A Spintronic 2M/7T Computation-in-Memory Cell
Computing data-intensive applications on the von Neumann architecture lead to significant performance and energy overheads. The concept of computation in memory (CiM) addresses the bottleneck of von Neumann machines by reducing the data movement in the computing system. Emerging resistive non-volati...
Ausführliche Beschreibung
Autor*in: |
Atousa Jafari [verfasserIn] Christopher Münch [verfasserIn] Mehdi Tahoori [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
computation in memory within core array (CiM-A) computation in memory within periphery circuit (CiM-P) |
---|
Übergeordnetes Werk: |
In: Journal of Low Power Electronics and Applications - MDPI AG, 2011, 12(2022), 4, p 63 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2022 ; number:4, p 63 |
Links: |
---|
DOI / URN: |
10.3390/jlpea12040063 |
---|
Katalog-ID: |
DOAJ083132147 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ083132147 | ||
003 | DE-627 | ||
005 | 20240414150857.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/jlpea12040063 |2 doi | |
035 | |a (DE-627)DOAJ083132147 | ||
035 | |a (DE-599)DOAJ4cc8d9fdfa3c44d2b243547dc1684026 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK4001-4102 | |
100 | 0 | |a Atousa Jafari |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Spintronic 2M/7T Computation-in-Memory Cell |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Computing data-intensive applications on the von Neumann architecture lead to significant performance and energy overheads. The concept of computation in memory (CiM) addresses the bottleneck of von Neumann machines by reducing the data movement in the computing system. Emerging resistive non-volatile memory technologies, as well as volatile memories (SRAM and DRAM), can be used to realize architectures based on the CiM paradigm. In this paper, we propose a hybrid cell design to provide the opportunity for CiM by combining the magnetic tunnel junction (MTJ) and the conventional 6T-SRAM cell. The cell performs CiM operations based on stateful in-array computation, which has better scalability for multiple operands compared with stateless computation in the periphery. Various logic operations such as XOR, OR, and IMP can be performed with the proposed design. In addition, the proposed cell can also operate as a conventional memory cell to read and write volatile as well as non-volatile data. The obtained simulation results show that the proposed CiM-A design can increase the performance of regular memory architectures by reducing the delay by 8 times and the energy by 13 times for database query applications consisting of consecutive bitwise operations with minimum overhead. | ||
650 | 4 | |a computation in memory (CiM) | |
650 | 4 | |a computation in memory within core array (CiM-A) | |
650 | 4 | |a computation in memory within periphery circuit (CiM-P) | |
650 | 4 | |a static random access memory (SRAM) | |
650 | 4 | |a spin transfer torque magnetic RAM (STT-MRAM) | |
653 | 0 | |a Applications of electric power | |
700 | 0 | |a Christopher Münch |e verfasserin |4 aut | |
700 | 0 | |a Mehdi Tahoori |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Low Power Electronics and Applications |d MDPI AG, 2011 |g 12(2022), 4, p 63 |w (DE-627)718295641 |w (DE-600)2662567-2 |x 20799268 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2022 |g number:4, p 63 |
856 | 4 | 0 | |u https://doi.org/10.3390/jlpea12040063 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/4cc8d9fdfa3c44d2b243547dc1684026 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2079-9268/12/4/63 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2079-9268 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2022 |e 4, p 63 |
author_variant |
a j aj c m cm m t mt |
---|---|
matchkey_str |
article:20799268:2022----::sitoi27cmuain |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TK |
publishDate |
2022 |
allfields |
10.3390/jlpea12040063 doi (DE-627)DOAJ083132147 (DE-599)DOAJ4cc8d9fdfa3c44d2b243547dc1684026 DE-627 ger DE-627 rakwb eng TK4001-4102 Atousa Jafari verfasserin aut A Spintronic 2M/7T Computation-in-Memory Cell 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Computing data-intensive applications on the von Neumann architecture lead to significant performance and energy overheads. The concept of computation in memory (CiM) addresses the bottleneck of von Neumann machines by reducing the data movement in the computing system. Emerging resistive non-volatile memory technologies, as well as volatile memories (SRAM and DRAM), can be used to realize architectures based on the CiM paradigm. In this paper, we propose a hybrid cell design to provide the opportunity for CiM by combining the magnetic tunnel junction (MTJ) and the conventional 6T-SRAM cell. The cell performs CiM operations based on stateful in-array computation, which has better scalability for multiple operands compared with stateless computation in the periphery. Various logic operations such as XOR, OR, and IMP can be performed with the proposed design. In addition, the proposed cell can also operate as a conventional memory cell to read and write volatile as well as non-volatile data. The obtained simulation results show that the proposed CiM-A design can increase the performance of regular memory architectures by reducing the delay by 8 times and the energy by 13 times for database query applications consisting of consecutive bitwise operations with minimum overhead. computation in memory (CiM) computation in memory within core array (CiM-A) computation in memory within periphery circuit (CiM-P) static random access memory (SRAM) spin transfer torque magnetic RAM (STT-MRAM) Applications of electric power Christopher Münch verfasserin aut Mehdi Tahoori verfasserin aut In Journal of Low Power Electronics and Applications MDPI AG, 2011 12(2022), 4, p 63 (DE-627)718295641 (DE-600)2662567-2 20799268 nnns volume:12 year:2022 number:4, p 63 https://doi.org/10.3390/jlpea12040063 kostenfrei https://doaj.org/article/4cc8d9fdfa3c44d2b243547dc1684026 kostenfrei https://www.mdpi.com/2079-9268/12/4/63 kostenfrei https://doaj.org/toc/2079-9268 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 4, p 63 |
spelling |
10.3390/jlpea12040063 doi (DE-627)DOAJ083132147 (DE-599)DOAJ4cc8d9fdfa3c44d2b243547dc1684026 DE-627 ger DE-627 rakwb eng TK4001-4102 Atousa Jafari verfasserin aut A Spintronic 2M/7T Computation-in-Memory Cell 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Computing data-intensive applications on the von Neumann architecture lead to significant performance and energy overheads. The concept of computation in memory (CiM) addresses the bottleneck of von Neumann machines by reducing the data movement in the computing system. Emerging resistive non-volatile memory technologies, as well as volatile memories (SRAM and DRAM), can be used to realize architectures based on the CiM paradigm. In this paper, we propose a hybrid cell design to provide the opportunity for CiM by combining the magnetic tunnel junction (MTJ) and the conventional 6T-SRAM cell. The cell performs CiM operations based on stateful in-array computation, which has better scalability for multiple operands compared with stateless computation in the periphery. Various logic operations such as XOR, OR, and IMP can be performed with the proposed design. In addition, the proposed cell can also operate as a conventional memory cell to read and write volatile as well as non-volatile data. The obtained simulation results show that the proposed CiM-A design can increase the performance of regular memory architectures by reducing the delay by 8 times and the energy by 13 times for database query applications consisting of consecutive bitwise operations with minimum overhead. computation in memory (CiM) computation in memory within core array (CiM-A) computation in memory within periphery circuit (CiM-P) static random access memory (SRAM) spin transfer torque magnetic RAM (STT-MRAM) Applications of electric power Christopher Münch verfasserin aut Mehdi Tahoori verfasserin aut In Journal of Low Power Electronics and Applications MDPI AG, 2011 12(2022), 4, p 63 (DE-627)718295641 (DE-600)2662567-2 20799268 nnns volume:12 year:2022 number:4, p 63 https://doi.org/10.3390/jlpea12040063 kostenfrei https://doaj.org/article/4cc8d9fdfa3c44d2b243547dc1684026 kostenfrei https://www.mdpi.com/2079-9268/12/4/63 kostenfrei https://doaj.org/toc/2079-9268 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 4, p 63 |
allfields_unstemmed |
10.3390/jlpea12040063 doi (DE-627)DOAJ083132147 (DE-599)DOAJ4cc8d9fdfa3c44d2b243547dc1684026 DE-627 ger DE-627 rakwb eng TK4001-4102 Atousa Jafari verfasserin aut A Spintronic 2M/7T Computation-in-Memory Cell 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Computing data-intensive applications on the von Neumann architecture lead to significant performance and energy overheads. The concept of computation in memory (CiM) addresses the bottleneck of von Neumann machines by reducing the data movement in the computing system. Emerging resistive non-volatile memory technologies, as well as volatile memories (SRAM and DRAM), can be used to realize architectures based on the CiM paradigm. In this paper, we propose a hybrid cell design to provide the opportunity for CiM by combining the magnetic tunnel junction (MTJ) and the conventional 6T-SRAM cell. The cell performs CiM operations based on stateful in-array computation, which has better scalability for multiple operands compared with stateless computation in the periphery. Various logic operations such as XOR, OR, and IMP can be performed with the proposed design. In addition, the proposed cell can also operate as a conventional memory cell to read and write volatile as well as non-volatile data. The obtained simulation results show that the proposed CiM-A design can increase the performance of regular memory architectures by reducing the delay by 8 times and the energy by 13 times for database query applications consisting of consecutive bitwise operations with minimum overhead. computation in memory (CiM) computation in memory within core array (CiM-A) computation in memory within periphery circuit (CiM-P) static random access memory (SRAM) spin transfer torque magnetic RAM (STT-MRAM) Applications of electric power Christopher Münch verfasserin aut Mehdi Tahoori verfasserin aut In Journal of Low Power Electronics and Applications MDPI AG, 2011 12(2022), 4, p 63 (DE-627)718295641 (DE-600)2662567-2 20799268 nnns volume:12 year:2022 number:4, p 63 https://doi.org/10.3390/jlpea12040063 kostenfrei https://doaj.org/article/4cc8d9fdfa3c44d2b243547dc1684026 kostenfrei https://www.mdpi.com/2079-9268/12/4/63 kostenfrei https://doaj.org/toc/2079-9268 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 4, p 63 |
allfieldsGer |
10.3390/jlpea12040063 doi (DE-627)DOAJ083132147 (DE-599)DOAJ4cc8d9fdfa3c44d2b243547dc1684026 DE-627 ger DE-627 rakwb eng TK4001-4102 Atousa Jafari verfasserin aut A Spintronic 2M/7T Computation-in-Memory Cell 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Computing data-intensive applications on the von Neumann architecture lead to significant performance and energy overheads. The concept of computation in memory (CiM) addresses the bottleneck of von Neumann machines by reducing the data movement in the computing system. Emerging resistive non-volatile memory technologies, as well as volatile memories (SRAM and DRAM), can be used to realize architectures based on the CiM paradigm. In this paper, we propose a hybrid cell design to provide the opportunity for CiM by combining the magnetic tunnel junction (MTJ) and the conventional 6T-SRAM cell. The cell performs CiM operations based on stateful in-array computation, which has better scalability for multiple operands compared with stateless computation in the periphery. Various logic operations such as XOR, OR, and IMP can be performed with the proposed design. In addition, the proposed cell can also operate as a conventional memory cell to read and write volatile as well as non-volatile data. The obtained simulation results show that the proposed CiM-A design can increase the performance of regular memory architectures by reducing the delay by 8 times and the energy by 13 times for database query applications consisting of consecutive bitwise operations with minimum overhead. computation in memory (CiM) computation in memory within core array (CiM-A) computation in memory within periphery circuit (CiM-P) static random access memory (SRAM) spin transfer torque magnetic RAM (STT-MRAM) Applications of electric power Christopher Münch verfasserin aut Mehdi Tahoori verfasserin aut In Journal of Low Power Electronics and Applications MDPI AG, 2011 12(2022), 4, p 63 (DE-627)718295641 (DE-600)2662567-2 20799268 nnns volume:12 year:2022 number:4, p 63 https://doi.org/10.3390/jlpea12040063 kostenfrei https://doaj.org/article/4cc8d9fdfa3c44d2b243547dc1684026 kostenfrei https://www.mdpi.com/2079-9268/12/4/63 kostenfrei https://doaj.org/toc/2079-9268 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 4, p 63 |
allfieldsSound |
10.3390/jlpea12040063 doi (DE-627)DOAJ083132147 (DE-599)DOAJ4cc8d9fdfa3c44d2b243547dc1684026 DE-627 ger DE-627 rakwb eng TK4001-4102 Atousa Jafari verfasserin aut A Spintronic 2M/7T Computation-in-Memory Cell 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Computing data-intensive applications on the von Neumann architecture lead to significant performance and energy overheads. The concept of computation in memory (CiM) addresses the bottleneck of von Neumann machines by reducing the data movement in the computing system. Emerging resistive non-volatile memory technologies, as well as volatile memories (SRAM and DRAM), can be used to realize architectures based on the CiM paradigm. In this paper, we propose a hybrid cell design to provide the opportunity for CiM by combining the magnetic tunnel junction (MTJ) and the conventional 6T-SRAM cell. The cell performs CiM operations based on stateful in-array computation, which has better scalability for multiple operands compared with stateless computation in the periphery. Various logic operations such as XOR, OR, and IMP can be performed with the proposed design. In addition, the proposed cell can also operate as a conventional memory cell to read and write volatile as well as non-volatile data. The obtained simulation results show that the proposed CiM-A design can increase the performance of regular memory architectures by reducing the delay by 8 times and the energy by 13 times for database query applications consisting of consecutive bitwise operations with minimum overhead. computation in memory (CiM) computation in memory within core array (CiM-A) computation in memory within periphery circuit (CiM-P) static random access memory (SRAM) spin transfer torque magnetic RAM (STT-MRAM) Applications of electric power Christopher Münch verfasserin aut Mehdi Tahoori verfasserin aut In Journal of Low Power Electronics and Applications MDPI AG, 2011 12(2022), 4, p 63 (DE-627)718295641 (DE-600)2662567-2 20799268 nnns volume:12 year:2022 number:4, p 63 https://doi.org/10.3390/jlpea12040063 kostenfrei https://doaj.org/article/4cc8d9fdfa3c44d2b243547dc1684026 kostenfrei https://www.mdpi.com/2079-9268/12/4/63 kostenfrei https://doaj.org/toc/2079-9268 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 4, p 63 |
language |
English |
source |
In Journal of Low Power Electronics and Applications 12(2022), 4, p 63 volume:12 year:2022 number:4, p 63 |
sourceStr |
In Journal of Low Power Electronics and Applications 12(2022), 4, p 63 volume:12 year:2022 number:4, p 63 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
computation in memory (CiM) computation in memory within core array (CiM-A) computation in memory within periphery circuit (CiM-P) static random access memory (SRAM) spin transfer torque magnetic RAM (STT-MRAM) Applications of electric power |
isfreeaccess_bool |
true |
container_title |
Journal of Low Power Electronics and Applications |
authorswithroles_txt_mv |
Atousa Jafari @@aut@@ Christopher Münch @@aut@@ Mehdi Tahoori @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
718295641 |
id |
DOAJ083132147 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ083132147</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414150857.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/jlpea12040063</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ083132147</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4cc8d9fdfa3c44d2b243547dc1684026</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK4001-4102</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Atousa Jafari</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Spintronic 2M/7T Computation-in-Memory Cell</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Computing data-intensive applications on the von Neumann architecture lead to significant performance and energy overheads. The concept of computation in memory (CiM) addresses the bottleneck of von Neumann machines by reducing the data movement in the computing system. Emerging resistive non-volatile memory technologies, as well as volatile memories (SRAM and DRAM), can be used to realize architectures based on the CiM paradigm. In this paper, we propose a hybrid cell design to provide the opportunity for CiM by combining the magnetic tunnel junction (MTJ) and the conventional 6T-SRAM cell. The cell performs CiM operations based on stateful in-array computation, which has better scalability for multiple operands compared with stateless computation in the periphery. Various logic operations such as XOR, OR, and IMP can be performed with the proposed design. In addition, the proposed cell can also operate as a conventional memory cell to read and write volatile as well as non-volatile data. The obtained simulation results show that the proposed CiM-A design can increase the performance of regular memory architectures by reducing the delay by 8 times and the energy by 13 times for database query applications consisting of consecutive bitwise operations with minimum overhead.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computation in memory (CiM)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computation in memory within core array (CiM-A)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computation in memory within periphery circuit (CiM-P)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">static random access memory (SRAM)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spin transfer torque magnetic RAM (STT-MRAM)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Applications of electric power</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Christopher Münch</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mehdi Tahoori</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Low Power Electronics and Applications</subfield><subfield code="d">MDPI AG, 2011</subfield><subfield code="g">12(2022), 4, p 63</subfield><subfield code="w">(DE-627)718295641</subfield><subfield code="w">(DE-600)2662567-2</subfield><subfield code="x">20799268</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4, p 63</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/jlpea12040063</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4cc8d9fdfa3c44d2b243547dc1684026</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-9268/12/4/63</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-9268</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">4, p 63</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Atousa Jafari |
spellingShingle |
Atousa Jafari misc TK4001-4102 misc computation in memory (CiM) misc computation in memory within core array (CiM-A) misc computation in memory within periphery circuit (CiM-P) misc static random access memory (SRAM) misc spin transfer torque magnetic RAM (STT-MRAM) misc Applications of electric power A Spintronic 2M/7T Computation-in-Memory Cell |
authorStr |
Atousa Jafari |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718295641 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK4001-4102 |
illustrated |
Not Illustrated |
issn |
20799268 |
topic_title |
TK4001-4102 A Spintronic 2M/7T Computation-in-Memory Cell computation in memory (CiM) computation in memory within core array (CiM-A) computation in memory within periphery circuit (CiM-P) static random access memory (SRAM) spin transfer torque magnetic RAM (STT-MRAM) |
topic |
misc TK4001-4102 misc computation in memory (CiM) misc computation in memory within core array (CiM-A) misc computation in memory within periphery circuit (CiM-P) misc static random access memory (SRAM) misc spin transfer torque magnetic RAM (STT-MRAM) misc Applications of electric power |
topic_unstemmed |
misc TK4001-4102 misc computation in memory (CiM) misc computation in memory within core array (CiM-A) misc computation in memory within periphery circuit (CiM-P) misc static random access memory (SRAM) misc spin transfer torque magnetic RAM (STT-MRAM) misc Applications of electric power |
topic_browse |
misc TK4001-4102 misc computation in memory (CiM) misc computation in memory within core array (CiM-A) misc computation in memory within periphery circuit (CiM-P) misc static random access memory (SRAM) misc spin transfer torque magnetic RAM (STT-MRAM) misc Applications of electric power |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Low Power Electronics and Applications |
hierarchy_parent_id |
718295641 |
hierarchy_top_title |
Journal of Low Power Electronics and Applications |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718295641 (DE-600)2662567-2 |
title |
A Spintronic 2M/7T Computation-in-Memory Cell |
ctrlnum |
(DE-627)DOAJ083132147 (DE-599)DOAJ4cc8d9fdfa3c44d2b243547dc1684026 |
title_full |
A Spintronic 2M/7T Computation-in-Memory Cell |
author_sort |
Atousa Jafari |
journal |
Journal of Low Power Electronics and Applications |
journalStr |
Journal of Low Power Electronics and Applications |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Atousa Jafari Christopher Münch Mehdi Tahoori |
container_volume |
12 |
class |
TK4001-4102 |
format_se |
Elektronische Aufsätze |
author-letter |
Atousa Jafari |
doi_str_mv |
10.3390/jlpea12040063 |
author2-role |
verfasserin |
title_sort |
spintronic 2m/7t computation-in-memory cell |
callnumber |
TK4001-4102 |
title_auth |
A Spintronic 2M/7T Computation-in-Memory Cell |
abstract |
Computing data-intensive applications on the von Neumann architecture lead to significant performance and energy overheads. The concept of computation in memory (CiM) addresses the bottleneck of von Neumann machines by reducing the data movement in the computing system. Emerging resistive non-volatile memory technologies, as well as volatile memories (SRAM and DRAM), can be used to realize architectures based on the CiM paradigm. In this paper, we propose a hybrid cell design to provide the opportunity for CiM by combining the magnetic tunnel junction (MTJ) and the conventional 6T-SRAM cell. The cell performs CiM operations based on stateful in-array computation, which has better scalability for multiple operands compared with stateless computation in the periphery. Various logic operations such as XOR, OR, and IMP can be performed with the proposed design. In addition, the proposed cell can also operate as a conventional memory cell to read and write volatile as well as non-volatile data. The obtained simulation results show that the proposed CiM-A design can increase the performance of regular memory architectures by reducing the delay by 8 times and the energy by 13 times for database query applications consisting of consecutive bitwise operations with minimum overhead. |
abstractGer |
Computing data-intensive applications on the von Neumann architecture lead to significant performance and energy overheads. The concept of computation in memory (CiM) addresses the bottleneck of von Neumann machines by reducing the data movement in the computing system. Emerging resistive non-volatile memory technologies, as well as volatile memories (SRAM and DRAM), can be used to realize architectures based on the CiM paradigm. In this paper, we propose a hybrid cell design to provide the opportunity for CiM by combining the magnetic tunnel junction (MTJ) and the conventional 6T-SRAM cell. The cell performs CiM operations based on stateful in-array computation, which has better scalability for multiple operands compared with stateless computation in the periphery. Various logic operations such as XOR, OR, and IMP can be performed with the proposed design. In addition, the proposed cell can also operate as a conventional memory cell to read and write volatile as well as non-volatile data. The obtained simulation results show that the proposed CiM-A design can increase the performance of regular memory architectures by reducing the delay by 8 times and the energy by 13 times for database query applications consisting of consecutive bitwise operations with minimum overhead. |
abstract_unstemmed |
Computing data-intensive applications on the von Neumann architecture lead to significant performance and energy overheads. The concept of computation in memory (CiM) addresses the bottleneck of von Neumann machines by reducing the data movement in the computing system. Emerging resistive non-volatile memory technologies, as well as volatile memories (SRAM and DRAM), can be used to realize architectures based on the CiM paradigm. In this paper, we propose a hybrid cell design to provide the opportunity for CiM by combining the magnetic tunnel junction (MTJ) and the conventional 6T-SRAM cell. The cell performs CiM operations based on stateful in-array computation, which has better scalability for multiple operands compared with stateless computation in the periphery. Various logic operations such as XOR, OR, and IMP can be performed with the proposed design. In addition, the proposed cell can also operate as a conventional memory cell to read and write volatile as well as non-volatile data. The obtained simulation results show that the proposed CiM-A design can increase the performance of regular memory architectures by reducing the delay by 8 times and the energy by 13 times for database query applications consisting of consecutive bitwise operations with minimum overhead. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4, p 63 |
title_short |
A Spintronic 2M/7T Computation-in-Memory Cell |
url |
https://doi.org/10.3390/jlpea12040063 https://doaj.org/article/4cc8d9fdfa3c44d2b243547dc1684026 https://www.mdpi.com/2079-9268/12/4/63 https://doaj.org/toc/2079-9268 |
remote_bool |
true |
author2 |
Christopher Münch Mehdi Tahoori |
author2Str |
Christopher Münch Mehdi Tahoori |
ppnlink |
718295641 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/jlpea12040063 |
callnumber-a |
TK4001-4102 |
up_date |
2024-07-03T15:42:49.253Z |
_version_ |
1803573127288979456 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ083132147</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414150857.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/jlpea12040063</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ083132147</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ4cc8d9fdfa3c44d2b243547dc1684026</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK4001-4102</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Atousa Jafari</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Spintronic 2M/7T Computation-in-Memory Cell</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Computing data-intensive applications on the von Neumann architecture lead to significant performance and energy overheads. The concept of computation in memory (CiM) addresses the bottleneck of von Neumann machines by reducing the data movement in the computing system. Emerging resistive non-volatile memory technologies, as well as volatile memories (SRAM and DRAM), can be used to realize architectures based on the CiM paradigm. In this paper, we propose a hybrid cell design to provide the opportunity for CiM by combining the magnetic tunnel junction (MTJ) and the conventional 6T-SRAM cell. The cell performs CiM operations based on stateful in-array computation, which has better scalability for multiple operands compared with stateless computation in the periphery. Various logic operations such as XOR, OR, and IMP can be performed with the proposed design. In addition, the proposed cell can also operate as a conventional memory cell to read and write volatile as well as non-volatile data. The obtained simulation results show that the proposed CiM-A design can increase the performance of regular memory architectures by reducing the delay by 8 times and the energy by 13 times for database query applications consisting of consecutive bitwise operations with minimum overhead.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computation in memory (CiM)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computation in memory within core array (CiM-A)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computation in memory within periphery circuit (CiM-P)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">static random access memory (SRAM)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spin transfer torque magnetic RAM (STT-MRAM)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Applications of electric power</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Christopher Münch</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mehdi Tahoori</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Low Power Electronics and Applications</subfield><subfield code="d">MDPI AG, 2011</subfield><subfield code="g">12(2022), 4, p 63</subfield><subfield code="w">(DE-627)718295641</subfield><subfield code="w">(DE-600)2662567-2</subfield><subfield code="x">20799268</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4, p 63</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/jlpea12040063</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/4cc8d9fdfa3c44d2b243547dc1684026</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-9268/12/4/63</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-9268</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">4, p 63</subfield></datafield></record></collection>
|
score |
7.400943 |