A Path Planning Method for Autonomous Vehicles Based on Risk Assessment
In order to meet the requirements of vehicle automatic obstacle avoidance, a lane change trajectory planning method is proposed to meet the requirements of safety, comfort, and lane change efficiency. Firstly, the potential collision points that may exist are analyzed using information about surroun...
Ausführliche Beschreibung
Autor*in: |
Wei Yang [verfasserIn] Cong Li [verfasserIn] Yipeng Zhou [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: World Electric Vehicle Journal - MDPI AG, 2018, 13(2022), 12, p 234 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2022 ; number:12, p 234 |
Links: |
---|
DOI / URN: |
10.3390/wevj13120234 |
---|
Katalog-ID: |
DOAJ082952272 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ082952272 | ||
003 | DE-627 | ||
005 | 20240414145503.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/wevj13120234 |2 doi | |
035 | |a (DE-627)DOAJ082952272 | ||
035 | |a (DE-599)DOAJ022b022a05814d3799b4a7d7c6920a8a | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
050 | 0 | |a TA1001-1280 | |
100 | 0 | |a Wei Yang |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Path Planning Method for Autonomous Vehicles Based on Risk Assessment |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In order to meet the requirements of vehicle automatic obstacle avoidance, a lane change trajectory planning method is proposed to meet the requirements of safety, comfort, and lane change efficiency. Firstly, the potential collision points that may exist are analyzed using information about surrounding vehicle movement and the road. Then, the safe lane change range for vehicles is obtained. Secondly, the control points of the fifth order Bézier curve are constrained to generate a series of path clusters in the optimal range. At the same time, the driver’s style and reaction time are taken into account in the risk assessment stage of the route using the improved artificial potential field method. Finally, the optimal path is selected by comprehensively considering lane-changing efficiency and comfort. In order to further verify the accuracy of the algorithm, real-vehicle experiments have been carried out on the autonomous vehicle platform. Under different driving styles, the vehicle can avoid obstacles perfectly while ensuring the smoothness of the path. Simulation and real-vehicle experiment results show that the proposed algorithm can provide an excellent solution for autonomous vehicles for lane changing and obstacle avoidance. | ||
650 | 4 | |a autonomous vehicles | |
650 | 4 | |a obstacle avoidance | |
650 | 4 | |a path planning | |
650 | 4 | |a risk assessment | |
650 | 4 | |a potential collision points | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
653 | 0 | |a Transportation engineering | |
700 | 0 | |a Cong Li |e verfasserin |4 aut | |
700 | 0 | |a Yipeng Zhou |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t World Electric Vehicle Journal |d MDPI AG, 2018 |g 13(2022), 12, p 234 |w (DE-627)1025566866 |x 20326653 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2022 |g number:12, p 234 |
856 | 4 | 0 | |u https://doi.org/10.3390/wevj13120234 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/022b022a05814d3799b4a7d7c6920a8a |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2032-6653/13/12/234 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2032-6653 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2022 |e 12, p 234 |
author_variant |
w y wy c l cl y z yz |
---|---|
matchkey_str |
article:20326653:2022----::ptpannmtofruoooseilsae |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TK |
publishDate |
2022 |
allfields |
10.3390/wevj13120234 doi (DE-627)DOAJ082952272 (DE-599)DOAJ022b022a05814d3799b4a7d7c6920a8a DE-627 ger DE-627 rakwb eng TK1-9971 TA1001-1280 Wei Yang verfasserin aut A Path Planning Method for Autonomous Vehicles Based on Risk Assessment 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to meet the requirements of vehicle automatic obstacle avoidance, a lane change trajectory planning method is proposed to meet the requirements of safety, comfort, and lane change efficiency. Firstly, the potential collision points that may exist are analyzed using information about surrounding vehicle movement and the road. Then, the safe lane change range for vehicles is obtained. Secondly, the control points of the fifth order Bézier curve are constrained to generate a series of path clusters in the optimal range. At the same time, the driver’s style and reaction time are taken into account in the risk assessment stage of the route using the improved artificial potential field method. Finally, the optimal path is selected by comprehensively considering lane-changing efficiency and comfort. In order to further verify the accuracy of the algorithm, real-vehicle experiments have been carried out on the autonomous vehicle platform. Under different driving styles, the vehicle can avoid obstacles perfectly while ensuring the smoothness of the path. Simulation and real-vehicle experiment results show that the proposed algorithm can provide an excellent solution for autonomous vehicles for lane changing and obstacle avoidance. autonomous vehicles obstacle avoidance path planning risk assessment potential collision points Electrical engineering. Electronics. Nuclear engineering Transportation engineering Cong Li verfasserin aut Yipeng Zhou verfasserin aut In World Electric Vehicle Journal MDPI AG, 2018 13(2022), 12, p 234 (DE-627)1025566866 20326653 nnns volume:13 year:2022 number:12, p 234 https://doi.org/10.3390/wevj13120234 kostenfrei https://doaj.org/article/022b022a05814d3799b4a7d7c6920a8a kostenfrei https://www.mdpi.com/2032-6653/13/12/234 kostenfrei https://doaj.org/toc/2032-6653 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 12, p 234 |
spelling |
10.3390/wevj13120234 doi (DE-627)DOAJ082952272 (DE-599)DOAJ022b022a05814d3799b4a7d7c6920a8a DE-627 ger DE-627 rakwb eng TK1-9971 TA1001-1280 Wei Yang verfasserin aut A Path Planning Method for Autonomous Vehicles Based on Risk Assessment 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to meet the requirements of vehicle automatic obstacle avoidance, a lane change trajectory planning method is proposed to meet the requirements of safety, comfort, and lane change efficiency. Firstly, the potential collision points that may exist are analyzed using information about surrounding vehicle movement and the road. Then, the safe lane change range for vehicles is obtained. Secondly, the control points of the fifth order Bézier curve are constrained to generate a series of path clusters in the optimal range. At the same time, the driver’s style and reaction time are taken into account in the risk assessment stage of the route using the improved artificial potential field method. Finally, the optimal path is selected by comprehensively considering lane-changing efficiency and comfort. In order to further verify the accuracy of the algorithm, real-vehicle experiments have been carried out on the autonomous vehicle platform. Under different driving styles, the vehicle can avoid obstacles perfectly while ensuring the smoothness of the path. Simulation and real-vehicle experiment results show that the proposed algorithm can provide an excellent solution for autonomous vehicles for lane changing and obstacle avoidance. autonomous vehicles obstacle avoidance path planning risk assessment potential collision points Electrical engineering. Electronics. Nuclear engineering Transportation engineering Cong Li verfasserin aut Yipeng Zhou verfasserin aut In World Electric Vehicle Journal MDPI AG, 2018 13(2022), 12, p 234 (DE-627)1025566866 20326653 nnns volume:13 year:2022 number:12, p 234 https://doi.org/10.3390/wevj13120234 kostenfrei https://doaj.org/article/022b022a05814d3799b4a7d7c6920a8a kostenfrei https://www.mdpi.com/2032-6653/13/12/234 kostenfrei https://doaj.org/toc/2032-6653 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 12, p 234 |
allfields_unstemmed |
10.3390/wevj13120234 doi (DE-627)DOAJ082952272 (DE-599)DOAJ022b022a05814d3799b4a7d7c6920a8a DE-627 ger DE-627 rakwb eng TK1-9971 TA1001-1280 Wei Yang verfasserin aut A Path Planning Method for Autonomous Vehicles Based on Risk Assessment 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to meet the requirements of vehicle automatic obstacle avoidance, a lane change trajectory planning method is proposed to meet the requirements of safety, comfort, and lane change efficiency. Firstly, the potential collision points that may exist are analyzed using information about surrounding vehicle movement and the road. Then, the safe lane change range for vehicles is obtained. Secondly, the control points of the fifth order Bézier curve are constrained to generate a series of path clusters in the optimal range. At the same time, the driver’s style and reaction time are taken into account in the risk assessment stage of the route using the improved artificial potential field method. Finally, the optimal path is selected by comprehensively considering lane-changing efficiency and comfort. In order to further verify the accuracy of the algorithm, real-vehicle experiments have been carried out on the autonomous vehicle platform. Under different driving styles, the vehicle can avoid obstacles perfectly while ensuring the smoothness of the path. Simulation and real-vehicle experiment results show that the proposed algorithm can provide an excellent solution for autonomous vehicles for lane changing and obstacle avoidance. autonomous vehicles obstacle avoidance path planning risk assessment potential collision points Electrical engineering. Electronics. Nuclear engineering Transportation engineering Cong Li verfasserin aut Yipeng Zhou verfasserin aut In World Electric Vehicle Journal MDPI AG, 2018 13(2022), 12, p 234 (DE-627)1025566866 20326653 nnns volume:13 year:2022 number:12, p 234 https://doi.org/10.3390/wevj13120234 kostenfrei https://doaj.org/article/022b022a05814d3799b4a7d7c6920a8a kostenfrei https://www.mdpi.com/2032-6653/13/12/234 kostenfrei https://doaj.org/toc/2032-6653 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 12, p 234 |
allfieldsGer |
10.3390/wevj13120234 doi (DE-627)DOAJ082952272 (DE-599)DOAJ022b022a05814d3799b4a7d7c6920a8a DE-627 ger DE-627 rakwb eng TK1-9971 TA1001-1280 Wei Yang verfasserin aut A Path Planning Method for Autonomous Vehicles Based on Risk Assessment 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to meet the requirements of vehicle automatic obstacle avoidance, a lane change trajectory planning method is proposed to meet the requirements of safety, comfort, and lane change efficiency. Firstly, the potential collision points that may exist are analyzed using information about surrounding vehicle movement and the road. Then, the safe lane change range for vehicles is obtained. Secondly, the control points of the fifth order Bézier curve are constrained to generate a series of path clusters in the optimal range. At the same time, the driver’s style and reaction time are taken into account in the risk assessment stage of the route using the improved artificial potential field method. Finally, the optimal path is selected by comprehensively considering lane-changing efficiency and comfort. In order to further verify the accuracy of the algorithm, real-vehicle experiments have been carried out on the autonomous vehicle platform. Under different driving styles, the vehicle can avoid obstacles perfectly while ensuring the smoothness of the path. Simulation and real-vehicle experiment results show that the proposed algorithm can provide an excellent solution for autonomous vehicles for lane changing and obstacle avoidance. autonomous vehicles obstacle avoidance path planning risk assessment potential collision points Electrical engineering. Electronics. Nuclear engineering Transportation engineering Cong Li verfasserin aut Yipeng Zhou verfasserin aut In World Electric Vehicle Journal MDPI AG, 2018 13(2022), 12, p 234 (DE-627)1025566866 20326653 nnns volume:13 year:2022 number:12, p 234 https://doi.org/10.3390/wevj13120234 kostenfrei https://doaj.org/article/022b022a05814d3799b4a7d7c6920a8a kostenfrei https://www.mdpi.com/2032-6653/13/12/234 kostenfrei https://doaj.org/toc/2032-6653 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 12, p 234 |
allfieldsSound |
10.3390/wevj13120234 doi (DE-627)DOAJ082952272 (DE-599)DOAJ022b022a05814d3799b4a7d7c6920a8a DE-627 ger DE-627 rakwb eng TK1-9971 TA1001-1280 Wei Yang verfasserin aut A Path Planning Method for Autonomous Vehicles Based on Risk Assessment 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In order to meet the requirements of vehicle automatic obstacle avoidance, a lane change trajectory planning method is proposed to meet the requirements of safety, comfort, and lane change efficiency. Firstly, the potential collision points that may exist are analyzed using information about surrounding vehicle movement and the road. Then, the safe lane change range for vehicles is obtained. Secondly, the control points of the fifth order Bézier curve are constrained to generate a series of path clusters in the optimal range. At the same time, the driver’s style and reaction time are taken into account in the risk assessment stage of the route using the improved artificial potential field method. Finally, the optimal path is selected by comprehensively considering lane-changing efficiency and comfort. In order to further verify the accuracy of the algorithm, real-vehicle experiments have been carried out on the autonomous vehicle platform. Under different driving styles, the vehicle can avoid obstacles perfectly while ensuring the smoothness of the path. Simulation and real-vehicle experiment results show that the proposed algorithm can provide an excellent solution for autonomous vehicles for lane changing and obstacle avoidance. autonomous vehicles obstacle avoidance path planning risk assessment potential collision points Electrical engineering. Electronics. Nuclear engineering Transportation engineering Cong Li verfasserin aut Yipeng Zhou verfasserin aut In World Electric Vehicle Journal MDPI AG, 2018 13(2022), 12, p 234 (DE-627)1025566866 20326653 nnns volume:13 year:2022 number:12, p 234 https://doi.org/10.3390/wevj13120234 kostenfrei https://doaj.org/article/022b022a05814d3799b4a7d7c6920a8a kostenfrei https://www.mdpi.com/2032-6653/13/12/234 kostenfrei https://doaj.org/toc/2032-6653 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2022 12, p 234 |
language |
English |
source |
In World Electric Vehicle Journal 13(2022), 12, p 234 volume:13 year:2022 number:12, p 234 |
sourceStr |
In World Electric Vehicle Journal 13(2022), 12, p 234 volume:13 year:2022 number:12, p 234 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
autonomous vehicles obstacle avoidance path planning risk assessment potential collision points Electrical engineering. Electronics. Nuclear engineering Transportation engineering |
isfreeaccess_bool |
true |
container_title |
World Electric Vehicle Journal |
authorswithroles_txt_mv |
Wei Yang @@aut@@ Cong Li @@aut@@ Yipeng Zhou @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
1025566866 |
id |
DOAJ082952272 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ082952272</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414145503.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/wevj13120234</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ082952272</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ022b022a05814d3799b4a7d7c6920a8a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1001-1280</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wei Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Path Planning Method for Autonomous Vehicles Based on Risk Assessment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In order to meet the requirements of vehicle automatic obstacle avoidance, a lane change trajectory planning method is proposed to meet the requirements of safety, comfort, and lane change efficiency. Firstly, the potential collision points that may exist are analyzed using information about surrounding vehicle movement and the road. Then, the safe lane change range for vehicles is obtained. Secondly, the control points of the fifth order Bézier curve are constrained to generate a series of path clusters in the optimal range. At the same time, the driver’s style and reaction time are taken into account in the risk assessment stage of the route using the improved artificial potential field method. Finally, the optimal path is selected by comprehensively considering lane-changing efficiency and comfort. In order to further verify the accuracy of the algorithm, real-vehicle experiments have been carried out on the autonomous vehicle platform. Under different driving styles, the vehicle can avoid obstacles perfectly while ensuring the smoothness of the path. Simulation and real-vehicle experiment results show that the proposed algorithm can provide an excellent solution for autonomous vehicles for lane changing and obstacle avoidance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">autonomous vehicles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">obstacle avoidance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">path planning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">risk assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">potential collision points</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Transportation engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cong Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yipeng Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">World Electric Vehicle Journal</subfield><subfield code="d">MDPI AG, 2018</subfield><subfield code="g">13(2022), 12, p 234</subfield><subfield code="w">(DE-627)1025566866</subfield><subfield code="x">20326653</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:12, p 234</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/wevj13120234</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/022b022a05814d3799b4a7d7c6920a8a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2032-6653/13/12/234</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2032-6653</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2022</subfield><subfield code="e">12, p 234</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Wei Yang |
spellingShingle |
Wei Yang misc TK1-9971 misc TA1001-1280 misc autonomous vehicles misc obstacle avoidance misc path planning misc risk assessment misc potential collision points misc Electrical engineering. Electronics. Nuclear engineering misc Transportation engineering A Path Planning Method for Autonomous Vehicles Based on Risk Assessment |
authorStr |
Wei Yang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1025566866 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
20326653 |
topic_title |
TK1-9971 TA1001-1280 A Path Planning Method for Autonomous Vehicles Based on Risk Assessment autonomous vehicles obstacle avoidance path planning risk assessment potential collision points |
topic |
misc TK1-9971 misc TA1001-1280 misc autonomous vehicles misc obstacle avoidance misc path planning misc risk assessment misc potential collision points misc Electrical engineering. Electronics. Nuclear engineering misc Transportation engineering |
topic_unstemmed |
misc TK1-9971 misc TA1001-1280 misc autonomous vehicles misc obstacle avoidance misc path planning misc risk assessment misc potential collision points misc Electrical engineering. Electronics. Nuclear engineering misc Transportation engineering |
topic_browse |
misc TK1-9971 misc TA1001-1280 misc autonomous vehicles misc obstacle avoidance misc path planning misc risk assessment misc potential collision points misc Electrical engineering. Electronics. Nuclear engineering misc Transportation engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
World Electric Vehicle Journal |
hierarchy_parent_id |
1025566866 |
hierarchy_top_title |
World Electric Vehicle Journal |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1025566866 |
title |
A Path Planning Method for Autonomous Vehicles Based on Risk Assessment |
ctrlnum |
(DE-627)DOAJ082952272 (DE-599)DOAJ022b022a05814d3799b4a7d7c6920a8a |
title_full |
A Path Planning Method for Autonomous Vehicles Based on Risk Assessment |
author_sort |
Wei Yang |
journal |
World Electric Vehicle Journal |
journalStr |
World Electric Vehicle Journal |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Wei Yang Cong Li Yipeng Zhou |
container_volume |
13 |
class |
TK1-9971 TA1001-1280 |
format_se |
Elektronische Aufsätze |
author-letter |
Wei Yang |
doi_str_mv |
10.3390/wevj13120234 |
author2-role |
verfasserin |
title_sort |
path planning method for autonomous vehicles based on risk assessment |
callnumber |
TK1-9971 |
title_auth |
A Path Planning Method for Autonomous Vehicles Based on Risk Assessment |
abstract |
In order to meet the requirements of vehicle automatic obstacle avoidance, a lane change trajectory planning method is proposed to meet the requirements of safety, comfort, and lane change efficiency. Firstly, the potential collision points that may exist are analyzed using information about surrounding vehicle movement and the road. Then, the safe lane change range for vehicles is obtained. Secondly, the control points of the fifth order Bézier curve are constrained to generate a series of path clusters in the optimal range. At the same time, the driver’s style and reaction time are taken into account in the risk assessment stage of the route using the improved artificial potential field method. Finally, the optimal path is selected by comprehensively considering lane-changing efficiency and comfort. In order to further verify the accuracy of the algorithm, real-vehicle experiments have been carried out on the autonomous vehicle platform. Under different driving styles, the vehicle can avoid obstacles perfectly while ensuring the smoothness of the path. Simulation and real-vehicle experiment results show that the proposed algorithm can provide an excellent solution for autonomous vehicles for lane changing and obstacle avoidance. |
abstractGer |
In order to meet the requirements of vehicle automatic obstacle avoidance, a lane change trajectory planning method is proposed to meet the requirements of safety, comfort, and lane change efficiency. Firstly, the potential collision points that may exist are analyzed using information about surrounding vehicle movement and the road. Then, the safe lane change range for vehicles is obtained. Secondly, the control points of the fifth order Bézier curve are constrained to generate a series of path clusters in the optimal range. At the same time, the driver’s style and reaction time are taken into account in the risk assessment stage of the route using the improved artificial potential field method. Finally, the optimal path is selected by comprehensively considering lane-changing efficiency and comfort. In order to further verify the accuracy of the algorithm, real-vehicle experiments have been carried out on the autonomous vehicle platform. Under different driving styles, the vehicle can avoid obstacles perfectly while ensuring the smoothness of the path. Simulation and real-vehicle experiment results show that the proposed algorithm can provide an excellent solution for autonomous vehicles for lane changing and obstacle avoidance. |
abstract_unstemmed |
In order to meet the requirements of vehicle automatic obstacle avoidance, a lane change trajectory planning method is proposed to meet the requirements of safety, comfort, and lane change efficiency. Firstly, the potential collision points that may exist are analyzed using information about surrounding vehicle movement and the road. Then, the safe lane change range for vehicles is obtained. Secondly, the control points of the fifth order Bézier curve are constrained to generate a series of path clusters in the optimal range. At the same time, the driver’s style and reaction time are taken into account in the risk assessment stage of the route using the improved artificial potential field method. Finally, the optimal path is selected by comprehensively considering lane-changing efficiency and comfort. In order to further verify the accuracy of the algorithm, real-vehicle experiments have been carried out on the autonomous vehicle platform. Under different driving styles, the vehicle can avoid obstacles perfectly while ensuring the smoothness of the path. Simulation and real-vehicle experiment results show that the proposed algorithm can provide an excellent solution for autonomous vehicles for lane changing and obstacle avoidance. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
12, p 234 |
title_short |
A Path Planning Method for Autonomous Vehicles Based on Risk Assessment |
url |
https://doi.org/10.3390/wevj13120234 https://doaj.org/article/022b022a05814d3799b4a7d7c6920a8a https://www.mdpi.com/2032-6653/13/12/234 https://doaj.org/toc/2032-6653 |
remote_bool |
true |
author2 |
Cong Li Yipeng Zhou |
author2Str |
Cong Li Yipeng Zhou |
ppnlink |
1025566866 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/wevj13120234 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T14:42:52.219Z |
_version_ |
1803569355524407296 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ082952272</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414145503.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/wevj13120234</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ082952272</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ022b022a05814d3799b4a7d7c6920a8a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1001-1280</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wei Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Path Planning Method for Autonomous Vehicles Based on Risk Assessment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In order to meet the requirements of vehicle automatic obstacle avoidance, a lane change trajectory planning method is proposed to meet the requirements of safety, comfort, and lane change efficiency. Firstly, the potential collision points that may exist are analyzed using information about surrounding vehicle movement and the road. Then, the safe lane change range for vehicles is obtained. Secondly, the control points of the fifth order Bézier curve are constrained to generate a series of path clusters in the optimal range. At the same time, the driver’s style and reaction time are taken into account in the risk assessment stage of the route using the improved artificial potential field method. Finally, the optimal path is selected by comprehensively considering lane-changing efficiency and comfort. In order to further verify the accuracy of the algorithm, real-vehicle experiments have been carried out on the autonomous vehicle platform. Under different driving styles, the vehicle can avoid obstacles perfectly while ensuring the smoothness of the path. Simulation and real-vehicle experiment results show that the proposed algorithm can provide an excellent solution for autonomous vehicles for lane changing and obstacle avoidance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">autonomous vehicles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">obstacle avoidance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">path planning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">risk assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">potential collision points</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Transportation engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cong Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yipeng Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">World Electric Vehicle Journal</subfield><subfield code="d">MDPI AG, 2018</subfield><subfield code="g">13(2022), 12, p 234</subfield><subfield code="w">(DE-627)1025566866</subfield><subfield code="x">20326653</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:12, p 234</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/wevj13120234</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/022b022a05814d3799b4a7d7c6920a8a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2032-6653/13/12/234</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2032-6653</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2022</subfield><subfield code="e">12, p 234</subfield></datafield></record></collection>
|
score |
7.4018173 |