Choosing the Best Members of the Optimal Eighth-Order Petković’s Family by Its Fractal Behavior
In this paper, by applying Petković’s iterative method to the Möbius conjugate mapping of a quadratic polynomial function, we attain an optimal eighth-order rational operator with a single parameter <i<r</i< and research the stability of this method by using complex dynamics tools on the...
Ausführliche Beschreibung
Autor*in: |
Xiaofeng Wang [verfasserIn] Wenshuo Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Fractal and Fractional - MDPI AG, 2018, 6(2022), 12, p 749 |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2022 ; number:12, p 749 |
Links: |
---|
DOI / URN: |
10.3390/fractalfract6120749 |
---|
Katalog-ID: |
DOAJ083171207 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ083171207 | ||
003 | DE-627 | ||
005 | 20240414151904.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/fractalfract6120749 |2 doi | |
035 | |a (DE-627)DOAJ083171207 | ||
035 | |a (DE-599)DOAJcbe22aa6e7884b9e98bbe5b6cc84745f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC310.15-319 | |
050 | 0 | |a QA1-939 | |
050 | 0 | |a QA299.6-433 | |
100 | 0 | |a Xiaofeng Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Choosing the Best Members of the Optimal Eighth-Order Petković’s Family by Its Fractal Behavior |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this paper, by applying Petković’s iterative method to the Möbius conjugate mapping of a quadratic polynomial function, we attain an optimal eighth-order rational operator with a single parameter <i<r</i< and research the stability of this method by using complex dynamics tools on the basis of fractal theory. Through analyzing the stability of the fixed point and drawing the parameter space related to the critical point, the parameter family which can make the behavior of the corresponding iterative method stable or unstable is obtained. Lastly, the consequence is verified by showing their corresponding dynamical planes. | ||
650 | 4 | |a nonlinear equations | |
650 | 4 | |a Julia and Fatou sets | |
650 | 4 | |a Mandelbrot set | |
650 | 4 | |a dynamics analysis | |
650 | 4 | |a parameter space | |
650 | 4 | |a dynamical plane | |
653 | 0 | |a Thermodynamics | |
653 | 0 | |a Mathematics | |
653 | 0 | |a Analysis | |
700 | 0 | |a Wenshuo Li |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Fractal and Fractional |d MDPI AG, 2018 |g 6(2022), 12, p 749 |w (DE-627)897435656 |w (DE-600)2905371-7 |x 25043110 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2022 |g number:12, p 749 |
856 | 4 | 0 | |u https://doi.org/10.3390/fractalfract6120749 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/cbe22aa6e7884b9e98bbe5b6cc84745f |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2504-3110/6/12/749 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2504-3110 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2022 |e 12, p 749 |
author_variant |
x w xw w l wl |
---|---|
matchkey_str |
article:25043110:2022----::hoighbsmmesfhotmlihhreptoifm |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QC |
publishDate |
2022 |
allfields |
10.3390/fractalfract6120749 doi (DE-627)DOAJ083171207 (DE-599)DOAJcbe22aa6e7884b9e98bbe5b6cc84745f DE-627 ger DE-627 rakwb eng QC310.15-319 QA1-939 QA299.6-433 Xiaofeng Wang verfasserin aut Choosing the Best Members of the Optimal Eighth-Order Petković’s Family by Its Fractal Behavior 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, by applying Petković’s iterative method to the Möbius conjugate mapping of a quadratic polynomial function, we attain an optimal eighth-order rational operator with a single parameter <i<r</i< and research the stability of this method by using complex dynamics tools on the basis of fractal theory. Through analyzing the stability of the fixed point and drawing the parameter space related to the critical point, the parameter family which can make the behavior of the corresponding iterative method stable or unstable is obtained. Lastly, the consequence is verified by showing their corresponding dynamical planes. nonlinear equations Julia and Fatou sets Mandelbrot set dynamics analysis parameter space dynamical plane Thermodynamics Mathematics Analysis Wenshuo Li verfasserin aut In Fractal and Fractional MDPI AG, 2018 6(2022), 12, p 749 (DE-627)897435656 (DE-600)2905371-7 25043110 nnns volume:6 year:2022 number:12, p 749 https://doi.org/10.3390/fractalfract6120749 kostenfrei https://doaj.org/article/cbe22aa6e7884b9e98bbe5b6cc84745f kostenfrei https://www.mdpi.com/2504-3110/6/12/749 kostenfrei https://doaj.org/toc/2504-3110 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2022 12, p 749 |
spelling |
10.3390/fractalfract6120749 doi (DE-627)DOAJ083171207 (DE-599)DOAJcbe22aa6e7884b9e98bbe5b6cc84745f DE-627 ger DE-627 rakwb eng QC310.15-319 QA1-939 QA299.6-433 Xiaofeng Wang verfasserin aut Choosing the Best Members of the Optimal Eighth-Order Petković’s Family by Its Fractal Behavior 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, by applying Petković’s iterative method to the Möbius conjugate mapping of a quadratic polynomial function, we attain an optimal eighth-order rational operator with a single parameter <i<r</i< and research the stability of this method by using complex dynamics tools on the basis of fractal theory. Through analyzing the stability of the fixed point and drawing the parameter space related to the critical point, the parameter family which can make the behavior of the corresponding iterative method stable or unstable is obtained. Lastly, the consequence is verified by showing their corresponding dynamical planes. nonlinear equations Julia and Fatou sets Mandelbrot set dynamics analysis parameter space dynamical plane Thermodynamics Mathematics Analysis Wenshuo Li verfasserin aut In Fractal and Fractional MDPI AG, 2018 6(2022), 12, p 749 (DE-627)897435656 (DE-600)2905371-7 25043110 nnns volume:6 year:2022 number:12, p 749 https://doi.org/10.3390/fractalfract6120749 kostenfrei https://doaj.org/article/cbe22aa6e7884b9e98bbe5b6cc84745f kostenfrei https://www.mdpi.com/2504-3110/6/12/749 kostenfrei https://doaj.org/toc/2504-3110 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2022 12, p 749 |
allfields_unstemmed |
10.3390/fractalfract6120749 doi (DE-627)DOAJ083171207 (DE-599)DOAJcbe22aa6e7884b9e98bbe5b6cc84745f DE-627 ger DE-627 rakwb eng QC310.15-319 QA1-939 QA299.6-433 Xiaofeng Wang verfasserin aut Choosing the Best Members of the Optimal Eighth-Order Petković’s Family by Its Fractal Behavior 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, by applying Petković’s iterative method to the Möbius conjugate mapping of a quadratic polynomial function, we attain an optimal eighth-order rational operator with a single parameter <i<r</i< and research the stability of this method by using complex dynamics tools on the basis of fractal theory. Through analyzing the stability of the fixed point and drawing the parameter space related to the critical point, the parameter family which can make the behavior of the corresponding iterative method stable or unstable is obtained. Lastly, the consequence is verified by showing their corresponding dynamical planes. nonlinear equations Julia and Fatou sets Mandelbrot set dynamics analysis parameter space dynamical plane Thermodynamics Mathematics Analysis Wenshuo Li verfasserin aut In Fractal and Fractional MDPI AG, 2018 6(2022), 12, p 749 (DE-627)897435656 (DE-600)2905371-7 25043110 nnns volume:6 year:2022 number:12, p 749 https://doi.org/10.3390/fractalfract6120749 kostenfrei https://doaj.org/article/cbe22aa6e7884b9e98bbe5b6cc84745f kostenfrei https://www.mdpi.com/2504-3110/6/12/749 kostenfrei https://doaj.org/toc/2504-3110 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2022 12, p 749 |
allfieldsGer |
10.3390/fractalfract6120749 doi (DE-627)DOAJ083171207 (DE-599)DOAJcbe22aa6e7884b9e98bbe5b6cc84745f DE-627 ger DE-627 rakwb eng QC310.15-319 QA1-939 QA299.6-433 Xiaofeng Wang verfasserin aut Choosing the Best Members of the Optimal Eighth-Order Petković’s Family by Its Fractal Behavior 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, by applying Petković’s iterative method to the Möbius conjugate mapping of a quadratic polynomial function, we attain an optimal eighth-order rational operator with a single parameter <i<r</i< and research the stability of this method by using complex dynamics tools on the basis of fractal theory. Through analyzing the stability of the fixed point and drawing the parameter space related to the critical point, the parameter family which can make the behavior of the corresponding iterative method stable or unstable is obtained. Lastly, the consequence is verified by showing their corresponding dynamical planes. nonlinear equations Julia and Fatou sets Mandelbrot set dynamics analysis parameter space dynamical plane Thermodynamics Mathematics Analysis Wenshuo Li verfasserin aut In Fractal and Fractional MDPI AG, 2018 6(2022), 12, p 749 (DE-627)897435656 (DE-600)2905371-7 25043110 nnns volume:6 year:2022 number:12, p 749 https://doi.org/10.3390/fractalfract6120749 kostenfrei https://doaj.org/article/cbe22aa6e7884b9e98bbe5b6cc84745f kostenfrei https://www.mdpi.com/2504-3110/6/12/749 kostenfrei https://doaj.org/toc/2504-3110 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2022 12, p 749 |
allfieldsSound |
10.3390/fractalfract6120749 doi (DE-627)DOAJ083171207 (DE-599)DOAJcbe22aa6e7884b9e98bbe5b6cc84745f DE-627 ger DE-627 rakwb eng QC310.15-319 QA1-939 QA299.6-433 Xiaofeng Wang verfasserin aut Choosing the Best Members of the Optimal Eighth-Order Petković’s Family by Its Fractal Behavior 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, by applying Petković’s iterative method to the Möbius conjugate mapping of a quadratic polynomial function, we attain an optimal eighth-order rational operator with a single parameter <i<r</i< and research the stability of this method by using complex dynamics tools on the basis of fractal theory. Through analyzing the stability of the fixed point and drawing the parameter space related to the critical point, the parameter family which can make the behavior of the corresponding iterative method stable or unstable is obtained. Lastly, the consequence is verified by showing their corresponding dynamical planes. nonlinear equations Julia and Fatou sets Mandelbrot set dynamics analysis parameter space dynamical plane Thermodynamics Mathematics Analysis Wenshuo Li verfasserin aut In Fractal and Fractional MDPI AG, 2018 6(2022), 12, p 749 (DE-627)897435656 (DE-600)2905371-7 25043110 nnns volume:6 year:2022 number:12, p 749 https://doi.org/10.3390/fractalfract6120749 kostenfrei https://doaj.org/article/cbe22aa6e7884b9e98bbe5b6cc84745f kostenfrei https://www.mdpi.com/2504-3110/6/12/749 kostenfrei https://doaj.org/toc/2504-3110 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2022 12, p 749 |
language |
English |
source |
In Fractal and Fractional 6(2022), 12, p 749 volume:6 year:2022 number:12, p 749 |
sourceStr |
In Fractal and Fractional 6(2022), 12, p 749 volume:6 year:2022 number:12, p 749 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
nonlinear equations Julia and Fatou sets Mandelbrot set dynamics analysis parameter space dynamical plane Thermodynamics Mathematics Analysis |
isfreeaccess_bool |
true |
container_title |
Fractal and Fractional |
authorswithroles_txt_mv |
Xiaofeng Wang @@aut@@ Wenshuo Li @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
897435656 |
id |
DOAJ083171207 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ083171207</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414151904.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/fractalfract6120749</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ083171207</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJcbe22aa6e7884b9e98bbe5b6cc84745f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC310.15-319</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA299.6-433</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiaofeng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Choosing the Best Members of the Optimal Eighth-Order Petković’s Family by Its Fractal Behavior</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, by applying Petković’s iterative method to the Möbius conjugate mapping of a quadratic polynomial function, we attain an optimal eighth-order rational operator with a single parameter <i<r</i< and research the stability of this method by using complex dynamics tools on the basis of fractal theory. Through analyzing the stability of the fixed point and drawing the parameter space related to the critical point, the parameter family which can make the behavior of the corresponding iterative method stable or unstable is obtained. Lastly, the consequence is verified by showing their corresponding dynamical planes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Julia and Fatou sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mandelbrot set</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dynamics analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">parameter space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dynamical plane</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Thermodynamics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analysis</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenshuo Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Fractal and Fractional</subfield><subfield code="d">MDPI AG, 2018</subfield><subfield code="g">6(2022), 12, p 749</subfield><subfield code="w">(DE-627)897435656</subfield><subfield code="w">(DE-600)2905371-7</subfield><subfield code="x">25043110</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:12, p 749</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/fractalfract6120749</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/cbe22aa6e7884b9e98bbe5b6cc84745f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2504-3110/6/12/749</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2504-3110</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2022</subfield><subfield code="e">12, p 749</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Xiaofeng Wang |
spellingShingle |
Xiaofeng Wang misc QC310.15-319 misc QA1-939 misc QA299.6-433 misc nonlinear equations misc Julia and Fatou sets misc Mandelbrot set misc dynamics analysis misc parameter space misc dynamical plane misc Thermodynamics misc Mathematics misc Analysis Choosing the Best Members of the Optimal Eighth-Order Petković’s Family by Its Fractal Behavior |
authorStr |
Xiaofeng Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)897435656 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC310 |
illustrated |
Not Illustrated |
issn |
25043110 |
topic_title |
QC310.15-319 QA1-939 QA299.6-433 Choosing the Best Members of the Optimal Eighth-Order Petković’s Family by Its Fractal Behavior nonlinear equations Julia and Fatou sets Mandelbrot set dynamics analysis parameter space dynamical plane |
topic |
misc QC310.15-319 misc QA1-939 misc QA299.6-433 misc nonlinear equations misc Julia and Fatou sets misc Mandelbrot set misc dynamics analysis misc parameter space misc dynamical plane misc Thermodynamics misc Mathematics misc Analysis |
topic_unstemmed |
misc QC310.15-319 misc QA1-939 misc QA299.6-433 misc nonlinear equations misc Julia and Fatou sets misc Mandelbrot set misc dynamics analysis misc parameter space misc dynamical plane misc Thermodynamics misc Mathematics misc Analysis |
topic_browse |
misc QC310.15-319 misc QA1-939 misc QA299.6-433 misc nonlinear equations misc Julia and Fatou sets misc Mandelbrot set misc dynamics analysis misc parameter space misc dynamical plane misc Thermodynamics misc Mathematics misc Analysis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Fractal and Fractional |
hierarchy_parent_id |
897435656 |
hierarchy_top_title |
Fractal and Fractional |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)897435656 (DE-600)2905371-7 |
title |
Choosing the Best Members of the Optimal Eighth-Order Petković’s Family by Its Fractal Behavior |
ctrlnum |
(DE-627)DOAJ083171207 (DE-599)DOAJcbe22aa6e7884b9e98bbe5b6cc84745f |
title_full |
Choosing the Best Members of the Optimal Eighth-Order Petković’s Family by Its Fractal Behavior |
author_sort |
Xiaofeng Wang |
journal |
Fractal and Fractional |
journalStr |
Fractal and Fractional |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Xiaofeng Wang Wenshuo Li |
container_volume |
6 |
class |
QC310.15-319 QA1-939 QA299.6-433 |
format_se |
Elektronische Aufsätze |
author-letter |
Xiaofeng Wang |
doi_str_mv |
10.3390/fractalfract6120749 |
author2-role |
verfasserin |
title_sort |
choosing the best members of the optimal eighth-order petković’s family by its fractal behavior |
callnumber |
QC310.15-319 |
title_auth |
Choosing the Best Members of the Optimal Eighth-Order Petković’s Family by Its Fractal Behavior |
abstract |
In this paper, by applying Petković’s iterative method to the Möbius conjugate mapping of a quadratic polynomial function, we attain an optimal eighth-order rational operator with a single parameter <i<r</i< and research the stability of this method by using complex dynamics tools on the basis of fractal theory. Through analyzing the stability of the fixed point and drawing the parameter space related to the critical point, the parameter family which can make the behavior of the corresponding iterative method stable or unstable is obtained. Lastly, the consequence is verified by showing their corresponding dynamical planes. |
abstractGer |
In this paper, by applying Petković’s iterative method to the Möbius conjugate mapping of a quadratic polynomial function, we attain an optimal eighth-order rational operator with a single parameter <i<r</i< and research the stability of this method by using complex dynamics tools on the basis of fractal theory. Through analyzing the stability of the fixed point and drawing the parameter space related to the critical point, the parameter family which can make the behavior of the corresponding iterative method stable or unstable is obtained. Lastly, the consequence is verified by showing their corresponding dynamical planes. |
abstract_unstemmed |
In this paper, by applying Petković’s iterative method to the Möbius conjugate mapping of a quadratic polynomial function, we attain an optimal eighth-order rational operator with a single parameter <i<r</i< and research the stability of this method by using complex dynamics tools on the basis of fractal theory. Through analyzing the stability of the fixed point and drawing the parameter space related to the critical point, the parameter family which can make the behavior of the corresponding iterative method stable or unstable is obtained. Lastly, the consequence is verified by showing their corresponding dynamical planes. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
12, p 749 |
title_short |
Choosing the Best Members of the Optimal Eighth-Order Petković’s Family by Its Fractal Behavior |
url |
https://doi.org/10.3390/fractalfract6120749 https://doaj.org/article/cbe22aa6e7884b9e98bbe5b6cc84745f https://www.mdpi.com/2504-3110/6/12/749 https://doaj.org/toc/2504-3110 |
remote_bool |
true |
author2 |
Wenshuo Li |
author2Str |
Wenshuo Li |
ppnlink |
897435656 |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/fractalfract6120749 |
callnumber-a |
QC310.15-319 |
up_date |
2024-07-03T15:57:07.394Z |
_version_ |
1803574027112939521 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ083171207</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414151904.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/fractalfract6120749</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ083171207</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJcbe22aa6e7884b9e98bbe5b6cc84745f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC310.15-319</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1-939</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA299.6-433</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Xiaofeng Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Choosing the Best Members of the Optimal Eighth-Order Petković’s Family by Its Fractal Behavior</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, by applying Petković’s iterative method to the Möbius conjugate mapping of a quadratic polynomial function, we attain an optimal eighth-order rational operator with a single parameter <i<r</i< and research the stability of this method by using complex dynamics tools on the basis of fractal theory. Through analyzing the stability of the fixed point and drawing the parameter space related to the critical point, the parameter family which can make the behavior of the corresponding iterative method stable or unstable is obtained. Lastly, the consequence is verified by showing their corresponding dynamical planes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Julia and Fatou sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mandelbrot set</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dynamics analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">parameter space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dynamical plane</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Thermodynamics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Analysis</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wenshuo Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Fractal and Fractional</subfield><subfield code="d">MDPI AG, 2018</subfield><subfield code="g">6(2022), 12, p 749</subfield><subfield code="w">(DE-627)897435656</subfield><subfield code="w">(DE-600)2905371-7</subfield><subfield code="x">25043110</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:12, p 749</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/fractalfract6120749</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/cbe22aa6e7884b9e98bbe5b6cc84745f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2504-3110/6/12/749</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2504-3110</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2022</subfield><subfield code="e">12, p 749</subfield></datafield></record></collection>
|
score |
7.401726 |