Virtual Filter Membranes in a Microfluidic System for Sorting and Separating Size-Based Micro Polystyrene Beads by Illumination Intensity Design in Optically Induced Dielectrophoresis (ODEP)
In biomedical diagnosis, the efficient separation and purification of specific targets from clinical samples is the desired first step. Herein, the concept of virtual filter membranes based on optically-induced dielectrophoresis (ODEP) manipulation in a microfluidic channel is proposed as a light sc...
Ausführliche Beschreibung
Autor*in: |
Chia-Ming Yang [verfasserIn] Ai-Yun Wu [verfasserIn] Jian-Cyun Yu [verfasserIn] Po-Yu Chu [verfasserIn] Chia-Hsun Hsieh [verfasserIn] Min-Hsien Wu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Chemosensors - MDPI AG, 2013, 10(2022), 12, p 540 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 ; number:12, p 540 |
Links: |
---|
DOI / URN: |
10.3390/chemosensors10120540 |
---|
Katalog-ID: |
DOAJ083207554 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ083207554 | ||
003 | DE-627 | ||
005 | 20240414153856.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/chemosensors10120540 |2 doi | |
035 | |a (DE-627)DOAJ083207554 | ||
035 | |a (DE-599)DOAJ7dc9232cfb0d413d957e3f00f71ab608 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD415-436 | |
100 | 0 | |a Chia-Ming Yang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Virtual Filter Membranes in a Microfluidic System for Sorting and Separating Size-Based Micro Polystyrene Beads by Illumination Intensity Design in Optically Induced Dielectrophoresis (ODEP) |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In biomedical diagnosis, the efficient separation and purification of specific targets from clinical samples is the desired first step. Herein, the concept of virtual filter membranes based on optically-induced dielectrophoresis (ODEP) manipulation in a microfluidic channel is proposed as a light screening membrane for the separation of polystyrene (PS) microparticles with three different diameters of 15.8, 10.8 and 5.8 µm. The ODEP manipulation velocity of three types of PS microparticles reacted with the color brightness setting was investigated to determine the light intensity to induce an ODEP force higher than the drag force of fluid speed. The color brightness of the light bar in three areas of the light screening membrane was selected as 60%, 70% and 100% to isolate PS microparticles with diameters of 15.8, 10.8 and 5.8 µm, respectively. With a double light bar and a flow rate of 3 µL/min, the recovery rate and isolation purity was improved by 95.1~100% and 94.4~98.6% from the mixture of three types of PS microparticles within 2 min, respectively. This proposed light screening membrane could be a candidate for the separation of small-volume and rare biomedical samples, including circulating tumor cells (CTCs) and bacteria in the blood. | ||
650 | 4 | |a brightness | |
650 | 4 | |a light screening membrane | |
650 | 4 | |a microfluidic | |
650 | 4 | |a ODEP | |
650 | 4 | |a polystyrene | |
653 | 0 | |a Biochemistry | |
700 | 0 | |a Ai-Yun Wu |e verfasserin |4 aut | |
700 | 0 | |a Jian-Cyun Yu |e verfasserin |4 aut | |
700 | 0 | |a Po-Yu Chu |e verfasserin |4 aut | |
700 | 0 | |a Chia-Hsun Hsieh |e verfasserin |4 aut | |
700 | 0 | |a Min-Hsien Wu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Chemosensors |d MDPI AG, 2013 |g 10(2022), 12, p 540 |w (DE-627)737287594 |w (DE-600)2704218-2 |x 22279040 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |g number:12, p 540 |
856 | 4 | 0 | |u https://doi.org/10.3390/chemosensors10120540 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/7dc9232cfb0d413d957e3f00f71ab608 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2227-9040/10/12/540 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2227-9040 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |e 12, p 540 |
author_variant |
c m y cmy a y w ayw j c y jcy p y c pyc c h h chh m h w mhw |
---|---|
matchkey_str |
article:22279040:2022----::itaflemmrnsnmcoliissefrotnadeaaigieaemcooytrnbasyluiainnestds |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QD |
publishDate |
2022 |
allfields |
10.3390/chemosensors10120540 doi (DE-627)DOAJ083207554 (DE-599)DOAJ7dc9232cfb0d413d957e3f00f71ab608 DE-627 ger DE-627 rakwb eng QD415-436 Chia-Ming Yang verfasserin aut Virtual Filter Membranes in a Microfluidic System for Sorting and Separating Size-Based Micro Polystyrene Beads by Illumination Intensity Design in Optically Induced Dielectrophoresis (ODEP) 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In biomedical diagnosis, the efficient separation and purification of specific targets from clinical samples is the desired first step. Herein, the concept of virtual filter membranes based on optically-induced dielectrophoresis (ODEP) manipulation in a microfluidic channel is proposed as a light screening membrane for the separation of polystyrene (PS) microparticles with three different diameters of 15.8, 10.8 and 5.8 µm. The ODEP manipulation velocity of three types of PS microparticles reacted with the color brightness setting was investigated to determine the light intensity to induce an ODEP force higher than the drag force of fluid speed. The color brightness of the light bar in three areas of the light screening membrane was selected as 60%, 70% and 100% to isolate PS microparticles with diameters of 15.8, 10.8 and 5.8 µm, respectively. With a double light bar and a flow rate of 3 µL/min, the recovery rate and isolation purity was improved by 95.1~100% and 94.4~98.6% from the mixture of three types of PS microparticles within 2 min, respectively. This proposed light screening membrane could be a candidate for the separation of small-volume and rare biomedical samples, including circulating tumor cells (CTCs) and bacteria in the blood. brightness light screening membrane microfluidic ODEP polystyrene Biochemistry Ai-Yun Wu verfasserin aut Jian-Cyun Yu verfasserin aut Po-Yu Chu verfasserin aut Chia-Hsun Hsieh verfasserin aut Min-Hsien Wu verfasserin aut In Chemosensors MDPI AG, 2013 10(2022), 12, p 540 (DE-627)737287594 (DE-600)2704218-2 22279040 nnns volume:10 year:2022 number:12, p 540 https://doi.org/10.3390/chemosensors10120540 kostenfrei https://doaj.org/article/7dc9232cfb0d413d957e3f00f71ab608 kostenfrei https://www.mdpi.com/2227-9040/10/12/540 kostenfrei https://doaj.org/toc/2227-9040 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 12, p 540 |
spelling |
10.3390/chemosensors10120540 doi (DE-627)DOAJ083207554 (DE-599)DOAJ7dc9232cfb0d413d957e3f00f71ab608 DE-627 ger DE-627 rakwb eng QD415-436 Chia-Ming Yang verfasserin aut Virtual Filter Membranes in a Microfluidic System for Sorting and Separating Size-Based Micro Polystyrene Beads by Illumination Intensity Design in Optically Induced Dielectrophoresis (ODEP) 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In biomedical diagnosis, the efficient separation and purification of specific targets from clinical samples is the desired first step. Herein, the concept of virtual filter membranes based on optically-induced dielectrophoresis (ODEP) manipulation in a microfluidic channel is proposed as a light screening membrane for the separation of polystyrene (PS) microparticles with three different diameters of 15.8, 10.8 and 5.8 µm. The ODEP manipulation velocity of three types of PS microparticles reacted with the color brightness setting was investigated to determine the light intensity to induce an ODEP force higher than the drag force of fluid speed. The color brightness of the light bar in three areas of the light screening membrane was selected as 60%, 70% and 100% to isolate PS microparticles with diameters of 15.8, 10.8 and 5.8 µm, respectively. With a double light bar and a flow rate of 3 µL/min, the recovery rate and isolation purity was improved by 95.1~100% and 94.4~98.6% from the mixture of three types of PS microparticles within 2 min, respectively. This proposed light screening membrane could be a candidate for the separation of small-volume and rare biomedical samples, including circulating tumor cells (CTCs) and bacteria in the blood. brightness light screening membrane microfluidic ODEP polystyrene Biochemistry Ai-Yun Wu verfasserin aut Jian-Cyun Yu verfasserin aut Po-Yu Chu verfasserin aut Chia-Hsun Hsieh verfasserin aut Min-Hsien Wu verfasserin aut In Chemosensors MDPI AG, 2013 10(2022), 12, p 540 (DE-627)737287594 (DE-600)2704218-2 22279040 nnns volume:10 year:2022 number:12, p 540 https://doi.org/10.3390/chemosensors10120540 kostenfrei https://doaj.org/article/7dc9232cfb0d413d957e3f00f71ab608 kostenfrei https://www.mdpi.com/2227-9040/10/12/540 kostenfrei https://doaj.org/toc/2227-9040 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 12, p 540 |
allfields_unstemmed |
10.3390/chemosensors10120540 doi (DE-627)DOAJ083207554 (DE-599)DOAJ7dc9232cfb0d413d957e3f00f71ab608 DE-627 ger DE-627 rakwb eng QD415-436 Chia-Ming Yang verfasserin aut Virtual Filter Membranes in a Microfluidic System for Sorting and Separating Size-Based Micro Polystyrene Beads by Illumination Intensity Design in Optically Induced Dielectrophoresis (ODEP) 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In biomedical diagnosis, the efficient separation and purification of specific targets from clinical samples is the desired first step. Herein, the concept of virtual filter membranes based on optically-induced dielectrophoresis (ODEP) manipulation in a microfluidic channel is proposed as a light screening membrane for the separation of polystyrene (PS) microparticles with three different diameters of 15.8, 10.8 and 5.8 µm. The ODEP manipulation velocity of three types of PS microparticles reacted with the color brightness setting was investigated to determine the light intensity to induce an ODEP force higher than the drag force of fluid speed. The color brightness of the light bar in three areas of the light screening membrane was selected as 60%, 70% and 100% to isolate PS microparticles with diameters of 15.8, 10.8 and 5.8 µm, respectively. With a double light bar and a flow rate of 3 µL/min, the recovery rate and isolation purity was improved by 95.1~100% and 94.4~98.6% from the mixture of three types of PS microparticles within 2 min, respectively. This proposed light screening membrane could be a candidate for the separation of small-volume and rare biomedical samples, including circulating tumor cells (CTCs) and bacteria in the blood. brightness light screening membrane microfluidic ODEP polystyrene Biochemistry Ai-Yun Wu verfasserin aut Jian-Cyun Yu verfasserin aut Po-Yu Chu verfasserin aut Chia-Hsun Hsieh verfasserin aut Min-Hsien Wu verfasserin aut In Chemosensors MDPI AG, 2013 10(2022), 12, p 540 (DE-627)737287594 (DE-600)2704218-2 22279040 nnns volume:10 year:2022 number:12, p 540 https://doi.org/10.3390/chemosensors10120540 kostenfrei https://doaj.org/article/7dc9232cfb0d413d957e3f00f71ab608 kostenfrei https://www.mdpi.com/2227-9040/10/12/540 kostenfrei https://doaj.org/toc/2227-9040 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 12, p 540 |
allfieldsGer |
10.3390/chemosensors10120540 doi (DE-627)DOAJ083207554 (DE-599)DOAJ7dc9232cfb0d413d957e3f00f71ab608 DE-627 ger DE-627 rakwb eng QD415-436 Chia-Ming Yang verfasserin aut Virtual Filter Membranes in a Microfluidic System for Sorting and Separating Size-Based Micro Polystyrene Beads by Illumination Intensity Design in Optically Induced Dielectrophoresis (ODEP) 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In biomedical diagnosis, the efficient separation and purification of specific targets from clinical samples is the desired first step. Herein, the concept of virtual filter membranes based on optically-induced dielectrophoresis (ODEP) manipulation in a microfluidic channel is proposed as a light screening membrane for the separation of polystyrene (PS) microparticles with three different diameters of 15.8, 10.8 and 5.8 µm. The ODEP manipulation velocity of three types of PS microparticles reacted with the color brightness setting was investigated to determine the light intensity to induce an ODEP force higher than the drag force of fluid speed. The color brightness of the light bar in three areas of the light screening membrane was selected as 60%, 70% and 100% to isolate PS microparticles with diameters of 15.8, 10.8 and 5.8 µm, respectively. With a double light bar and a flow rate of 3 µL/min, the recovery rate and isolation purity was improved by 95.1~100% and 94.4~98.6% from the mixture of three types of PS microparticles within 2 min, respectively. This proposed light screening membrane could be a candidate for the separation of small-volume and rare biomedical samples, including circulating tumor cells (CTCs) and bacteria in the blood. brightness light screening membrane microfluidic ODEP polystyrene Biochemistry Ai-Yun Wu verfasserin aut Jian-Cyun Yu verfasserin aut Po-Yu Chu verfasserin aut Chia-Hsun Hsieh verfasserin aut Min-Hsien Wu verfasserin aut In Chemosensors MDPI AG, 2013 10(2022), 12, p 540 (DE-627)737287594 (DE-600)2704218-2 22279040 nnns volume:10 year:2022 number:12, p 540 https://doi.org/10.3390/chemosensors10120540 kostenfrei https://doaj.org/article/7dc9232cfb0d413d957e3f00f71ab608 kostenfrei https://www.mdpi.com/2227-9040/10/12/540 kostenfrei https://doaj.org/toc/2227-9040 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 12, p 540 |
allfieldsSound |
10.3390/chemosensors10120540 doi (DE-627)DOAJ083207554 (DE-599)DOAJ7dc9232cfb0d413d957e3f00f71ab608 DE-627 ger DE-627 rakwb eng QD415-436 Chia-Ming Yang verfasserin aut Virtual Filter Membranes in a Microfluidic System for Sorting and Separating Size-Based Micro Polystyrene Beads by Illumination Intensity Design in Optically Induced Dielectrophoresis (ODEP) 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In biomedical diagnosis, the efficient separation and purification of specific targets from clinical samples is the desired first step. Herein, the concept of virtual filter membranes based on optically-induced dielectrophoresis (ODEP) manipulation in a microfluidic channel is proposed as a light screening membrane for the separation of polystyrene (PS) microparticles with three different diameters of 15.8, 10.8 and 5.8 µm. The ODEP manipulation velocity of three types of PS microparticles reacted with the color brightness setting was investigated to determine the light intensity to induce an ODEP force higher than the drag force of fluid speed. The color brightness of the light bar in three areas of the light screening membrane was selected as 60%, 70% and 100% to isolate PS microparticles with diameters of 15.8, 10.8 and 5.8 µm, respectively. With a double light bar and a flow rate of 3 µL/min, the recovery rate and isolation purity was improved by 95.1~100% and 94.4~98.6% from the mixture of three types of PS microparticles within 2 min, respectively. This proposed light screening membrane could be a candidate for the separation of small-volume and rare biomedical samples, including circulating tumor cells (CTCs) and bacteria in the blood. brightness light screening membrane microfluidic ODEP polystyrene Biochemistry Ai-Yun Wu verfasserin aut Jian-Cyun Yu verfasserin aut Po-Yu Chu verfasserin aut Chia-Hsun Hsieh verfasserin aut Min-Hsien Wu verfasserin aut In Chemosensors MDPI AG, 2013 10(2022), 12, p 540 (DE-627)737287594 (DE-600)2704218-2 22279040 nnns volume:10 year:2022 number:12, p 540 https://doi.org/10.3390/chemosensors10120540 kostenfrei https://doaj.org/article/7dc9232cfb0d413d957e3f00f71ab608 kostenfrei https://www.mdpi.com/2227-9040/10/12/540 kostenfrei https://doaj.org/toc/2227-9040 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 12, p 540 |
language |
English |
source |
In Chemosensors 10(2022), 12, p 540 volume:10 year:2022 number:12, p 540 |
sourceStr |
In Chemosensors 10(2022), 12, p 540 volume:10 year:2022 number:12, p 540 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
brightness light screening membrane microfluidic ODEP polystyrene Biochemistry |
isfreeaccess_bool |
true |
container_title |
Chemosensors |
authorswithroles_txt_mv |
Chia-Ming Yang @@aut@@ Ai-Yun Wu @@aut@@ Jian-Cyun Yu @@aut@@ Po-Yu Chu @@aut@@ Chia-Hsun Hsieh @@aut@@ Min-Hsien Wu @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
737287594 |
id |
DOAJ083207554 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ083207554</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414153856.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/chemosensors10120540</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ083207554</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7dc9232cfb0d413d957e3f00f71ab608</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD415-436</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chia-Ming Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Virtual Filter Membranes in a Microfluidic System for Sorting and Separating Size-Based Micro Polystyrene Beads by Illumination Intensity Design in Optically Induced Dielectrophoresis (ODEP)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In biomedical diagnosis, the efficient separation and purification of specific targets from clinical samples is the desired first step. Herein, the concept of virtual filter membranes based on optically-induced dielectrophoresis (ODEP) manipulation in a microfluidic channel is proposed as a light screening membrane for the separation of polystyrene (PS) microparticles with three different diameters of 15.8, 10.8 and 5.8 µm. The ODEP manipulation velocity of three types of PS microparticles reacted with the color brightness setting was investigated to determine the light intensity to induce an ODEP force higher than the drag force of fluid speed. The color brightness of the light bar in three areas of the light screening membrane was selected as 60%, 70% and 100% to isolate PS microparticles with diameters of 15.8, 10.8 and 5.8 µm, respectively. With a double light bar and a flow rate of 3 µL/min, the recovery rate and isolation purity was improved by 95.1~100% and 94.4~98.6% from the mixture of three types of PS microparticles within 2 min, respectively. This proposed light screening membrane could be a candidate for the separation of small-volume and rare biomedical samples, including circulating tumor cells (CTCs) and bacteria in the blood.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">brightness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">light screening membrane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microfluidic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ODEP</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polystyrene</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biochemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ai-Yun Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jian-Cyun Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Po-Yu Chu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chia-Hsun Hsieh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Min-Hsien Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Chemosensors</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">10(2022), 12, p 540</subfield><subfield code="w">(DE-627)737287594</subfield><subfield code="w">(DE-600)2704218-2</subfield><subfield code="x">22279040</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:12, p 540</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/chemosensors10120540</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7dc9232cfb0d413d957e3f00f71ab608</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-9040/10/12/540</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-9040</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">12, p 540</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Chia-Ming Yang |
spellingShingle |
Chia-Ming Yang misc QD415-436 misc brightness misc light screening membrane misc microfluidic misc ODEP misc polystyrene misc Biochemistry Virtual Filter Membranes in a Microfluidic System for Sorting and Separating Size-Based Micro Polystyrene Beads by Illumination Intensity Design in Optically Induced Dielectrophoresis (ODEP) |
authorStr |
Chia-Ming Yang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287594 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD415-436 |
illustrated |
Not Illustrated |
issn |
22279040 |
topic_title |
QD415-436 Virtual Filter Membranes in a Microfluidic System for Sorting and Separating Size-Based Micro Polystyrene Beads by Illumination Intensity Design in Optically Induced Dielectrophoresis (ODEP) brightness light screening membrane microfluidic ODEP polystyrene |
topic |
misc QD415-436 misc brightness misc light screening membrane misc microfluidic misc ODEP misc polystyrene misc Biochemistry |
topic_unstemmed |
misc QD415-436 misc brightness misc light screening membrane misc microfluidic misc ODEP misc polystyrene misc Biochemistry |
topic_browse |
misc QD415-436 misc brightness misc light screening membrane misc microfluidic misc ODEP misc polystyrene misc Biochemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Chemosensors |
hierarchy_parent_id |
737287594 |
hierarchy_top_title |
Chemosensors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287594 (DE-600)2704218-2 |
title |
Virtual Filter Membranes in a Microfluidic System for Sorting and Separating Size-Based Micro Polystyrene Beads by Illumination Intensity Design in Optically Induced Dielectrophoresis (ODEP) |
ctrlnum |
(DE-627)DOAJ083207554 (DE-599)DOAJ7dc9232cfb0d413d957e3f00f71ab608 |
title_full |
Virtual Filter Membranes in a Microfluidic System for Sorting and Separating Size-Based Micro Polystyrene Beads by Illumination Intensity Design in Optically Induced Dielectrophoresis (ODEP) |
author_sort |
Chia-Ming Yang |
journal |
Chemosensors |
journalStr |
Chemosensors |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Chia-Ming Yang Ai-Yun Wu Jian-Cyun Yu Po-Yu Chu Chia-Hsun Hsieh Min-Hsien Wu |
container_volume |
10 |
class |
QD415-436 |
format_se |
Elektronische Aufsätze |
author-letter |
Chia-Ming Yang |
doi_str_mv |
10.3390/chemosensors10120540 |
author2-role |
verfasserin |
title_sort |
virtual filter membranes in a microfluidic system for sorting and separating size-based micro polystyrene beads by illumination intensity design in optically induced dielectrophoresis (odep) |
callnumber |
QD415-436 |
title_auth |
Virtual Filter Membranes in a Microfluidic System for Sorting and Separating Size-Based Micro Polystyrene Beads by Illumination Intensity Design in Optically Induced Dielectrophoresis (ODEP) |
abstract |
In biomedical diagnosis, the efficient separation and purification of specific targets from clinical samples is the desired first step. Herein, the concept of virtual filter membranes based on optically-induced dielectrophoresis (ODEP) manipulation in a microfluidic channel is proposed as a light screening membrane for the separation of polystyrene (PS) microparticles with three different diameters of 15.8, 10.8 and 5.8 µm. The ODEP manipulation velocity of three types of PS microparticles reacted with the color brightness setting was investigated to determine the light intensity to induce an ODEP force higher than the drag force of fluid speed. The color brightness of the light bar in three areas of the light screening membrane was selected as 60%, 70% and 100% to isolate PS microparticles with diameters of 15.8, 10.8 and 5.8 µm, respectively. With a double light bar and a flow rate of 3 µL/min, the recovery rate and isolation purity was improved by 95.1~100% and 94.4~98.6% from the mixture of three types of PS microparticles within 2 min, respectively. This proposed light screening membrane could be a candidate for the separation of small-volume and rare biomedical samples, including circulating tumor cells (CTCs) and bacteria in the blood. |
abstractGer |
In biomedical diagnosis, the efficient separation and purification of specific targets from clinical samples is the desired first step. Herein, the concept of virtual filter membranes based on optically-induced dielectrophoresis (ODEP) manipulation in a microfluidic channel is proposed as a light screening membrane for the separation of polystyrene (PS) microparticles with three different diameters of 15.8, 10.8 and 5.8 µm. The ODEP manipulation velocity of three types of PS microparticles reacted with the color brightness setting was investigated to determine the light intensity to induce an ODEP force higher than the drag force of fluid speed. The color brightness of the light bar in three areas of the light screening membrane was selected as 60%, 70% and 100% to isolate PS microparticles with diameters of 15.8, 10.8 and 5.8 µm, respectively. With a double light bar and a flow rate of 3 µL/min, the recovery rate and isolation purity was improved by 95.1~100% and 94.4~98.6% from the mixture of three types of PS microparticles within 2 min, respectively. This proposed light screening membrane could be a candidate for the separation of small-volume and rare biomedical samples, including circulating tumor cells (CTCs) and bacteria in the blood. |
abstract_unstemmed |
In biomedical diagnosis, the efficient separation and purification of specific targets from clinical samples is the desired first step. Herein, the concept of virtual filter membranes based on optically-induced dielectrophoresis (ODEP) manipulation in a microfluidic channel is proposed as a light screening membrane for the separation of polystyrene (PS) microparticles with three different diameters of 15.8, 10.8 and 5.8 µm. The ODEP manipulation velocity of three types of PS microparticles reacted with the color brightness setting was investigated to determine the light intensity to induce an ODEP force higher than the drag force of fluid speed. The color brightness of the light bar in three areas of the light screening membrane was selected as 60%, 70% and 100% to isolate PS microparticles with diameters of 15.8, 10.8 and 5.8 µm, respectively. With a double light bar and a flow rate of 3 µL/min, the recovery rate and isolation purity was improved by 95.1~100% and 94.4~98.6% from the mixture of three types of PS microparticles within 2 min, respectively. This proposed light screening membrane could be a candidate for the separation of small-volume and rare biomedical samples, including circulating tumor cells (CTCs) and bacteria in the blood. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
12, p 540 |
title_short |
Virtual Filter Membranes in a Microfluidic System for Sorting and Separating Size-Based Micro Polystyrene Beads by Illumination Intensity Design in Optically Induced Dielectrophoresis (ODEP) |
url |
https://doi.org/10.3390/chemosensors10120540 https://doaj.org/article/7dc9232cfb0d413d957e3f00f71ab608 https://www.mdpi.com/2227-9040/10/12/540 https://doaj.org/toc/2227-9040 |
remote_bool |
true |
author2 |
Ai-Yun Wu Jian-Cyun Yu Po-Yu Chu Chia-Hsun Hsieh Min-Hsien Wu |
author2Str |
Ai-Yun Wu Jian-Cyun Yu Po-Yu Chu Chia-Hsun Hsieh Min-Hsien Wu |
ppnlink |
737287594 |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/chemosensors10120540 |
callnumber-a |
QD415-436 |
up_date |
2024-07-03T16:09:34.076Z |
_version_ |
1803574810071007232 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ083207554</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414153856.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/chemosensors10120540</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ083207554</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7dc9232cfb0d413d957e3f00f71ab608</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD415-436</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chia-Ming Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Virtual Filter Membranes in a Microfluidic System for Sorting and Separating Size-Based Micro Polystyrene Beads by Illumination Intensity Design in Optically Induced Dielectrophoresis (ODEP)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In biomedical diagnosis, the efficient separation and purification of specific targets from clinical samples is the desired first step. Herein, the concept of virtual filter membranes based on optically-induced dielectrophoresis (ODEP) manipulation in a microfluidic channel is proposed as a light screening membrane for the separation of polystyrene (PS) microparticles with three different diameters of 15.8, 10.8 and 5.8 µm. The ODEP manipulation velocity of three types of PS microparticles reacted with the color brightness setting was investigated to determine the light intensity to induce an ODEP force higher than the drag force of fluid speed. The color brightness of the light bar in three areas of the light screening membrane was selected as 60%, 70% and 100% to isolate PS microparticles with diameters of 15.8, 10.8 and 5.8 µm, respectively. With a double light bar and a flow rate of 3 µL/min, the recovery rate and isolation purity was improved by 95.1~100% and 94.4~98.6% from the mixture of three types of PS microparticles within 2 min, respectively. This proposed light screening membrane could be a candidate for the separation of small-volume and rare biomedical samples, including circulating tumor cells (CTCs) and bacteria in the blood.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">brightness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">light screening membrane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">microfluidic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ODEP</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polystyrene</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biochemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ai-Yun Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jian-Cyun Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Po-Yu Chu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chia-Hsun Hsieh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Min-Hsien Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Chemosensors</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">10(2022), 12, p 540</subfield><subfield code="w">(DE-627)737287594</subfield><subfield code="w">(DE-600)2704218-2</subfield><subfield code="x">22279040</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:12, p 540</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/chemosensors10120540</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7dc9232cfb0d413d957e3f00f71ab608</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2227-9040/10/12/540</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2227-9040</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">12, p 540</subfield></datafield></record></collection>
|
score |
7.4017506 |