Application of Bipolar Pythagorean Fuzzy Regular Alpha Generalized Closed Soft Matrices in Decision-making Problems
In this paper, we introduce Bipolar Pythagorean fuzzy soft matrix topology and define Bipolar Pythagorean Fuzzy Regular generalized closed soft matrix and study some properties over the soft matrices. We propose the MOORA strategy in Bipolar Pythagorean fuzzy set environment to handle MCDM problems....
Ausführliche Beschreibung
Autor*in: |
S. Nithiyapriya [verfasserIn] S. Maragathavalli [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Ratio Mathematica - Accademia Piceno Aprutina dei Velati, 2017, 43(2022), 0, Seite 30-40 |
---|---|
Übergeordnetes Werk: |
volume:43 ; year:2022 ; number:0 ; pages:30-40 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.23755/rm.v43i0.733 |
---|
Katalog-ID: |
DOAJ082748578 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ082748578 | ||
003 | DE-627 | ||
005 | 20230311004136.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.23755/rm.v43i0.733 |2 doi | |
035 | |a (DE-627)DOAJ082748578 | ||
035 | |a (DE-599)DOAJ69607fd028da4039b9b7253ca43164e7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QA1-939 | |
050 | 0 | |a QA273-280 | |
100 | 0 | |a S. Nithiyapriya |e verfasserin |4 aut | |
245 | 1 | 0 | |a Application of Bipolar Pythagorean Fuzzy Regular Alpha Generalized Closed Soft Matrices in Decision-making Problems |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this paper, we introduce Bipolar Pythagorean fuzzy soft matrix topology and define Bipolar Pythagorean Fuzzy Regular generalized closed soft matrix and study some properties over the soft matrices. We propose the MOORA strategy in Bipolar Pythagorean fuzzy set environment to handle MCDM problems. Finally, one numerical example illustrates an application of BPF-MOORA method, and analyses the results of different values of the decision-making weights of criteria on ranking order of the alternatives. | ||
650 | 4 | |a bpf soft set, bpf soft matrix, bipolar pythagorean fuzzy soft matrix topology, bipolar pythagorean fuzzy regular α generalized closed soft matrix, bpf-moora method. | |
653 | 0 | |a Mathematics | |
653 | 0 | |a Probabilities. Mathematical statistics | |
700 | 0 | |a S. Maragathavalli |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Ratio Mathematica |d Accademia Piceno Aprutina dei Velati, 2017 |g 43(2022), 0, Seite 30-40 |w (DE-627)680323791 |w (DE-600)2642712-6 |x 22828214 |7 nnns |
773 | 1 | 8 | |g volume:43 |g year:2022 |g number:0 |g pages:30-40 |
856 | 4 | 0 | |u https://doi.org/10.23755/rm.v43i0.733 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/69607fd028da4039b9b7253ca43164e7 |z kostenfrei |
856 | 4 | 0 | |u http://eiris.it/ojs/index.php/ratiomathematica/article/view/733 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1592-7415 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2282-8214 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 43 |j 2022 |e 0 |h 30-40 |
author_variant |
s n sn s m sm |
---|---|
matchkey_str |
article:22828214:2022----::plctoobplryhgrafzyeuaapaeeaiecoesfmti |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QA |
publishDate |
2022 |
allfields |
10.23755/rm.v43i0.733 doi (DE-627)DOAJ082748578 (DE-599)DOAJ69607fd028da4039b9b7253ca43164e7 DE-627 ger DE-627 rakwb eng QA1-939 QA273-280 S. Nithiyapriya verfasserin aut Application of Bipolar Pythagorean Fuzzy Regular Alpha Generalized Closed Soft Matrices in Decision-making Problems 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we introduce Bipolar Pythagorean fuzzy soft matrix topology and define Bipolar Pythagorean Fuzzy Regular generalized closed soft matrix and study some properties over the soft matrices. We propose the MOORA strategy in Bipolar Pythagorean fuzzy set environment to handle MCDM problems. Finally, one numerical example illustrates an application of BPF-MOORA method, and analyses the results of different values of the decision-making weights of criteria on ranking order of the alternatives. bpf soft set, bpf soft matrix, bipolar pythagorean fuzzy soft matrix topology, bipolar pythagorean fuzzy regular α generalized closed soft matrix, bpf-moora method. Mathematics Probabilities. Mathematical statistics S. Maragathavalli verfasserin aut In Ratio Mathematica Accademia Piceno Aprutina dei Velati, 2017 43(2022), 0, Seite 30-40 (DE-627)680323791 (DE-600)2642712-6 22828214 nnns volume:43 year:2022 number:0 pages:30-40 https://doi.org/10.23755/rm.v43i0.733 kostenfrei https://doaj.org/article/69607fd028da4039b9b7253ca43164e7 kostenfrei http://eiris.it/ojs/index.php/ratiomathematica/article/view/733 kostenfrei https://doaj.org/toc/1592-7415 Journal toc kostenfrei https://doaj.org/toc/2282-8214 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 43 2022 0 30-40 |
spelling |
10.23755/rm.v43i0.733 doi (DE-627)DOAJ082748578 (DE-599)DOAJ69607fd028da4039b9b7253ca43164e7 DE-627 ger DE-627 rakwb eng QA1-939 QA273-280 S. Nithiyapriya verfasserin aut Application of Bipolar Pythagorean Fuzzy Regular Alpha Generalized Closed Soft Matrices in Decision-making Problems 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we introduce Bipolar Pythagorean fuzzy soft matrix topology and define Bipolar Pythagorean Fuzzy Regular generalized closed soft matrix and study some properties over the soft matrices. We propose the MOORA strategy in Bipolar Pythagorean fuzzy set environment to handle MCDM problems. Finally, one numerical example illustrates an application of BPF-MOORA method, and analyses the results of different values of the decision-making weights of criteria on ranking order of the alternatives. bpf soft set, bpf soft matrix, bipolar pythagorean fuzzy soft matrix topology, bipolar pythagorean fuzzy regular α generalized closed soft matrix, bpf-moora method. Mathematics Probabilities. Mathematical statistics S. Maragathavalli verfasserin aut In Ratio Mathematica Accademia Piceno Aprutina dei Velati, 2017 43(2022), 0, Seite 30-40 (DE-627)680323791 (DE-600)2642712-6 22828214 nnns volume:43 year:2022 number:0 pages:30-40 https://doi.org/10.23755/rm.v43i0.733 kostenfrei https://doaj.org/article/69607fd028da4039b9b7253ca43164e7 kostenfrei http://eiris.it/ojs/index.php/ratiomathematica/article/view/733 kostenfrei https://doaj.org/toc/1592-7415 Journal toc kostenfrei https://doaj.org/toc/2282-8214 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 43 2022 0 30-40 |
allfields_unstemmed |
10.23755/rm.v43i0.733 doi (DE-627)DOAJ082748578 (DE-599)DOAJ69607fd028da4039b9b7253ca43164e7 DE-627 ger DE-627 rakwb eng QA1-939 QA273-280 S. Nithiyapriya verfasserin aut Application of Bipolar Pythagorean Fuzzy Regular Alpha Generalized Closed Soft Matrices in Decision-making Problems 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we introduce Bipolar Pythagorean fuzzy soft matrix topology and define Bipolar Pythagorean Fuzzy Regular generalized closed soft matrix and study some properties over the soft matrices. We propose the MOORA strategy in Bipolar Pythagorean fuzzy set environment to handle MCDM problems. Finally, one numerical example illustrates an application of BPF-MOORA method, and analyses the results of different values of the decision-making weights of criteria on ranking order of the alternatives. bpf soft set, bpf soft matrix, bipolar pythagorean fuzzy soft matrix topology, bipolar pythagorean fuzzy regular α generalized closed soft matrix, bpf-moora method. Mathematics Probabilities. Mathematical statistics S. Maragathavalli verfasserin aut In Ratio Mathematica Accademia Piceno Aprutina dei Velati, 2017 43(2022), 0, Seite 30-40 (DE-627)680323791 (DE-600)2642712-6 22828214 nnns volume:43 year:2022 number:0 pages:30-40 https://doi.org/10.23755/rm.v43i0.733 kostenfrei https://doaj.org/article/69607fd028da4039b9b7253ca43164e7 kostenfrei http://eiris.it/ojs/index.php/ratiomathematica/article/view/733 kostenfrei https://doaj.org/toc/1592-7415 Journal toc kostenfrei https://doaj.org/toc/2282-8214 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 43 2022 0 30-40 |
allfieldsGer |
10.23755/rm.v43i0.733 doi (DE-627)DOAJ082748578 (DE-599)DOAJ69607fd028da4039b9b7253ca43164e7 DE-627 ger DE-627 rakwb eng QA1-939 QA273-280 S. Nithiyapriya verfasserin aut Application of Bipolar Pythagorean Fuzzy Regular Alpha Generalized Closed Soft Matrices in Decision-making Problems 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we introduce Bipolar Pythagorean fuzzy soft matrix topology and define Bipolar Pythagorean Fuzzy Regular generalized closed soft matrix and study some properties over the soft matrices. We propose the MOORA strategy in Bipolar Pythagorean fuzzy set environment to handle MCDM problems. Finally, one numerical example illustrates an application of BPF-MOORA method, and analyses the results of different values of the decision-making weights of criteria on ranking order of the alternatives. bpf soft set, bpf soft matrix, bipolar pythagorean fuzzy soft matrix topology, bipolar pythagorean fuzzy regular α generalized closed soft matrix, bpf-moora method. Mathematics Probabilities. Mathematical statistics S. Maragathavalli verfasserin aut In Ratio Mathematica Accademia Piceno Aprutina dei Velati, 2017 43(2022), 0, Seite 30-40 (DE-627)680323791 (DE-600)2642712-6 22828214 nnns volume:43 year:2022 number:0 pages:30-40 https://doi.org/10.23755/rm.v43i0.733 kostenfrei https://doaj.org/article/69607fd028da4039b9b7253ca43164e7 kostenfrei http://eiris.it/ojs/index.php/ratiomathematica/article/view/733 kostenfrei https://doaj.org/toc/1592-7415 Journal toc kostenfrei https://doaj.org/toc/2282-8214 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 43 2022 0 30-40 |
allfieldsSound |
10.23755/rm.v43i0.733 doi (DE-627)DOAJ082748578 (DE-599)DOAJ69607fd028da4039b9b7253ca43164e7 DE-627 ger DE-627 rakwb eng QA1-939 QA273-280 S. Nithiyapriya verfasserin aut Application of Bipolar Pythagorean Fuzzy Regular Alpha Generalized Closed Soft Matrices in Decision-making Problems 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, we introduce Bipolar Pythagorean fuzzy soft matrix topology and define Bipolar Pythagorean Fuzzy Regular generalized closed soft matrix and study some properties over the soft matrices. We propose the MOORA strategy in Bipolar Pythagorean fuzzy set environment to handle MCDM problems. Finally, one numerical example illustrates an application of BPF-MOORA method, and analyses the results of different values of the decision-making weights of criteria on ranking order of the alternatives. bpf soft set, bpf soft matrix, bipolar pythagorean fuzzy soft matrix topology, bipolar pythagorean fuzzy regular α generalized closed soft matrix, bpf-moora method. Mathematics Probabilities. Mathematical statistics S. Maragathavalli verfasserin aut In Ratio Mathematica Accademia Piceno Aprutina dei Velati, 2017 43(2022), 0, Seite 30-40 (DE-627)680323791 (DE-600)2642712-6 22828214 nnns volume:43 year:2022 number:0 pages:30-40 https://doi.org/10.23755/rm.v43i0.733 kostenfrei https://doaj.org/article/69607fd028da4039b9b7253ca43164e7 kostenfrei http://eiris.it/ojs/index.php/ratiomathematica/article/view/733 kostenfrei https://doaj.org/toc/1592-7415 Journal toc kostenfrei https://doaj.org/toc/2282-8214 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 43 2022 0 30-40 |
language |
English |
source |
In Ratio Mathematica 43(2022), 0, Seite 30-40 volume:43 year:2022 number:0 pages:30-40 |
sourceStr |
In Ratio Mathematica 43(2022), 0, Seite 30-40 volume:43 year:2022 number:0 pages:30-40 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
bpf soft set, bpf soft matrix, bipolar pythagorean fuzzy soft matrix topology, bipolar pythagorean fuzzy regular α generalized closed soft matrix, bpf-moora method. Mathematics Probabilities. Mathematical statistics |
isfreeaccess_bool |
true |
container_title |
Ratio Mathematica |
authorswithroles_txt_mv |
S. Nithiyapriya @@aut@@ S. Maragathavalli @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
680323791 |
id |
DOAJ082748578 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ082748578</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311004136.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.23755/rm.v43i0.733</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ082748578</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ69607fd028da4039b9b7253ca43164e7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA273-280</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">S. Nithiyapriya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Application of Bipolar Pythagorean Fuzzy Regular Alpha Generalized Closed Soft Matrices in Decision-making Problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we introduce Bipolar Pythagorean fuzzy soft matrix topology and define Bipolar Pythagorean Fuzzy Regular generalized closed soft matrix and study some properties over the soft matrices. We propose the MOORA strategy in Bipolar Pythagorean fuzzy set environment to handle MCDM problems. Finally, one numerical example illustrates an application of BPF-MOORA method, and analyses the results of different values of the decision-making weights of criteria on ranking order of the alternatives.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bpf soft set, bpf soft matrix, bipolar pythagorean fuzzy soft matrix topology, bipolar pythagorean fuzzy regular α generalized closed soft matrix, bpf-moora method.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Probabilities. Mathematical statistics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">S. Maragathavalli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ratio Mathematica</subfield><subfield code="d">Accademia Piceno Aprutina dei Velati, 2017</subfield><subfield code="g">43(2022), 0, Seite 30-40</subfield><subfield code="w">(DE-627)680323791</subfield><subfield code="w">(DE-600)2642712-6</subfield><subfield code="x">22828214</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:43</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:0</subfield><subfield code="g">pages:30-40</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.23755/rm.v43i0.733</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/69607fd028da4039b9b7253ca43164e7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://eiris.it/ojs/index.php/ratiomathematica/article/view/733</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1592-7415</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2282-8214</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">43</subfield><subfield code="j">2022</subfield><subfield code="e">0</subfield><subfield code="h">30-40</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
S. Nithiyapriya |
spellingShingle |
S. Nithiyapriya misc QA1-939 misc QA273-280 misc bpf soft set, bpf soft matrix, bipolar pythagorean fuzzy soft matrix topology, bipolar pythagorean fuzzy regular α generalized closed soft matrix, bpf-moora method. misc Mathematics misc Probabilities. Mathematical statistics Application of Bipolar Pythagorean Fuzzy Regular Alpha Generalized Closed Soft Matrices in Decision-making Problems |
authorStr |
S. Nithiyapriya |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)680323791 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QA1-939 |
illustrated |
Not Illustrated |
issn |
22828214 |
topic_title |
QA1-939 QA273-280 Application of Bipolar Pythagorean Fuzzy Regular Alpha Generalized Closed Soft Matrices in Decision-making Problems bpf soft set, bpf soft matrix, bipolar pythagorean fuzzy soft matrix topology, bipolar pythagorean fuzzy regular α generalized closed soft matrix, bpf-moora method |
topic |
misc QA1-939 misc QA273-280 misc bpf soft set, bpf soft matrix, bipolar pythagorean fuzzy soft matrix topology, bipolar pythagorean fuzzy regular α generalized closed soft matrix, bpf-moora method. misc Mathematics misc Probabilities. Mathematical statistics |
topic_unstemmed |
misc QA1-939 misc QA273-280 misc bpf soft set, bpf soft matrix, bipolar pythagorean fuzzy soft matrix topology, bipolar pythagorean fuzzy regular α generalized closed soft matrix, bpf-moora method. misc Mathematics misc Probabilities. Mathematical statistics |
topic_browse |
misc QA1-939 misc QA273-280 misc bpf soft set, bpf soft matrix, bipolar pythagorean fuzzy soft matrix topology, bipolar pythagorean fuzzy regular α generalized closed soft matrix, bpf-moora method. misc Mathematics misc Probabilities. Mathematical statistics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Ratio Mathematica |
hierarchy_parent_id |
680323791 |
hierarchy_top_title |
Ratio Mathematica |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)680323791 (DE-600)2642712-6 |
title |
Application of Bipolar Pythagorean Fuzzy Regular Alpha Generalized Closed Soft Matrices in Decision-making Problems |
ctrlnum |
(DE-627)DOAJ082748578 (DE-599)DOAJ69607fd028da4039b9b7253ca43164e7 |
title_full |
Application of Bipolar Pythagorean Fuzzy Regular Alpha Generalized Closed Soft Matrices in Decision-making Problems |
author_sort |
S. Nithiyapriya |
journal |
Ratio Mathematica |
journalStr |
Ratio Mathematica |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
30 |
author_browse |
S. Nithiyapriya S. Maragathavalli |
container_volume |
43 |
class |
QA1-939 QA273-280 |
format_se |
Elektronische Aufsätze |
author-letter |
S. Nithiyapriya |
doi_str_mv |
10.23755/rm.v43i0.733 |
author2-role |
verfasserin |
title_sort |
application of bipolar pythagorean fuzzy regular alpha generalized closed soft matrices in decision-making problems |
callnumber |
QA1-939 |
title_auth |
Application of Bipolar Pythagorean Fuzzy Regular Alpha Generalized Closed Soft Matrices in Decision-making Problems |
abstract |
In this paper, we introduce Bipolar Pythagorean fuzzy soft matrix topology and define Bipolar Pythagorean Fuzzy Regular generalized closed soft matrix and study some properties over the soft matrices. We propose the MOORA strategy in Bipolar Pythagorean fuzzy set environment to handle MCDM problems. Finally, one numerical example illustrates an application of BPF-MOORA method, and analyses the results of different values of the decision-making weights of criteria on ranking order of the alternatives. |
abstractGer |
In this paper, we introduce Bipolar Pythagorean fuzzy soft matrix topology and define Bipolar Pythagorean Fuzzy Regular generalized closed soft matrix and study some properties over the soft matrices. We propose the MOORA strategy in Bipolar Pythagorean fuzzy set environment to handle MCDM problems. Finally, one numerical example illustrates an application of BPF-MOORA method, and analyses the results of different values of the decision-making weights of criteria on ranking order of the alternatives. |
abstract_unstemmed |
In this paper, we introduce Bipolar Pythagorean fuzzy soft matrix topology and define Bipolar Pythagorean Fuzzy Regular generalized closed soft matrix and study some properties over the soft matrices. We propose the MOORA strategy in Bipolar Pythagorean fuzzy set environment to handle MCDM problems. Finally, one numerical example illustrates an application of BPF-MOORA method, and analyses the results of different values of the decision-making weights of criteria on ranking order of the alternatives. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
0 |
title_short |
Application of Bipolar Pythagorean Fuzzy Regular Alpha Generalized Closed Soft Matrices in Decision-making Problems |
url |
https://doi.org/10.23755/rm.v43i0.733 https://doaj.org/article/69607fd028da4039b9b7253ca43164e7 http://eiris.it/ojs/index.php/ratiomathematica/article/view/733 https://doaj.org/toc/1592-7415 https://doaj.org/toc/2282-8214 |
remote_bool |
true |
author2 |
S. Maragathavalli |
author2Str |
S. Maragathavalli |
ppnlink |
680323791 |
callnumber-subject |
QA - Mathematics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.23755/rm.v43i0.733 |
callnumber-a |
QA1-939 |
up_date |
2024-07-03T13:38:36.300Z |
_version_ |
1803565312299237376 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ082748578</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311004136.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.23755/rm.v43i0.733</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ082748578</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ69607fd028da4039b9b7253ca43164e7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA273-280</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">S. Nithiyapriya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Application of Bipolar Pythagorean Fuzzy Regular Alpha Generalized Closed Soft Matrices in Decision-making Problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we introduce Bipolar Pythagorean fuzzy soft matrix topology and define Bipolar Pythagorean Fuzzy Regular generalized closed soft matrix and study some properties over the soft matrices. We propose the MOORA strategy in Bipolar Pythagorean fuzzy set environment to handle MCDM problems. Finally, one numerical example illustrates an application of BPF-MOORA method, and analyses the results of different values of the decision-making weights of criteria on ranking order of the alternatives.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bpf soft set, bpf soft matrix, bipolar pythagorean fuzzy soft matrix topology, bipolar pythagorean fuzzy regular α generalized closed soft matrix, bpf-moora method.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Probabilities. Mathematical statistics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">S. Maragathavalli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Ratio Mathematica</subfield><subfield code="d">Accademia Piceno Aprutina dei Velati, 2017</subfield><subfield code="g">43(2022), 0, Seite 30-40</subfield><subfield code="w">(DE-627)680323791</subfield><subfield code="w">(DE-600)2642712-6</subfield><subfield code="x">22828214</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:43</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:0</subfield><subfield code="g">pages:30-40</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.23755/rm.v43i0.733</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/69607fd028da4039b9b7253ca43164e7</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://eiris.it/ojs/index.php/ratiomathematica/article/view/733</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1592-7415</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2282-8214</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">43</subfield><subfield code="j">2022</subfield><subfield code="e">0</subfield><subfield code="h">30-40</subfield></datafield></record></collection>
|
score |
7.4009247 |