Factors Contributing to Fatality and Injury Outcomes of Maritime Accidents: A Comparative Study of Two Accident-Prone Areas
Shipping, as an important part of the global supply chain, has always been quite sensitive to maritime accidents. Fatality and injury are important metrics indicating an accident’s severity. Understanding the driving factors of fatality and injury outcomes of maritime accidents can help to improve s...
Ausführliche Beschreibung
Autor*in: |
Yang Zhang [verfasserIn] Yujia Zhai [verfasserIn] Jihong Chen [verfasserIn] Qingjun Xu [verfasserIn] Shanshan Fu [verfasserIn] Huizhen Wang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
zero-inflated negative binomial (ZINB) |
---|
Übergeordnetes Werk: |
In: Journal of Marine Science and Engineering - MDPI AG, 2014, 10(2022), 12, p 1945 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 ; number:12, p 1945 |
Links: |
---|
DOI / URN: |
10.3390/jmse10121945 |
---|
Katalog-ID: |
DOAJ08313011X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ08313011X | ||
003 | DE-627 | ||
005 | 20240414150839.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/jmse10121945 |2 doi | |
035 | |a (DE-627)DOAJ08313011X | ||
035 | |a (DE-599)DOAJc05ce5a67dd54f43aefe78e9f283c318 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a VM1-989 | |
050 | 0 | |a GC1-1581 | |
100 | 0 | |a Yang Zhang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Factors Contributing to Fatality and Injury Outcomes of Maritime Accidents: A Comparative Study of Two Accident-Prone Areas |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Shipping, as an important part of the global supply chain, has always been quite sensitive to maritime accidents. Fatality and injury are important metrics indicating an accident’s severity. Understanding the driving factors of fatality and injury outcomes of maritime accidents can help to improve supply chain security. Based on maritime accident data obtained from the Lloyd’s List Intelligence, this paper identifies accident-prone sea areas through kernel density estimation (KDE) and selects two of the areas to conduct a comparative study on factors contributing to fatality and injury outcomes of maritime accidents through zero-inflated negative binomial (ZINB) and elastic analysis. The results show that collision and ship age significantly impact the number of fatalities and injuries. Specifically, collision and ship age have greater impacts on fatality and injury outcomes of accidents that occurred in the English Channel and North Sea. Whether the accident occurs in ports and whether the accident causes a total loss have more significant impacts on the fatality and injury outcomes of accidents in the Black Sea and the eastern Mediterranean Sea. The research results can potentially support the reduction of fatalities and injuries in maritime accident and help to manage maritime risk. | ||
650 | 4 | |a maritime accident | |
650 | 4 | |a zero-inflated negative binomial (ZINB) | |
650 | 4 | |a kernel density estimation (KDE) | |
650 | 4 | |a fatalities and injuries | |
653 | 0 | |a Naval architecture. Shipbuilding. Marine engineering | |
653 | 0 | |a Oceanography | |
700 | 0 | |a Yujia Zhai |e verfasserin |4 aut | |
700 | 0 | |a Jihong Chen |e verfasserin |4 aut | |
700 | 0 | |a Qingjun Xu |e verfasserin |4 aut | |
700 | 0 | |a Shanshan Fu |e verfasserin |4 aut | |
700 | 0 | |a Huizhen Wang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Marine Science and Engineering |d MDPI AG, 2014 |g 10(2022), 12, p 1945 |w (DE-627)771274181 |w (DE-600)2738390-8 |x 20771312 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |g number:12, p 1945 |
856 | 4 | 0 | |u https://doi.org/10.3390/jmse10121945 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/c05ce5a67dd54f43aefe78e9f283c318 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2077-1312/10/12/1945 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2077-1312 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |e 12, p 1945 |
author_variant |
y z yz y z yz j c jc q x qx s f sf h w hw |
---|---|
matchkey_str |
article:20771312:2022----::atrcnrbtntftltadnuyucmsfaiiecietaoprtvs |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
VM |
publishDate |
2022 |
allfields |
10.3390/jmse10121945 doi (DE-627)DOAJ08313011X (DE-599)DOAJc05ce5a67dd54f43aefe78e9f283c318 DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Yang Zhang verfasserin aut Factors Contributing to Fatality and Injury Outcomes of Maritime Accidents: A Comparative Study of Two Accident-Prone Areas 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Shipping, as an important part of the global supply chain, has always been quite sensitive to maritime accidents. Fatality and injury are important metrics indicating an accident’s severity. Understanding the driving factors of fatality and injury outcomes of maritime accidents can help to improve supply chain security. Based on maritime accident data obtained from the Lloyd’s List Intelligence, this paper identifies accident-prone sea areas through kernel density estimation (KDE) and selects two of the areas to conduct a comparative study on factors contributing to fatality and injury outcomes of maritime accidents through zero-inflated negative binomial (ZINB) and elastic analysis. The results show that collision and ship age significantly impact the number of fatalities and injuries. Specifically, collision and ship age have greater impacts on fatality and injury outcomes of accidents that occurred in the English Channel and North Sea. Whether the accident occurs in ports and whether the accident causes a total loss have more significant impacts on the fatality and injury outcomes of accidents in the Black Sea and the eastern Mediterranean Sea. The research results can potentially support the reduction of fatalities and injuries in maritime accident and help to manage maritime risk. maritime accident zero-inflated negative binomial (ZINB) kernel density estimation (KDE) fatalities and injuries Naval architecture. Shipbuilding. Marine engineering Oceanography Yujia Zhai verfasserin aut Jihong Chen verfasserin aut Qingjun Xu verfasserin aut Shanshan Fu verfasserin aut Huizhen Wang verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 10(2022), 12, p 1945 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:10 year:2022 number:12, p 1945 https://doi.org/10.3390/jmse10121945 kostenfrei https://doaj.org/article/c05ce5a67dd54f43aefe78e9f283c318 kostenfrei https://www.mdpi.com/2077-1312/10/12/1945 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 12, p 1945 |
spelling |
10.3390/jmse10121945 doi (DE-627)DOAJ08313011X (DE-599)DOAJc05ce5a67dd54f43aefe78e9f283c318 DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Yang Zhang verfasserin aut Factors Contributing to Fatality and Injury Outcomes of Maritime Accidents: A Comparative Study of Two Accident-Prone Areas 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Shipping, as an important part of the global supply chain, has always been quite sensitive to maritime accidents. Fatality and injury are important metrics indicating an accident’s severity. Understanding the driving factors of fatality and injury outcomes of maritime accidents can help to improve supply chain security. Based on maritime accident data obtained from the Lloyd’s List Intelligence, this paper identifies accident-prone sea areas through kernel density estimation (KDE) and selects two of the areas to conduct a comparative study on factors contributing to fatality and injury outcomes of maritime accidents through zero-inflated negative binomial (ZINB) and elastic analysis. The results show that collision and ship age significantly impact the number of fatalities and injuries. Specifically, collision and ship age have greater impacts on fatality and injury outcomes of accidents that occurred in the English Channel and North Sea. Whether the accident occurs in ports and whether the accident causes a total loss have more significant impacts on the fatality and injury outcomes of accidents in the Black Sea and the eastern Mediterranean Sea. The research results can potentially support the reduction of fatalities and injuries in maritime accident and help to manage maritime risk. maritime accident zero-inflated negative binomial (ZINB) kernel density estimation (KDE) fatalities and injuries Naval architecture. Shipbuilding. Marine engineering Oceanography Yujia Zhai verfasserin aut Jihong Chen verfasserin aut Qingjun Xu verfasserin aut Shanshan Fu verfasserin aut Huizhen Wang verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 10(2022), 12, p 1945 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:10 year:2022 number:12, p 1945 https://doi.org/10.3390/jmse10121945 kostenfrei https://doaj.org/article/c05ce5a67dd54f43aefe78e9f283c318 kostenfrei https://www.mdpi.com/2077-1312/10/12/1945 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 12, p 1945 |
allfields_unstemmed |
10.3390/jmse10121945 doi (DE-627)DOAJ08313011X (DE-599)DOAJc05ce5a67dd54f43aefe78e9f283c318 DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Yang Zhang verfasserin aut Factors Contributing to Fatality and Injury Outcomes of Maritime Accidents: A Comparative Study of Two Accident-Prone Areas 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Shipping, as an important part of the global supply chain, has always been quite sensitive to maritime accidents. Fatality and injury are important metrics indicating an accident’s severity. Understanding the driving factors of fatality and injury outcomes of maritime accidents can help to improve supply chain security. Based on maritime accident data obtained from the Lloyd’s List Intelligence, this paper identifies accident-prone sea areas through kernel density estimation (KDE) and selects two of the areas to conduct a comparative study on factors contributing to fatality and injury outcomes of maritime accidents through zero-inflated negative binomial (ZINB) and elastic analysis. The results show that collision and ship age significantly impact the number of fatalities and injuries. Specifically, collision and ship age have greater impacts on fatality and injury outcomes of accidents that occurred in the English Channel and North Sea. Whether the accident occurs in ports and whether the accident causes a total loss have more significant impacts on the fatality and injury outcomes of accidents in the Black Sea and the eastern Mediterranean Sea. The research results can potentially support the reduction of fatalities and injuries in maritime accident and help to manage maritime risk. maritime accident zero-inflated negative binomial (ZINB) kernel density estimation (KDE) fatalities and injuries Naval architecture. Shipbuilding. Marine engineering Oceanography Yujia Zhai verfasserin aut Jihong Chen verfasserin aut Qingjun Xu verfasserin aut Shanshan Fu verfasserin aut Huizhen Wang verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 10(2022), 12, p 1945 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:10 year:2022 number:12, p 1945 https://doi.org/10.3390/jmse10121945 kostenfrei https://doaj.org/article/c05ce5a67dd54f43aefe78e9f283c318 kostenfrei https://www.mdpi.com/2077-1312/10/12/1945 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 12, p 1945 |
allfieldsGer |
10.3390/jmse10121945 doi (DE-627)DOAJ08313011X (DE-599)DOAJc05ce5a67dd54f43aefe78e9f283c318 DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Yang Zhang verfasserin aut Factors Contributing to Fatality and Injury Outcomes of Maritime Accidents: A Comparative Study of Two Accident-Prone Areas 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Shipping, as an important part of the global supply chain, has always been quite sensitive to maritime accidents. Fatality and injury are important metrics indicating an accident’s severity. Understanding the driving factors of fatality and injury outcomes of maritime accidents can help to improve supply chain security. Based on maritime accident data obtained from the Lloyd’s List Intelligence, this paper identifies accident-prone sea areas through kernel density estimation (KDE) and selects two of the areas to conduct a comparative study on factors contributing to fatality and injury outcomes of maritime accidents through zero-inflated negative binomial (ZINB) and elastic analysis. The results show that collision and ship age significantly impact the number of fatalities and injuries. Specifically, collision and ship age have greater impacts on fatality and injury outcomes of accidents that occurred in the English Channel and North Sea. Whether the accident occurs in ports and whether the accident causes a total loss have more significant impacts on the fatality and injury outcomes of accidents in the Black Sea and the eastern Mediterranean Sea. The research results can potentially support the reduction of fatalities and injuries in maritime accident and help to manage maritime risk. maritime accident zero-inflated negative binomial (ZINB) kernel density estimation (KDE) fatalities and injuries Naval architecture. Shipbuilding. Marine engineering Oceanography Yujia Zhai verfasserin aut Jihong Chen verfasserin aut Qingjun Xu verfasserin aut Shanshan Fu verfasserin aut Huizhen Wang verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 10(2022), 12, p 1945 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:10 year:2022 number:12, p 1945 https://doi.org/10.3390/jmse10121945 kostenfrei https://doaj.org/article/c05ce5a67dd54f43aefe78e9f283c318 kostenfrei https://www.mdpi.com/2077-1312/10/12/1945 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 12, p 1945 |
allfieldsSound |
10.3390/jmse10121945 doi (DE-627)DOAJ08313011X (DE-599)DOAJc05ce5a67dd54f43aefe78e9f283c318 DE-627 ger DE-627 rakwb eng VM1-989 GC1-1581 Yang Zhang verfasserin aut Factors Contributing to Fatality and Injury Outcomes of Maritime Accidents: A Comparative Study of Two Accident-Prone Areas 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Shipping, as an important part of the global supply chain, has always been quite sensitive to maritime accidents. Fatality and injury are important metrics indicating an accident’s severity. Understanding the driving factors of fatality and injury outcomes of maritime accidents can help to improve supply chain security. Based on maritime accident data obtained from the Lloyd’s List Intelligence, this paper identifies accident-prone sea areas through kernel density estimation (KDE) and selects two of the areas to conduct a comparative study on factors contributing to fatality and injury outcomes of maritime accidents through zero-inflated negative binomial (ZINB) and elastic analysis. The results show that collision and ship age significantly impact the number of fatalities and injuries. Specifically, collision and ship age have greater impacts on fatality and injury outcomes of accidents that occurred in the English Channel and North Sea. Whether the accident occurs in ports and whether the accident causes a total loss have more significant impacts on the fatality and injury outcomes of accidents in the Black Sea and the eastern Mediterranean Sea. The research results can potentially support the reduction of fatalities and injuries in maritime accident and help to manage maritime risk. maritime accident zero-inflated negative binomial (ZINB) kernel density estimation (KDE) fatalities and injuries Naval architecture. Shipbuilding. Marine engineering Oceanography Yujia Zhai verfasserin aut Jihong Chen verfasserin aut Qingjun Xu verfasserin aut Shanshan Fu verfasserin aut Huizhen Wang verfasserin aut In Journal of Marine Science and Engineering MDPI AG, 2014 10(2022), 12, p 1945 (DE-627)771274181 (DE-600)2738390-8 20771312 nnns volume:10 year:2022 number:12, p 1945 https://doi.org/10.3390/jmse10121945 kostenfrei https://doaj.org/article/c05ce5a67dd54f43aefe78e9f283c318 kostenfrei https://www.mdpi.com/2077-1312/10/12/1945 kostenfrei https://doaj.org/toc/2077-1312 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 12, p 1945 |
language |
English |
source |
In Journal of Marine Science and Engineering 10(2022), 12, p 1945 volume:10 year:2022 number:12, p 1945 |
sourceStr |
In Journal of Marine Science and Engineering 10(2022), 12, p 1945 volume:10 year:2022 number:12, p 1945 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
maritime accident zero-inflated negative binomial (ZINB) kernel density estimation (KDE) fatalities and injuries Naval architecture. Shipbuilding. Marine engineering Oceanography |
isfreeaccess_bool |
true |
container_title |
Journal of Marine Science and Engineering |
authorswithroles_txt_mv |
Yang Zhang @@aut@@ Yujia Zhai @@aut@@ Jihong Chen @@aut@@ Qingjun Xu @@aut@@ Shanshan Fu @@aut@@ Huizhen Wang @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
771274181 |
id |
DOAJ08313011X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ08313011X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414150839.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/jmse10121945</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ08313011X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc05ce5a67dd54f43aefe78e9f283c318</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">VM1-989</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GC1-1581</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yang Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Factors Contributing to Fatality and Injury Outcomes of Maritime Accidents: A Comparative Study of Two Accident-Prone Areas</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Shipping, as an important part of the global supply chain, has always been quite sensitive to maritime accidents. Fatality and injury are important metrics indicating an accident’s severity. Understanding the driving factors of fatality and injury outcomes of maritime accidents can help to improve supply chain security. Based on maritime accident data obtained from the Lloyd’s List Intelligence, this paper identifies accident-prone sea areas through kernel density estimation (KDE) and selects two of the areas to conduct a comparative study on factors contributing to fatality and injury outcomes of maritime accidents through zero-inflated negative binomial (ZINB) and elastic analysis. The results show that collision and ship age significantly impact the number of fatalities and injuries. Specifically, collision and ship age have greater impacts on fatality and injury outcomes of accidents that occurred in the English Channel and North Sea. Whether the accident occurs in ports and whether the accident causes a total loss have more significant impacts on the fatality and injury outcomes of accidents in the Black Sea and the eastern Mediterranean Sea. The research results can potentially support the reduction of fatalities and injuries in maritime accident and help to manage maritime risk.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">maritime accident</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">zero-inflated negative binomial (ZINB)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">kernel density estimation (KDE)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fatalities and injuries</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Naval architecture. Shipbuilding. Marine engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Oceanography</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yujia Zhai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jihong Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qingjun Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shanshan Fu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huizhen Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Marine Science and Engineering</subfield><subfield code="d">MDPI AG, 2014</subfield><subfield code="g">10(2022), 12, p 1945</subfield><subfield code="w">(DE-627)771274181</subfield><subfield code="w">(DE-600)2738390-8</subfield><subfield code="x">20771312</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:12, p 1945</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/jmse10121945</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c05ce5a67dd54f43aefe78e9f283c318</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2077-1312/10/12/1945</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2077-1312</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">12, p 1945</subfield></datafield></record></collection>
|
callnumber-first |
V - Naval Science |
author |
Yang Zhang |
spellingShingle |
Yang Zhang misc VM1-989 misc GC1-1581 misc maritime accident misc zero-inflated negative binomial (ZINB) misc kernel density estimation (KDE) misc fatalities and injuries misc Naval architecture. Shipbuilding. Marine engineering misc Oceanography Factors Contributing to Fatality and Injury Outcomes of Maritime Accidents: A Comparative Study of Two Accident-Prone Areas |
authorStr |
Yang Zhang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)771274181 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
VM1-989 |
illustrated |
Not Illustrated |
issn |
20771312 |
topic_title |
VM1-989 GC1-1581 Factors Contributing to Fatality and Injury Outcomes of Maritime Accidents: A Comparative Study of Two Accident-Prone Areas maritime accident zero-inflated negative binomial (ZINB) kernel density estimation (KDE) fatalities and injuries |
topic |
misc VM1-989 misc GC1-1581 misc maritime accident misc zero-inflated negative binomial (ZINB) misc kernel density estimation (KDE) misc fatalities and injuries misc Naval architecture. Shipbuilding. Marine engineering misc Oceanography |
topic_unstemmed |
misc VM1-989 misc GC1-1581 misc maritime accident misc zero-inflated negative binomial (ZINB) misc kernel density estimation (KDE) misc fatalities and injuries misc Naval architecture. Shipbuilding. Marine engineering misc Oceanography |
topic_browse |
misc VM1-989 misc GC1-1581 misc maritime accident misc zero-inflated negative binomial (ZINB) misc kernel density estimation (KDE) misc fatalities and injuries misc Naval architecture. Shipbuilding. Marine engineering misc Oceanography |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Marine Science and Engineering |
hierarchy_parent_id |
771274181 |
hierarchy_top_title |
Journal of Marine Science and Engineering |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)771274181 (DE-600)2738390-8 |
title |
Factors Contributing to Fatality and Injury Outcomes of Maritime Accidents: A Comparative Study of Two Accident-Prone Areas |
ctrlnum |
(DE-627)DOAJ08313011X (DE-599)DOAJc05ce5a67dd54f43aefe78e9f283c318 |
title_full |
Factors Contributing to Fatality and Injury Outcomes of Maritime Accidents: A Comparative Study of Two Accident-Prone Areas |
author_sort |
Yang Zhang |
journal |
Journal of Marine Science and Engineering |
journalStr |
Journal of Marine Science and Engineering |
callnumber-first-code |
V |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Yang Zhang Yujia Zhai Jihong Chen Qingjun Xu Shanshan Fu Huizhen Wang |
container_volume |
10 |
class |
VM1-989 GC1-1581 |
format_se |
Elektronische Aufsätze |
author-letter |
Yang Zhang |
doi_str_mv |
10.3390/jmse10121945 |
author2-role |
verfasserin |
title_sort |
factors contributing to fatality and injury outcomes of maritime accidents: a comparative study of two accident-prone areas |
callnumber |
VM1-989 |
title_auth |
Factors Contributing to Fatality and Injury Outcomes of Maritime Accidents: A Comparative Study of Two Accident-Prone Areas |
abstract |
Shipping, as an important part of the global supply chain, has always been quite sensitive to maritime accidents. Fatality and injury are important metrics indicating an accident’s severity. Understanding the driving factors of fatality and injury outcomes of maritime accidents can help to improve supply chain security. Based on maritime accident data obtained from the Lloyd’s List Intelligence, this paper identifies accident-prone sea areas through kernel density estimation (KDE) and selects two of the areas to conduct a comparative study on factors contributing to fatality and injury outcomes of maritime accidents through zero-inflated negative binomial (ZINB) and elastic analysis. The results show that collision and ship age significantly impact the number of fatalities and injuries. Specifically, collision and ship age have greater impacts on fatality and injury outcomes of accidents that occurred in the English Channel and North Sea. Whether the accident occurs in ports and whether the accident causes a total loss have more significant impacts on the fatality and injury outcomes of accidents in the Black Sea and the eastern Mediterranean Sea. The research results can potentially support the reduction of fatalities and injuries in maritime accident and help to manage maritime risk. |
abstractGer |
Shipping, as an important part of the global supply chain, has always been quite sensitive to maritime accidents. Fatality and injury are important metrics indicating an accident’s severity. Understanding the driving factors of fatality and injury outcomes of maritime accidents can help to improve supply chain security. Based on maritime accident data obtained from the Lloyd’s List Intelligence, this paper identifies accident-prone sea areas through kernel density estimation (KDE) and selects two of the areas to conduct a comparative study on factors contributing to fatality and injury outcomes of maritime accidents through zero-inflated negative binomial (ZINB) and elastic analysis. The results show that collision and ship age significantly impact the number of fatalities and injuries. Specifically, collision and ship age have greater impacts on fatality and injury outcomes of accidents that occurred in the English Channel and North Sea. Whether the accident occurs in ports and whether the accident causes a total loss have more significant impacts on the fatality and injury outcomes of accidents in the Black Sea and the eastern Mediterranean Sea. The research results can potentially support the reduction of fatalities and injuries in maritime accident and help to manage maritime risk. |
abstract_unstemmed |
Shipping, as an important part of the global supply chain, has always been quite sensitive to maritime accidents. Fatality and injury are important metrics indicating an accident’s severity. Understanding the driving factors of fatality and injury outcomes of maritime accidents can help to improve supply chain security. Based on maritime accident data obtained from the Lloyd’s List Intelligence, this paper identifies accident-prone sea areas through kernel density estimation (KDE) and selects two of the areas to conduct a comparative study on factors contributing to fatality and injury outcomes of maritime accidents through zero-inflated negative binomial (ZINB) and elastic analysis. The results show that collision and ship age significantly impact the number of fatalities and injuries. Specifically, collision and ship age have greater impacts on fatality and injury outcomes of accidents that occurred in the English Channel and North Sea. Whether the accident occurs in ports and whether the accident causes a total loss have more significant impacts on the fatality and injury outcomes of accidents in the Black Sea and the eastern Mediterranean Sea. The research results can potentially support the reduction of fatalities and injuries in maritime accident and help to manage maritime risk. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
12, p 1945 |
title_short |
Factors Contributing to Fatality and Injury Outcomes of Maritime Accidents: A Comparative Study of Two Accident-Prone Areas |
url |
https://doi.org/10.3390/jmse10121945 https://doaj.org/article/c05ce5a67dd54f43aefe78e9f283c318 https://www.mdpi.com/2077-1312/10/12/1945 https://doaj.org/toc/2077-1312 |
remote_bool |
true |
author2 |
Yujia Zhai Jihong Chen Qingjun Xu Shanshan Fu Huizhen Wang |
author2Str |
Yujia Zhai Jihong Chen Qingjun Xu Shanshan Fu Huizhen Wang |
ppnlink |
771274181 |
callnumber-subject |
VM - Naval Architecture, Shipbuilding, Marine Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/jmse10121945 |
callnumber-a |
VM1-989 |
up_date |
2024-07-03T15:42:08.237Z |
_version_ |
1803573084281634816 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ08313011X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414150839.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/jmse10121945</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ08313011X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJc05ce5a67dd54f43aefe78e9f283c318</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">VM1-989</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GC1-1581</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yang Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Factors Contributing to Fatality and Injury Outcomes of Maritime Accidents: A Comparative Study of Two Accident-Prone Areas</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Shipping, as an important part of the global supply chain, has always been quite sensitive to maritime accidents. Fatality and injury are important metrics indicating an accident’s severity. Understanding the driving factors of fatality and injury outcomes of maritime accidents can help to improve supply chain security. Based on maritime accident data obtained from the Lloyd’s List Intelligence, this paper identifies accident-prone sea areas through kernel density estimation (KDE) and selects two of the areas to conduct a comparative study on factors contributing to fatality and injury outcomes of maritime accidents through zero-inflated negative binomial (ZINB) and elastic analysis. The results show that collision and ship age significantly impact the number of fatalities and injuries. Specifically, collision and ship age have greater impacts on fatality and injury outcomes of accidents that occurred in the English Channel and North Sea. Whether the accident occurs in ports and whether the accident causes a total loss have more significant impacts on the fatality and injury outcomes of accidents in the Black Sea and the eastern Mediterranean Sea. The research results can potentially support the reduction of fatalities and injuries in maritime accident and help to manage maritime risk.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">maritime accident</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">zero-inflated negative binomial (ZINB)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">kernel density estimation (KDE)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fatalities and injuries</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Naval architecture. Shipbuilding. Marine engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Oceanography</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yujia Zhai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jihong Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qingjun Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shanshan Fu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Huizhen Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Marine Science and Engineering</subfield><subfield code="d">MDPI AG, 2014</subfield><subfield code="g">10(2022), 12, p 1945</subfield><subfield code="w">(DE-627)771274181</subfield><subfield code="w">(DE-600)2738390-8</subfield><subfield code="x">20771312</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:12, p 1945</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/jmse10121945</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/c05ce5a67dd54f43aefe78e9f283c318</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2077-1312/10/12/1945</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2077-1312</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">12, p 1945</subfield></datafield></record></collection>
|
score |
7.400487 |