.0279649 kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2022 12, p e0279649 |
allfieldsSound |
10.1371/journal.pone.0279649 doi (DE-627)DOAJ082733058 (DE-599)DOAJcdf74a96d7b44bd39514c0480669e9a4 DE-627 ger DE-627 rakwb eng Dexian Yang verfasserin aut Energy saving strategy of cloud data computing based on convolutional neural network and policy gradient algorithm. 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Cloud Data Computing (CDC) is conducive to precise energy-saving management of user data centers based on the real-time energy consumption monitoring of Information Technology equipment. This work aims to obtain the most suitable energy-saving strategies to achieve safe, intelligent, and visualized energy management. First, the theory of Convolutional Neural Network (CNN) is discussed. Besides, an intelligent energy-saving model based on CNN is designed to ameliorate the variable energy consumption, load, and power consumption of the CDC data center. Then, the core idea of the policy gradient (PG) algorithm is introduced. In addition, a CDC task scheduling model is designed based on the PG algorithm, aiming at the uncertainty and volatility of the CDC scheduling tasks. Finally, the performance of different neural network models in the training process is analyzed from the perspective of total energy consumption and load optimization of the CDC center. At the same time, simulation is performed on the CDC task scheduling model based on the PG algorithm to analyze the task scheduling demand. The results demonstrate that the energy consumption of the CNN algorithm in the CDC energy-saving model is better than that of the Elman algorithm and the ecoCloud algorithm. Besides, the CNN algorithm reduces the number of virtual machine migrations in the CDC energy-saving model by 9.30% compared with the Elman algorithm. The Deep Deterministic Policy Gradient (DDPG) algorithm performs the best in task scheduling of the cloud data center, and the average response time of the DDPG algorithm is 141. In contrast, the Deep Q Network algorithm performs poorly. This paper proves that Deep Reinforcement Learning (DRL) and neural networks can reduce the energy consumption of CDC and improve the completion time of CDC tasks, offering a research reference for CDC resource scheduling. Medicine R Science Q Jiong Yu verfasserin aut Xusheng Du verfasserin aut Zhenzhen He verfasserin aut Ping Li verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 17(2022), 12, p e0279649 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:17 year:2022 number:12, p e0279649 https://doi.org/10.1371/journal.pone.0279649 kostenfrei https://doaj.org/article/cdf74a96d7b44bd39514c0480669e9a4 kostenfrei https://doi.org/10.1371/journal.pone.0279649 kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2022 12, p e0279649 |
language |
English |
source |
In PLoS ONE 17(2022), 12, p e0279649 volume:17 year:2022 number:12, p e0279649 |
sourceStr |
In PLoS ONE 17(2022), 12, p e0279649 volume:17 year:2022 number:12, p e0279649 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Medicine R Science Q |
isfreeaccess_bool |
true |
container_title |
PLoS ONE |
authorswithroles_txt_mv |
Dexian Yang @@aut@@ Jiong Yu @@aut@@ Xusheng Du @@aut@@ Zhenzhen He @@aut@@ Ping Li @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
523574592 |
id |
DOAJ082733058 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ082733058</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502113501.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1371/journal.pone.0279649</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ082733058</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJcdf74a96d7b44bd39514c0480669e9a4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Dexian Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Energy saving strategy of cloud data computing based on convolutional neural network and policy gradient algorithm.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Cloud Data Computing (CDC) is conducive to precise energy-saving management of user data centers based on the real-time energy consumption monitoring of Information Technology equipment. This work aims to obtain the most suitable energy-saving strategies to achieve safe, intelligent, and visualized energy management. First, the theory of Convolutional Neural Network (CNN) is discussed. Besides, an intelligent energy-saving model based on CNN is designed to ameliorate the variable energy consumption, load, and power consumption of the CDC data center. Then, the core idea of the policy gradient (PG) algorithm is introduced. In addition, a CDC task scheduling model is designed based on the PG algorithm, aiming at the uncertainty and volatility of the CDC scheduling tasks. Finally, the performance of different neural network models in the training process is analyzed from the perspective of total energy consumption and load optimization of the CDC center. At the same time, simulation is performed on the CDC task scheduling model based on the PG algorithm to analyze the task scheduling demand. The results demonstrate that the energy consumption of the CNN algorithm in the CDC energy-saving model is better than that of the Elman algorithm and the ecoCloud algorithm. Besides, the CNN algorithm reduces the number of virtual machine migrations in the CDC energy-saving model by 9.30% compared with the Elman algorithm. The Deep Deterministic Policy Gradient (DDPG) algorithm performs the best in task scheduling of the cloud data center, and the average response time of the DDPG algorithm is 141. In contrast, the Deep Q Network algorithm performs poorly. This paper proves that Deep Reinforcement Learning (DRL) and neural networks can reduce the energy consumption of CDC and improve the completion time of CDC tasks, offering a research reference for CDC resource scheduling.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiong Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xusheng Du</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhenzhen He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ping Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">PLoS ONE</subfield><subfield code="d">Public Library of Science (PLoS), 2007</subfield><subfield code="g">17(2022), 12, p e0279649</subfield><subfield code="w">(DE-627)523574592</subfield><subfield code="w">(DE-600)2267670-3</subfield><subfield code="x">19326203</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:12, p e0279649</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1371/journal.pone.0279649</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/cdf74a96d7b44bd39514c0480669e9a4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1371/journal.pone.0279649</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1932-6203</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_34</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_235</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2022</subfield><subfield code="e">12, p e0279649</subfield></datafield></record></collection>
|
author |
Dexian Yang |
spellingShingle |
Dexian Yang misc Medicine misc R misc Science misc Q Energy saving strategy of cloud data computing based on convolutional neural network and policy gradient algorithm. |
authorStr |
Dexian Yang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)523574592 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
19326203 |
topic_title |
Energy saving strategy of cloud data computing based on convolutional neural network and policy gradient algorithm |
topic |
misc Medicine misc R misc Science misc Q |
topic_unstemmed |
misc Medicine misc R misc Science misc Q |
topic_browse |
misc Medicine misc R misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
PLoS ONE |
hierarchy_parent_id |
523574592 |
hierarchy_top_title |
PLoS ONE |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)523574592 (DE-600)2267670-3 |
title |
Energy saving strategy of cloud data computing based on convolutional neural network and policy gradient algorithm. |
ctrlnum |
(DE-627)DOAJ082733058 (DE-599)DOAJcdf74a96d7b44bd39514c0480669e9a4 |
title_full |
Energy saving strategy of cloud data computing based on convolutional neural network and policy gradient algorithm |
author_sort |
Dexian Yang |
journal |
PLoS ONE |
journalStr |
PLoS ONE |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Dexian Yang Jiong Yu Xusheng Du Zhenzhen He Ping Li |
container_volume |
17 |
format_se |
Elektronische Aufsätze |
author-letter |
Dexian Yang |
doi_str_mv |
10.1371/journal.pone.0279649 |
author2-role |
verfasserin |
title_sort |
energy saving strategy of cloud data computing based on convolutional neural network and policy gradient algorithm |
title_auth |
Energy saving strategy of cloud data computing based on convolutional neural network and policy gradient algorithm. |
abstract |
Cloud Data Computing (CDC) is conducive to precise energy-saving management of user data centers based on the real-time energy consumption monitoring of Information Technology equipment. This work aims to obtain the most suitable energy-saving strategies to achieve safe, intelligent, and visualized energy management. First, the theory of Convolutional Neural Network (CNN) is discussed. Besides, an intelligent energy-saving model based on CNN is designed to ameliorate the variable energy consumption, load, and power consumption of the CDC data center. Then, the core idea of the policy gradient (PG) algorithm is introduced. In addition, a CDC task scheduling model is designed based on the PG algorithm, aiming at the uncertainty and volatility of the CDC scheduling tasks. Finally, the performance of different neural network models in the training process is analyzed from the perspective of total energy consumption and load optimization of the CDC center. At the same time, simulation is performed on the CDC task scheduling model based on the PG algorithm to analyze the task scheduling demand. The results demonstrate that the energy consumption of the CNN algorithm in the CDC energy-saving model is better than that of the Elman algorithm and the ecoCloud algorithm. Besides, the CNN algorithm reduces the number of virtual machine migrations in the CDC energy-saving model by 9.30% compared with the Elman algorithm. The Deep Deterministic Policy Gradient (DDPG) algorithm performs the best in task scheduling of the cloud data center, and the average response time of the DDPG algorithm is 141. In contrast, the Deep Q Network algorithm performs poorly. This paper proves that Deep Reinforcement Learning (DRL) and neural networks can reduce the energy consumption of CDC and improve the completion time of CDC tasks, offering a research reference for CDC resource scheduling. |
abstractGer |
Cloud Data Computing (CDC) is conducive to precise energy-saving management of user data centers based on the real-time energy consumption monitoring of Information Technology equipment. This work aims to obtain the most suitable energy-saving strategies to achieve safe, intelligent, and visualized energy management. First, the theory of Convolutional Neural Network (CNN) is discussed. Besides, an intelligent energy-saving model based on CNN is designed to ameliorate the variable energy consumption, load, and power consumption of the CDC data center. Then, the core idea of the policy gradient (PG) algorithm is introduced. In addition, a CDC task scheduling model is designed based on the PG algorithm, aiming at the uncertainty and volatility of the CDC scheduling tasks. Finally, the performance of different neural network models in the training process is analyzed from the perspective of total energy consumption and load optimization of the CDC center. At the same time, simulation is performed on the CDC task scheduling model based on the PG algorithm to analyze the task scheduling demand. The results demonstrate that the energy consumption of the CNN algorithm in the CDC energy-saving model is better than that of the Elman algorithm and the ecoCloud algorithm. Besides, the CNN algorithm reduces the number of virtual machine migrations in the CDC energy-saving model by 9.30% compared with the Elman algorithm. The Deep Deterministic Policy Gradient (DDPG) algorithm performs the best in task scheduling of the cloud data center, and the average response time of the DDPG algorithm is 141. In contrast, the Deep Q Network algorithm performs poorly. This paper proves that Deep Reinforcement Learning (DRL) and neural networks can reduce the energy consumption of CDC and improve the completion time of CDC tasks, offering a research reference for CDC resource scheduling. |
abstract_unstemmed |
Cloud Data Computing (CDC) is conducive to precise energy-saving management of user data centers based on the real-time energy consumption monitoring of Information Technology equipment. This work aims to obtain the most suitable energy-saving strategies to achieve safe, intelligent, and visualized energy management. First, the theory of Convolutional Neural Network (CNN) is discussed. Besides, an intelligent energy-saving model based on CNN is designed to ameliorate the variable energy consumption, load, and power consumption of the CDC data center. Then, the core idea of the policy gradient (PG) algorithm is introduced. In addition, a CDC task scheduling model is designed based on the PG algorithm, aiming at the uncertainty and volatility of the CDC scheduling tasks. Finally, the performance of different neural network models in the training process is analyzed from the perspective of total energy consumption and load optimization of the CDC center. At the same time, simulation is performed on the CDC task scheduling model based on the PG algorithm to analyze the task scheduling demand. The results demonstrate that the energy consumption of the CNN algorithm in the CDC energy-saving model is better than that of the Elman algorithm and the ecoCloud algorithm. Besides, the CNN algorithm reduces the number of virtual machine migrations in the CDC energy-saving model by 9.30% compared with the Elman algorithm. The Deep Deterministic Policy Gradient (DDPG) algorithm performs the best in task scheduling of the cloud data center, and the average response time of the DDPG algorithm is 141. In contrast, the Deep Q Network algorithm performs poorly. This paper proves that Deep Reinforcement Learning (DRL) and neural networks can reduce the energy consumption of CDC and improve the completion time of CDC tasks, offering a research reference for CDC resource scheduling. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
12, p e0279649 |
title_short |
Energy saving strategy of cloud data computing based on convolutional neural network and policy gradient algorithm. |
url |
https://doi.org/10.1371/journal.pone.0279649 https://doaj.org/article/cdf74a96d7b44bd39514c0480669e9a4 https://doaj.org/toc/1932-6203 |
remote_bool |
true |
author2 |
Jiong Yu Xusheng Du Zhenzhen He Ping Li |
author2Str |
Jiong Yu Xusheng Du Zhenzhen He Ping Li |
ppnlink |
523574592 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1371/journal.pone.0279649 |
up_date |
2024-07-03T13:33:08.056Z |
_version_ |
1803564968115699712 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ082733058</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502113501.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1371/journal.pone.0279649</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ082733058</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJcdf74a96d7b44bd39514c0480669e9a4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Dexian Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Energy saving strategy of cloud data computing based on convolutional neural network and policy gradient algorithm.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Cloud Data Computing (CDC) is conducive to precise energy-saving management of user data centers based on the real-time energy consumption monitoring of Information Technology equipment. This work aims to obtain the most suitable energy-saving strategies to achieve safe, intelligent, and visualized energy management. First, the theory of Convolutional Neural Network (CNN) is discussed. Besides, an intelligent energy-saving model based on CNN is designed to ameliorate the variable energy consumption, load, and power consumption of the CDC data center. Then, the core idea of the policy gradient (PG) algorithm is introduced. In addition, a CDC task scheduling model is designed based on the PG algorithm, aiming at the uncertainty and volatility of the CDC scheduling tasks. Finally, the performance of different neural network models in the training process is analyzed from the perspective of total energy consumption and load optimization of the CDC center. At the same time, simulation is performed on the CDC task scheduling model based on the PG algorithm to analyze the task scheduling demand. The results demonstrate that the energy consumption of the CNN algorithm in the CDC energy-saving model is better than that of the Elman algorithm and the ecoCloud algorithm. Besides, the CNN algorithm reduces the number of virtual machine migrations in the CDC energy-saving model by 9.30% compared with the Elman algorithm. The Deep Deterministic Policy Gradient (DDPG) algorithm performs the best in task scheduling of the cloud data center, and the average response time of the DDPG algorithm is 141. In contrast, the Deep Q Network algorithm performs poorly. This paper proves that Deep Reinforcement Learning (DRL) and neural networks can reduce the energy consumption of CDC and improve the completion time of CDC tasks, offering a research reference for CDC resource scheduling.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiong Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xusheng Du</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhenzhen He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ping Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">PLoS ONE</subfield><subfield code="d">Public Library of Science (PLoS), 2007</subfield><subfield code="g">17(2022), 12, p e0279649</subfield><subfield code="w">(DE-627)523574592</subfield><subfield code="w">(DE-600)2267670-3</subfield><subfield code="x">19326203</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:12, p e0279649</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1371/journal.pone.0279649</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/cdf74a96d7b44bd39514c0480669e9a4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1371/journal.pone.0279649</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1932-6203</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_34</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_235</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2022</subfield><subfield code="e">12, p e0279649</subfield></datafield></record></collection>
|
score |
7.401515 |