A Novel Video Transmission Latency Measurement Method for Intelligent Cloud Computing
Low latency video transmission is gaining importance in time-critical applications using real-time cloud-based systems. Cloud-based Virtual Reality (VR), remote control, and AI response systems are emerging use cases that demand low latency and good reliability. Although there are many video transmi...
Ausführliche Beschreibung
Autor*in: |
Yiliang Wu [verfasserIn] Xue Bai [verfasserIn] Yendo Hu [verfasserIn] Minghong Chen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Applied Sciences - MDPI AG, 2012, 12(2022), 24, p 12884 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2022 ; number:24, p 12884 |
Links: |
---|
DOI / URN: |
10.3390/app122412884 |
---|
Katalog-ID: |
DOAJ083238379 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ083238379 | ||
003 | DE-627 | ||
005 | 20240414154346.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/app122412884 |2 doi | |
035 | |a (DE-627)DOAJ083238379 | ||
035 | |a (DE-599)DOAJ2321fc4ee2a24af9ba001d8b1f67b4a5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1-2040 | |
050 | 0 | |a QH301-705.5 | |
050 | 0 | |a QC1-999 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Yiliang Wu |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Novel Video Transmission Latency Measurement Method for Intelligent Cloud Computing |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Low latency video transmission is gaining importance in time-critical applications using real-time cloud-based systems. Cloud-based Virtual Reality (VR), remote control, and AI response systems are emerging use cases that demand low latency and good reliability. Although there are many video transmission schemes that claim low latency, they vary over different network conditions. Therefore, it is necessary to develop methods that can accurately measure end-to-end latency online, continuously, without any content modification. This research brings these applications one step closer to addressing these next generation use cases. This paper analyzes the cause of end-to-end latency within a video transmission system, and then proposes three methods to measure the latency: timecode, remote online, and lossless remote video online. The corresponding equipment was designed and implemented. The actual measurement of the three methods using related equipment proved that our proposed method can accurately and effectively measure the end-to-end latency of the video transmission system. | ||
650 | 4 | |a real-time video | |
650 | 4 | |a timecode | |
650 | 4 | |a remote online | |
650 | 4 | |a lossless remote video online | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Biology (General) | |
653 | 0 | |a Physics | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Xue Bai |e verfasserin |4 aut | |
700 | 0 | |a Yendo Hu |e verfasserin |4 aut | |
700 | 0 | |a Minghong Chen |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Applied Sciences |d MDPI AG, 2012 |g 12(2022), 24, p 12884 |w (DE-627)737287640 |w (DE-600)2704225-X |x 20763417 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2022 |g number:24, p 12884 |
856 | 4 | 0 | |u https://doi.org/10.3390/app122412884 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/2321fc4ee2a24af9ba001d8b1f67b4a5 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2076-3417/12/24/12884 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2076-3417 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2022 |e 24, p 12884 |
author_variant |
y w yw x b xb y h yh m c mc |
---|---|
matchkey_str |
article:20763417:2022----::nvlietasisoltnyesrmnmtofrne |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TA |
publishDate |
2022 |
allfields |
10.3390/app122412884 doi (DE-627)DOAJ083238379 (DE-599)DOAJ2321fc4ee2a24af9ba001d8b1f67b4a5 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Yiliang Wu verfasserin aut A Novel Video Transmission Latency Measurement Method for Intelligent Cloud Computing 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Low latency video transmission is gaining importance in time-critical applications using real-time cloud-based systems. Cloud-based Virtual Reality (VR), remote control, and AI response systems are emerging use cases that demand low latency and good reliability. Although there are many video transmission schemes that claim low latency, they vary over different network conditions. Therefore, it is necessary to develop methods that can accurately measure end-to-end latency online, continuously, without any content modification. This research brings these applications one step closer to addressing these next generation use cases. This paper analyzes the cause of end-to-end latency within a video transmission system, and then proposes three methods to measure the latency: timecode, remote online, and lossless remote video online. The corresponding equipment was designed and implemented. The actual measurement of the three methods using related equipment proved that our proposed method can accurately and effectively measure the end-to-end latency of the video transmission system. real-time video timecode remote online lossless remote video online Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Xue Bai verfasserin aut Yendo Hu verfasserin aut Minghong Chen verfasserin aut In Applied Sciences MDPI AG, 2012 12(2022), 24, p 12884 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:12 year:2022 number:24, p 12884 https://doi.org/10.3390/app122412884 kostenfrei https://doaj.org/article/2321fc4ee2a24af9ba001d8b1f67b4a5 kostenfrei https://www.mdpi.com/2076-3417/12/24/12884 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 24, p 12884 |
spelling |
10.3390/app122412884 doi (DE-627)DOAJ083238379 (DE-599)DOAJ2321fc4ee2a24af9ba001d8b1f67b4a5 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Yiliang Wu verfasserin aut A Novel Video Transmission Latency Measurement Method for Intelligent Cloud Computing 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Low latency video transmission is gaining importance in time-critical applications using real-time cloud-based systems. Cloud-based Virtual Reality (VR), remote control, and AI response systems are emerging use cases that demand low latency and good reliability. Although there are many video transmission schemes that claim low latency, they vary over different network conditions. Therefore, it is necessary to develop methods that can accurately measure end-to-end latency online, continuously, without any content modification. This research brings these applications one step closer to addressing these next generation use cases. This paper analyzes the cause of end-to-end latency within a video transmission system, and then proposes three methods to measure the latency: timecode, remote online, and lossless remote video online. The corresponding equipment was designed and implemented. The actual measurement of the three methods using related equipment proved that our proposed method can accurately and effectively measure the end-to-end latency of the video transmission system. real-time video timecode remote online lossless remote video online Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Xue Bai verfasserin aut Yendo Hu verfasserin aut Minghong Chen verfasserin aut In Applied Sciences MDPI AG, 2012 12(2022), 24, p 12884 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:12 year:2022 number:24, p 12884 https://doi.org/10.3390/app122412884 kostenfrei https://doaj.org/article/2321fc4ee2a24af9ba001d8b1f67b4a5 kostenfrei https://www.mdpi.com/2076-3417/12/24/12884 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 24, p 12884 |
allfields_unstemmed |
10.3390/app122412884 doi (DE-627)DOAJ083238379 (DE-599)DOAJ2321fc4ee2a24af9ba001d8b1f67b4a5 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Yiliang Wu verfasserin aut A Novel Video Transmission Latency Measurement Method for Intelligent Cloud Computing 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Low latency video transmission is gaining importance in time-critical applications using real-time cloud-based systems. Cloud-based Virtual Reality (VR), remote control, and AI response systems are emerging use cases that demand low latency and good reliability. Although there are many video transmission schemes that claim low latency, they vary over different network conditions. Therefore, it is necessary to develop methods that can accurately measure end-to-end latency online, continuously, without any content modification. This research brings these applications one step closer to addressing these next generation use cases. This paper analyzes the cause of end-to-end latency within a video transmission system, and then proposes three methods to measure the latency: timecode, remote online, and lossless remote video online. The corresponding equipment was designed and implemented. The actual measurement of the three methods using related equipment proved that our proposed method can accurately and effectively measure the end-to-end latency of the video transmission system. real-time video timecode remote online lossless remote video online Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Xue Bai verfasserin aut Yendo Hu verfasserin aut Minghong Chen verfasserin aut In Applied Sciences MDPI AG, 2012 12(2022), 24, p 12884 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:12 year:2022 number:24, p 12884 https://doi.org/10.3390/app122412884 kostenfrei https://doaj.org/article/2321fc4ee2a24af9ba001d8b1f67b4a5 kostenfrei https://www.mdpi.com/2076-3417/12/24/12884 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 24, p 12884 |
allfieldsGer |
10.3390/app122412884 doi (DE-627)DOAJ083238379 (DE-599)DOAJ2321fc4ee2a24af9ba001d8b1f67b4a5 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Yiliang Wu verfasserin aut A Novel Video Transmission Latency Measurement Method for Intelligent Cloud Computing 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Low latency video transmission is gaining importance in time-critical applications using real-time cloud-based systems. Cloud-based Virtual Reality (VR), remote control, and AI response systems are emerging use cases that demand low latency and good reliability. Although there are many video transmission schemes that claim low latency, they vary over different network conditions. Therefore, it is necessary to develop methods that can accurately measure end-to-end latency online, continuously, without any content modification. This research brings these applications one step closer to addressing these next generation use cases. This paper analyzes the cause of end-to-end latency within a video transmission system, and then proposes three methods to measure the latency: timecode, remote online, and lossless remote video online. The corresponding equipment was designed and implemented. The actual measurement of the three methods using related equipment proved that our proposed method can accurately and effectively measure the end-to-end latency of the video transmission system. real-time video timecode remote online lossless remote video online Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Xue Bai verfasserin aut Yendo Hu verfasserin aut Minghong Chen verfasserin aut In Applied Sciences MDPI AG, 2012 12(2022), 24, p 12884 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:12 year:2022 number:24, p 12884 https://doi.org/10.3390/app122412884 kostenfrei https://doaj.org/article/2321fc4ee2a24af9ba001d8b1f67b4a5 kostenfrei https://www.mdpi.com/2076-3417/12/24/12884 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 24, p 12884 |
allfieldsSound |
10.3390/app122412884 doi (DE-627)DOAJ083238379 (DE-599)DOAJ2321fc4ee2a24af9ba001d8b1f67b4a5 DE-627 ger DE-627 rakwb eng TA1-2040 QH301-705.5 QC1-999 QD1-999 Yiliang Wu verfasserin aut A Novel Video Transmission Latency Measurement Method for Intelligent Cloud Computing 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Low latency video transmission is gaining importance in time-critical applications using real-time cloud-based systems. Cloud-based Virtual Reality (VR), remote control, and AI response systems are emerging use cases that demand low latency and good reliability. Although there are many video transmission schemes that claim low latency, they vary over different network conditions. Therefore, it is necessary to develop methods that can accurately measure end-to-end latency online, continuously, without any content modification. This research brings these applications one step closer to addressing these next generation use cases. This paper analyzes the cause of end-to-end latency within a video transmission system, and then proposes three methods to measure the latency: timecode, remote online, and lossless remote video online. The corresponding equipment was designed and implemented. The actual measurement of the three methods using related equipment proved that our proposed method can accurately and effectively measure the end-to-end latency of the video transmission system. real-time video timecode remote online lossless remote video online Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry Xue Bai verfasserin aut Yendo Hu verfasserin aut Minghong Chen verfasserin aut In Applied Sciences MDPI AG, 2012 12(2022), 24, p 12884 (DE-627)737287640 (DE-600)2704225-X 20763417 nnns volume:12 year:2022 number:24, p 12884 https://doi.org/10.3390/app122412884 kostenfrei https://doaj.org/article/2321fc4ee2a24af9ba001d8b1f67b4a5 kostenfrei https://www.mdpi.com/2076-3417/12/24/12884 kostenfrei https://doaj.org/toc/2076-3417 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 24, p 12884 |
language |
English |
source |
In Applied Sciences 12(2022), 24, p 12884 volume:12 year:2022 number:24, p 12884 |
sourceStr |
In Applied Sciences 12(2022), 24, p 12884 volume:12 year:2022 number:24, p 12884 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
real-time video timecode remote online lossless remote video online Technology T Engineering (General). Civil engineering (General) Biology (General) Physics Chemistry |
isfreeaccess_bool |
true |
container_title |
Applied Sciences |
authorswithroles_txt_mv |
Yiliang Wu @@aut@@ Xue Bai @@aut@@ Yendo Hu @@aut@@ Minghong Chen @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
737287640 |
id |
DOAJ083238379 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ083238379</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414154346.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app122412884</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ083238379</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2321fc4ee2a24af9ba001d8b1f67b4a5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yiliang Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Novel Video Transmission Latency Measurement Method for Intelligent Cloud Computing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Low latency video transmission is gaining importance in time-critical applications using real-time cloud-based systems. Cloud-based Virtual Reality (VR), remote control, and AI response systems are emerging use cases that demand low latency and good reliability. Although there are many video transmission schemes that claim low latency, they vary over different network conditions. Therefore, it is necessary to develop methods that can accurately measure end-to-end latency online, continuously, without any content modification. This research brings these applications one step closer to addressing these next generation use cases. This paper analyzes the cause of end-to-end latency within a video transmission system, and then proposes three methods to measure the latency: timecode, remote online, and lossless remote video online. The corresponding equipment was designed and implemented. The actual measurement of the three methods using related equipment proved that our proposed method can accurately and effectively measure the end-to-end latency of the video transmission system.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">real-time video</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">timecode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">remote online</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lossless remote video online</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xue Bai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yendo Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Minghong Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 24, p 12884</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:24, p 12884</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app122412884</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2321fc4ee2a24af9ba001d8b1f67b4a5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/12/24/12884</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">24, p 12884</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Yiliang Wu |
spellingShingle |
Yiliang Wu misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc real-time video misc timecode misc remote online misc lossless remote video online misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry A Novel Video Transmission Latency Measurement Method for Intelligent Cloud Computing |
authorStr |
Yiliang Wu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287640 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1-2040 |
illustrated |
Not Illustrated |
issn |
20763417 |
topic_title |
TA1-2040 QH301-705.5 QC1-999 QD1-999 A Novel Video Transmission Latency Measurement Method for Intelligent Cloud Computing real-time video timecode remote online lossless remote video online |
topic |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc real-time video misc timecode misc remote online misc lossless remote video online misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_unstemmed |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc real-time video misc timecode misc remote online misc lossless remote video online misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
topic_browse |
misc TA1-2040 misc QH301-705.5 misc QC1-999 misc QD1-999 misc real-time video misc timecode misc remote online misc lossless remote video online misc Technology misc T misc Engineering (General). Civil engineering (General) misc Biology (General) misc Physics misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied Sciences |
hierarchy_parent_id |
737287640 |
hierarchy_top_title |
Applied Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287640 (DE-600)2704225-X |
title |
A Novel Video Transmission Latency Measurement Method for Intelligent Cloud Computing |
ctrlnum |
(DE-627)DOAJ083238379 (DE-599)DOAJ2321fc4ee2a24af9ba001d8b1f67b4a5 |
title_full |
A Novel Video Transmission Latency Measurement Method for Intelligent Cloud Computing |
author_sort |
Yiliang Wu |
journal |
Applied Sciences |
journalStr |
Applied Sciences |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Yiliang Wu Xue Bai Yendo Hu Minghong Chen |
container_volume |
12 |
class |
TA1-2040 QH301-705.5 QC1-999 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Yiliang Wu |
doi_str_mv |
10.3390/app122412884 |
author2-role |
verfasserin |
title_sort |
novel video transmission latency measurement method for intelligent cloud computing |
callnumber |
TA1-2040 |
title_auth |
A Novel Video Transmission Latency Measurement Method for Intelligent Cloud Computing |
abstract |
Low latency video transmission is gaining importance in time-critical applications using real-time cloud-based systems. Cloud-based Virtual Reality (VR), remote control, and AI response systems are emerging use cases that demand low latency and good reliability. Although there are many video transmission schemes that claim low latency, they vary over different network conditions. Therefore, it is necessary to develop methods that can accurately measure end-to-end latency online, continuously, without any content modification. This research brings these applications one step closer to addressing these next generation use cases. This paper analyzes the cause of end-to-end latency within a video transmission system, and then proposes three methods to measure the latency: timecode, remote online, and lossless remote video online. The corresponding equipment was designed and implemented. The actual measurement of the three methods using related equipment proved that our proposed method can accurately and effectively measure the end-to-end latency of the video transmission system. |
abstractGer |
Low latency video transmission is gaining importance in time-critical applications using real-time cloud-based systems. Cloud-based Virtual Reality (VR), remote control, and AI response systems are emerging use cases that demand low latency and good reliability. Although there are many video transmission schemes that claim low latency, they vary over different network conditions. Therefore, it is necessary to develop methods that can accurately measure end-to-end latency online, continuously, without any content modification. This research brings these applications one step closer to addressing these next generation use cases. This paper analyzes the cause of end-to-end latency within a video transmission system, and then proposes three methods to measure the latency: timecode, remote online, and lossless remote video online. The corresponding equipment was designed and implemented. The actual measurement of the three methods using related equipment proved that our proposed method can accurately and effectively measure the end-to-end latency of the video transmission system. |
abstract_unstemmed |
Low latency video transmission is gaining importance in time-critical applications using real-time cloud-based systems. Cloud-based Virtual Reality (VR), remote control, and AI response systems are emerging use cases that demand low latency and good reliability. Although there are many video transmission schemes that claim low latency, they vary over different network conditions. Therefore, it is necessary to develop methods that can accurately measure end-to-end latency online, continuously, without any content modification. This research brings these applications one step closer to addressing these next generation use cases. This paper analyzes the cause of end-to-end latency within a video transmission system, and then proposes three methods to measure the latency: timecode, remote online, and lossless remote video online. The corresponding equipment was designed and implemented. The actual measurement of the three methods using related equipment proved that our proposed method can accurately and effectively measure the end-to-end latency of the video transmission system. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
24, p 12884 |
title_short |
A Novel Video Transmission Latency Measurement Method for Intelligent Cloud Computing |
url |
https://doi.org/10.3390/app122412884 https://doaj.org/article/2321fc4ee2a24af9ba001d8b1f67b4a5 https://www.mdpi.com/2076-3417/12/24/12884 https://doaj.org/toc/2076-3417 |
remote_bool |
true |
author2 |
Xue Bai Yendo Hu Minghong Chen |
author2Str |
Xue Bai Yendo Hu Minghong Chen |
ppnlink |
737287640 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/app122412884 |
callnumber-a |
TA1-2040 |
up_date |
2024-07-03T16:20:48.540Z |
_version_ |
1803575517294624768 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ083238379</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414154346.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/app122412884</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ083238379</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ2321fc4ee2a24af9ba001d8b1f67b4a5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC1-999</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yiliang Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Novel Video Transmission Latency Measurement Method for Intelligent Cloud Computing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Low latency video transmission is gaining importance in time-critical applications using real-time cloud-based systems. Cloud-based Virtual Reality (VR), remote control, and AI response systems are emerging use cases that demand low latency and good reliability. Although there are many video transmission schemes that claim low latency, they vary over different network conditions. Therefore, it is necessary to develop methods that can accurately measure end-to-end latency online, continuously, without any content modification. This research brings these applications one step closer to addressing these next generation use cases. This paper analyzes the cause of end-to-end latency within a video transmission system, and then proposes three methods to measure the latency: timecode, remote online, and lossless remote video online. The corresponding equipment was designed and implemented. The actual measurement of the three methods using related equipment proved that our proposed method can accurately and effectively measure the end-to-end latency of the video transmission system.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">real-time video</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">timecode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">remote online</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lossless remote video online</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xue Bai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yendo Hu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Minghong Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Applied Sciences</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 24, p 12884</subfield><subfield code="w">(DE-627)737287640</subfield><subfield code="w">(DE-600)2704225-X</subfield><subfield code="x">20763417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:24, p 12884</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/app122412884</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/2321fc4ee2a24af9ba001d8b1f67b4a5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3417/12/24/12884</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3417</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">24, p 12884</subfield></datafield></record></collection>
|
score |
7.3999014 |