All-Standard-Cell-Based Analog-to-Digital Architectures Well-Suited for Internet of Things Applications
In this paper, the most suited analog-to-digital (A/D) converters (ADCs) for Internet of Things (IoT) applications are compared in terms of complexity, dynamic performance, and energy efficiency. Among them, an innovative hybrid topology, a digital–delta (Δ) modulator (ΔM) ADC employing noise shapin...
Ausführliche Beschreibung
Autor*in: |
Ana Correia [verfasserIn] Vítor Grade Tavares [verfasserIn] Pedro Barquinha [verfasserIn] João Goes [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Journal of Low Power Electronics and Applications - MDPI AG, 2011, 12(2022), 4, p 64 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2022 ; number:4, p 64 |
Links: |
---|
DOI / URN: |
10.3390/jlpea12040064 |
---|
Katalog-ID: |
DOAJ083132155 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ083132155 | ||
003 | DE-627 | ||
005 | 20240414150857.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/jlpea12040064 |2 doi | |
035 | |a (DE-627)DOAJ083132155 | ||
035 | |a (DE-599)DOAJ0526a19b545045c7a016399dd8ab4efb | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK4001-4102 | |
100 | 0 | |a Ana Correia |e verfasserin |4 aut | |
245 | 1 | 0 | |a All-Standard-Cell-Based Analog-to-Digital Architectures Well-Suited for Internet of Things Applications |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this paper, the most suited analog-to-digital (A/D) converters (ADCs) for Internet of Things (IoT) applications are compared in terms of complexity, dynamic performance, and energy efficiency. Among them, an innovative hybrid topology, a digital–delta (Δ) modulator (ΔM) ADC employing noise shaping (NS), is proposed. To implement the active building blocks, several standard-cell-based synthesizable comparators and amplifiers are examined and compared in terms of their key performance parameters. The simulation results of a fully synthesizable Digital-ΔM with NS using passive and standard-cell-based circuitry show a peak of 72.5 dB in the signal-to-noise and distortion ratio (SNDR) for a 113 kHz input signal and 1 MHz bandwidth (BW). The estimated <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msub<<mi<FoM</mi<<mi<Walden</mi<</msub<</semantics<</math<</inline-formula< is close to 16.2 fJ/conv.-step. | ||
650 | 4 | |a analog-to-digital converters | |
650 | 4 | |a high resolution | |
650 | 4 | |a digital–delta modulator ADC | |
650 | 4 | |a noise shaping | |
650 | 4 | |a all-standard-cell-based | |
650 | 4 | |a Internet of Things | |
653 | 0 | |a Applications of electric power | |
700 | 0 | |a Vítor Grade Tavares |e verfasserin |4 aut | |
700 | 0 | |a Pedro Barquinha |e verfasserin |4 aut | |
700 | 0 | |a João Goes |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Journal of Low Power Electronics and Applications |d MDPI AG, 2011 |g 12(2022), 4, p 64 |w (DE-627)718295641 |w (DE-600)2662567-2 |x 20799268 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2022 |g number:4, p 64 |
856 | 4 | 0 | |u https://doi.org/10.3390/jlpea12040064 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/0526a19b545045c7a016399dd8ab4efb |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2079-9268/12/4/64 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2079-9268 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2022 |e 4, p 64 |
author_variant |
a c ac v g t vgt p b pb j g jg |
---|---|
matchkey_str |
article:20799268:2022----::lsadrclbsdnlgoiiaacietrselutdoitr |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TK |
publishDate |
2022 |
allfields |
10.3390/jlpea12040064 doi (DE-627)DOAJ083132155 (DE-599)DOAJ0526a19b545045c7a016399dd8ab4efb DE-627 ger DE-627 rakwb eng TK4001-4102 Ana Correia verfasserin aut All-Standard-Cell-Based Analog-to-Digital Architectures Well-Suited for Internet of Things Applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the most suited analog-to-digital (A/D) converters (ADCs) for Internet of Things (IoT) applications are compared in terms of complexity, dynamic performance, and energy efficiency. Among them, an innovative hybrid topology, a digital–delta (Δ) modulator (ΔM) ADC employing noise shaping (NS), is proposed. To implement the active building blocks, several standard-cell-based synthesizable comparators and amplifiers are examined and compared in terms of their key performance parameters. The simulation results of a fully synthesizable Digital-ΔM with NS using passive and standard-cell-based circuitry show a peak of 72.5 dB in the signal-to-noise and distortion ratio (SNDR) for a 113 kHz input signal and 1 MHz bandwidth (BW). The estimated <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msub<<mi<FoM</mi<<mi<Walden</mi<</msub<</semantics<</math<</inline-formula< is close to 16.2 fJ/conv.-step. analog-to-digital converters high resolution digital–delta modulator ADC noise shaping all-standard-cell-based Internet of Things Applications of electric power Vítor Grade Tavares verfasserin aut Pedro Barquinha verfasserin aut João Goes verfasserin aut In Journal of Low Power Electronics and Applications MDPI AG, 2011 12(2022), 4, p 64 (DE-627)718295641 (DE-600)2662567-2 20799268 nnns volume:12 year:2022 number:4, p 64 https://doi.org/10.3390/jlpea12040064 kostenfrei https://doaj.org/article/0526a19b545045c7a016399dd8ab4efb kostenfrei https://www.mdpi.com/2079-9268/12/4/64 kostenfrei https://doaj.org/toc/2079-9268 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 4, p 64 |
spelling |
10.3390/jlpea12040064 doi (DE-627)DOAJ083132155 (DE-599)DOAJ0526a19b545045c7a016399dd8ab4efb DE-627 ger DE-627 rakwb eng TK4001-4102 Ana Correia verfasserin aut All-Standard-Cell-Based Analog-to-Digital Architectures Well-Suited for Internet of Things Applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the most suited analog-to-digital (A/D) converters (ADCs) for Internet of Things (IoT) applications are compared in terms of complexity, dynamic performance, and energy efficiency. Among them, an innovative hybrid topology, a digital–delta (Δ) modulator (ΔM) ADC employing noise shaping (NS), is proposed. To implement the active building blocks, several standard-cell-based synthesizable comparators and amplifiers are examined and compared in terms of their key performance parameters. The simulation results of a fully synthesizable Digital-ΔM with NS using passive and standard-cell-based circuitry show a peak of 72.5 dB in the signal-to-noise and distortion ratio (SNDR) for a 113 kHz input signal and 1 MHz bandwidth (BW). The estimated <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msub<<mi<FoM</mi<<mi<Walden</mi<</msub<</semantics<</math<</inline-formula< is close to 16.2 fJ/conv.-step. analog-to-digital converters high resolution digital–delta modulator ADC noise shaping all-standard-cell-based Internet of Things Applications of electric power Vítor Grade Tavares verfasserin aut Pedro Barquinha verfasserin aut João Goes verfasserin aut In Journal of Low Power Electronics and Applications MDPI AG, 2011 12(2022), 4, p 64 (DE-627)718295641 (DE-600)2662567-2 20799268 nnns volume:12 year:2022 number:4, p 64 https://doi.org/10.3390/jlpea12040064 kostenfrei https://doaj.org/article/0526a19b545045c7a016399dd8ab4efb kostenfrei https://www.mdpi.com/2079-9268/12/4/64 kostenfrei https://doaj.org/toc/2079-9268 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 4, p 64 |
allfields_unstemmed |
10.3390/jlpea12040064 doi (DE-627)DOAJ083132155 (DE-599)DOAJ0526a19b545045c7a016399dd8ab4efb DE-627 ger DE-627 rakwb eng TK4001-4102 Ana Correia verfasserin aut All-Standard-Cell-Based Analog-to-Digital Architectures Well-Suited for Internet of Things Applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the most suited analog-to-digital (A/D) converters (ADCs) for Internet of Things (IoT) applications are compared in terms of complexity, dynamic performance, and energy efficiency. Among them, an innovative hybrid topology, a digital–delta (Δ) modulator (ΔM) ADC employing noise shaping (NS), is proposed. To implement the active building blocks, several standard-cell-based synthesizable comparators and amplifiers are examined and compared in terms of their key performance parameters. The simulation results of a fully synthesizable Digital-ΔM with NS using passive and standard-cell-based circuitry show a peak of 72.5 dB in the signal-to-noise and distortion ratio (SNDR) for a 113 kHz input signal and 1 MHz bandwidth (BW). The estimated <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msub<<mi<FoM</mi<<mi<Walden</mi<</msub<</semantics<</math<</inline-formula< is close to 16.2 fJ/conv.-step. analog-to-digital converters high resolution digital–delta modulator ADC noise shaping all-standard-cell-based Internet of Things Applications of electric power Vítor Grade Tavares verfasserin aut Pedro Barquinha verfasserin aut João Goes verfasserin aut In Journal of Low Power Electronics and Applications MDPI AG, 2011 12(2022), 4, p 64 (DE-627)718295641 (DE-600)2662567-2 20799268 nnns volume:12 year:2022 number:4, p 64 https://doi.org/10.3390/jlpea12040064 kostenfrei https://doaj.org/article/0526a19b545045c7a016399dd8ab4efb kostenfrei https://www.mdpi.com/2079-9268/12/4/64 kostenfrei https://doaj.org/toc/2079-9268 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 4, p 64 |
allfieldsGer |
10.3390/jlpea12040064 doi (DE-627)DOAJ083132155 (DE-599)DOAJ0526a19b545045c7a016399dd8ab4efb DE-627 ger DE-627 rakwb eng TK4001-4102 Ana Correia verfasserin aut All-Standard-Cell-Based Analog-to-Digital Architectures Well-Suited for Internet of Things Applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the most suited analog-to-digital (A/D) converters (ADCs) for Internet of Things (IoT) applications are compared in terms of complexity, dynamic performance, and energy efficiency. Among them, an innovative hybrid topology, a digital–delta (Δ) modulator (ΔM) ADC employing noise shaping (NS), is proposed. To implement the active building blocks, several standard-cell-based synthesizable comparators and amplifiers are examined and compared in terms of their key performance parameters. The simulation results of a fully synthesizable Digital-ΔM with NS using passive and standard-cell-based circuitry show a peak of 72.5 dB in the signal-to-noise and distortion ratio (SNDR) for a 113 kHz input signal and 1 MHz bandwidth (BW). The estimated <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msub<<mi<FoM</mi<<mi<Walden</mi<</msub<</semantics<</math<</inline-formula< is close to 16.2 fJ/conv.-step. analog-to-digital converters high resolution digital–delta modulator ADC noise shaping all-standard-cell-based Internet of Things Applications of electric power Vítor Grade Tavares verfasserin aut Pedro Barquinha verfasserin aut João Goes verfasserin aut In Journal of Low Power Electronics and Applications MDPI AG, 2011 12(2022), 4, p 64 (DE-627)718295641 (DE-600)2662567-2 20799268 nnns volume:12 year:2022 number:4, p 64 https://doi.org/10.3390/jlpea12040064 kostenfrei https://doaj.org/article/0526a19b545045c7a016399dd8ab4efb kostenfrei https://www.mdpi.com/2079-9268/12/4/64 kostenfrei https://doaj.org/toc/2079-9268 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 4, p 64 |
allfieldsSound |
10.3390/jlpea12040064 doi (DE-627)DOAJ083132155 (DE-599)DOAJ0526a19b545045c7a016399dd8ab4efb DE-627 ger DE-627 rakwb eng TK4001-4102 Ana Correia verfasserin aut All-Standard-Cell-Based Analog-to-Digital Architectures Well-Suited for Internet of Things Applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, the most suited analog-to-digital (A/D) converters (ADCs) for Internet of Things (IoT) applications are compared in terms of complexity, dynamic performance, and energy efficiency. Among them, an innovative hybrid topology, a digital–delta (Δ) modulator (ΔM) ADC employing noise shaping (NS), is proposed. To implement the active building blocks, several standard-cell-based synthesizable comparators and amplifiers are examined and compared in terms of their key performance parameters. The simulation results of a fully synthesizable Digital-ΔM with NS using passive and standard-cell-based circuitry show a peak of 72.5 dB in the signal-to-noise and distortion ratio (SNDR) for a 113 kHz input signal and 1 MHz bandwidth (BW). The estimated <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msub<<mi<FoM</mi<<mi<Walden</mi<</msub<</semantics<</math<</inline-formula< is close to 16.2 fJ/conv.-step. analog-to-digital converters high resolution digital–delta modulator ADC noise shaping all-standard-cell-based Internet of Things Applications of electric power Vítor Grade Tavares verfasserin aut Pedro Barquinha verfasserin aut João Goes verfasserin aut In Journal of Low Power Electronics and Applications MDPI AG, 2011 12(2022), 4, p 64 (DE-627)718295641 (DE-600)2662567-2 20799268 nnns volume:12 year:2022 number:4, p 64 https://doi.org/10.3390/jlpea12040064 kostenfrei https://doaj.org/article/0526a19b545045c7a016399dd8ab4efb kostenfrei https://www.mdpi.com/2079-9268/12/4/64 kostenfrei https://doaj.org/toc/2079-9268 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 4, p 64 |
language |
English |
source |
In Journal of Low Power Electronics and Applications 12(2022), 4, p 64 volume:12 year:2022 number:4, p 64 |
sourceStr |
In Journal of Low Power Electronics and Applications 12(2022), 4, p 64 volume:12 year:2022 number:4, p 64 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
analog-to-digital converters high resolution digital–delta modulator ADC noise shaping all-standard-cell-based Internet of Things Applications of electric power |
isfreeaccess_bool |
true |
container_title |
Journal of Low Power Electronics and Applications |
authorswithroles_txt_mv |
Ana Correia @@aut@@ Vítor Grade Tavares @@aut@@ Pedro Barquinha @@aut@@ João Goes @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
718295641 |
id |
DOAJ083132155 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ083132155</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414150857.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/jlpea12040064</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ083132155</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0526a19b545045c7a016399dd8ab4efb</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK4001-4102</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ana Correia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">All-Standard-Cell-Based Analog-to-Digital Architectures Well-Suited for Internet of Things Applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, the most suited analog-to-digital (A/D) converters (ADCs) for Internet of Things (IoT) applications are compared in terms of complexity, dynamic performance, and energy efficiency. Among them, an innovative hybrid topology, a digital–delta (Δ) modulator (ΔM) ADC employing noise shaping (NS), is proposed. To implement the active building blocks, several standard-cell-based synthesizable comparators and amplifiers are examined and compared in terms of their key performance parameters. The simulation results of a fully synthesizable Digital-ΔM with NS using passive and standard-cell-based circuitry show a peak of 72.5 dB in the signal-to-noise and distortion ratio (SNDR) for a 113 kHz input signal and 1 MHz bandwidth (BW). The estimated <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msub<<mi<FoM</mi<<mi<Walden</mi<</msub<</semantics<</math<</inline-formula< is close to 16.2 fJ/conv.-step.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">analog-to-digital converters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high resolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">digital–delta modulator ADC</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">noise shaping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">all-standard-cell-based</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internet of Things</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Applications of electric power</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vítor Grade Tavares</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pedro Barquinha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">João Goes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Low Power Electronics and Applications</subfield><subfield code="d">MDPI AG, 2011</subfield><subfield code="g">12(2022), 4, p 64</subfield><subfield code="w">(DE-627)718295641</subfield><subfield code="w">(DE-600)2662567-2</subfield><subfield code="x">20799268</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4, p 64</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/jlpea12040064</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0526a19b545045c7a016399dd8ab4efb</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-9268/12/4/64</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-9268</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">4, p 64</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Ana Correia |
spellingShingle |
Ana Correia misc TK4001-4102 misc analog-to-digital converters misc high resolution misc digital–delta modulator ADC misc noise shaping misc all-standard-cell-based misc Internet of Things misc Applications of electric power All-Standard-Cell-Based Analog-to-Digital Architectures Well-Suited for Internet of Things Applications |
authorStr |
Ana Correia |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718295641 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK4001-4102 |
illustrated |
Not Illustrated |
issn |
20799268 |
topic_title |
TK4001-4102 All-Standard-Cell-Based Analog-to-Digital Architectures Well-Suited for Internet of Things Applications analog-to-digital converters high resolution digital–delta modulator ADC noise shaping all-standard-cell-based Internet of Things |
topic |
misc TK4001-4102 misc analog-to-digital converters misc high resolution misc digital–delta modulator ADC misc noise shaping misc all-standard-cell-based misc Internet of Things misc Applications of electric power |
topic_unstemmed |
misc TK4001-4102 misc analog-to-digital converters misc high resolution misc digital–delta modulator ADC misc noise shaping misc all-standard-cell-based misc Internet of Things misc Applications of electric power |
topic_browse |
misc TK4001-4102 misc analog-to-digital converters misc high resolution misc digital–delta modulator ADC misc noise shaping misc all-standard-cell-based misc Internet of Things misc Applications of electric power |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of Low Power Electronics and Applications |
hierarchy_parent_id |
718295641 |
hierarchy_top_title |
Journal of Low Power Electronics and Applications |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718295641 (DE-600)2662567-2 |
title |
All-Standard-Cell-Based Analog-to-Digital Architectures Well-Suited for Internet of Things Applications |
ctrlnum |
(DE-627)DOAJ083132155 (DE-599)DOAJ0526a19b545045c7a016399dd8ab4efb |
title_full |
All-Standard-Cell-Based Analog-to-Digital Architectures Well-Suited for Internet of Things Applications |
author_sort |
Ana Correia |
journal |
Journal of Low Power Electronics and Applications |
journalStr |
Journal of Low Power Electronics and Applications |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Ana Correia Vítor Grade Tavares Pedro Barquinha João Goes |
container_volume |
12 |
class |
TK4001-4102 |
format_se |
Elektronische Aufsätze |
author-letter |
Ana Correia |
doi_str_mv |
10.3390/jlpea12040064 |
author2-role |
verfasserin |
title_sort |
all-standard-cell-based analog-to-digital architectures well-suited for internet of things applications |
callnumber |
TK4001-4102 |
title_auth |
All-Standard-Cell-Based Analog-to-Digital Architectures Well-Suited for Internet of Things Applications |
abstract |
In this paper, the most suited analog-to-digital (A/D) converters (ADCs) for Internet of Things (IoT) applications are compared in terms of complexity, dynamic performance, and energy efficiency. Among them, an innovative hybrid topology, a digital–delta (Δ) modulator (ΔM) ADC employing noise shaping (NS), is proposed. To implement the active building blocks, several standard-cell-based synthesizable comparators and amplifiers are examined and compared in terms of their key performance parameters. The simulation results of a fully synthesizable Digital-ΔM with NS using passive and standard-cell-based circuitry show a peak of 72.5 dB in the signal-to-noise and distortion ratio (SNDR) for a 113 kHz input signal and 1 MHz bandwidth (BW). The estimated <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msub<<mi<FoM</mi<<mi<Walden</mi<</msub<</semantics<</math<</inline-formula< is close to 16.2 fJ/conv.-step. |
abstractGer |
In this paper, the most suited analog-to-digital (A/D) converters (ADCs) for Internet of Things (IoT) applications are compared in terms of complexity, dynamic performance, and energy efficiency. Among them, an innovative hybrid topology, a digital–delta (Δ) modulator (ΔM) ADC employing noise shaping (NS), is proposed. To implement the active building blocks, several standard-cell-based synthesizable comparators and amplifiers are examined and compared in terms of their key performance parameters. The simulation results of a fully synthesizable Digital-ΔM with NS using passive and standard-cell-based circuitry show a peak of 72.5 dB in the signal-to-noise and distortion ratio (SNDR) for a 113 kHz input signal and 1 MHz bandwidth (BW). The estimated <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msub<<mi<FoM</mi<<mi<Walden</mi<</msub<</semantics<</math<</inline-formula< is close to 16.2 fJ/conv.-step. |
abstract_unstemmed |
In this paper, the most suited analog-to-digital (A/D) converters (ADCs) for Internet of Things (IoT) applications are compared in terms of complexity, dynamic performance, and energy efficiency. Among them, an innovative hybrid topology, a digital–delta (Δ) modulator (ΔM) ADC employing noise shaping (NS), is proposed. To implement the active building blocks, several standard-cell-based synthesizable comparators and amplifiers are examined and compared in terms of their key performance parameters. The simulation results of a fully synthesizable Digital-ΔM with NS using passive and standard-cell-based circuitry show a peak of 72.5 dB in the signal-to-noise and distortion ratio (SNDR) for a 113 kHz input signal and 1 MHz bandwidth (BW). The estimated <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msub<<mi<FoM</mi<<mi<Walden</mi<</msub<</semantics<</math<</inline-formula< is close to 16.2 fJ/conv.-step. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
4, p 64 |
title_short |
All-Standard-Cell-Based Analog-to-Digital Architectures Well-Suited for Internet of Things Applications |
url |
https://doi.org/10.3390/jlpea12040064 https://doaj.org/article/0526a19b545045c7a016399dd8ab4efb https://www.mdpi.com/2079-9268/12/4/64 https://doaj.org/toc/2079-9268 |
remote_bool |
true |
author2 |
Vítor Grade Tavares Pedro Barquinha João Goes |
author2Str |
Vítor Grade Tavares Pedro Barquinha João Goes |
ppnlink |
718295641 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/jlpea12040064 |
callnumber-a |
TK4001-4102 |
up_date |
2024-07-03T15:42:49.371Z |
_version_ |
1803573127407468544 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ083132155</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414150857.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/jlpea12040064</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ083132155</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ0526a19b545045c7a016399dd8ab4efb</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK4001-4102</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Ana Correia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">All-Standard-Cell-Based Analog-to-Digital Architectures Well-Suited for Internet of Things Applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, the most suited analog-to-digital (A/D) converters (ADCs) for Internet of Things (IoT) applications are compared in terms of complexity, dynamic performance, and energy efficiency. Among them, an innovative hybrid topology, a digital–delta (Δ) modulator (ΔM) ADC employing noise shaping (NS), is proposed. To implement the active building blocks, several standard-cell-based synthesizable comparators and amplifiers are examined and compared in terms of their key performance parameters. The simulation results of a fully synthesizable Digital-ΔM with NS using passive and standard-cell-based circuitry show a peak of 72.5 dB in the signal-to-noise and distortion ratio (SNDR) for a 113 kHz input signal and 1 MHz bandwidth (BW). The estimated <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msub<<mi<FoM</mi<<mi<Walden</mi<</msub<</semantics<</math<</inline-formula< is close to 16.2 fJ/conv.-step.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">analog-to-digital converters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high resolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">digital–delta modulator ADC</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">noise shaping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">all-standard-cell-based</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internet of Things</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Applications of electric power</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vítor Grade Tavares</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pedro Barquinha</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">João Goes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Journal of Low Power Electronics and Applications</subfield><subfield code="d">MDPI AG, 2011</subfield><subfield code="g">12(2022), 4, p 64</subfield><subfield code="w">(DE-627)718295641</subfield><subfield code="w">(DE-600)2662567-2</subfield><subfield code="x">20799268</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4, p 64</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/jlpea12040064</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/0526a19b545045c7a016399dd8ab4efb</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2079-9268/12/4/64</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2079-9268</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">4, p 64</subfield></datafield></record></collection>
|
score |
7.400943 |