Few-Shot PCB Surface Defect Detection Based on Feature Enhancement and Multi-Scale Fusion
In printed circuit board (PCB) defect detection, it is difficult to collect defect samples, and the detection effect is poor due to the lack of data. On the basis of the few-shot learning method, a few-shot PCB defect detection model is proposed. This model introduces feature enhancement module and...
Ausführliche Beschreibung
Autor*in: |
Haodong Wang [verfasserIn] Jun Xie [verfasserIn] Xinying Xu [verfasserIn] Zihao Zheng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 10(2022), Seite 129911-129924 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 ; pages:129911-129924 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2022.3228392 |
---|
Katalog-ID: |
DOAJ083300805 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ083300805 | ||
003 | DE-627 | ||
005 | 20230311020659.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2022.3228392 |2 doi | |
035 | |a (DE-627)DOAJ083300805 | ||
035 | |a (DE-599)DOAJ5456fed2772c4886ba7d72913ad12d15 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a Haodong Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Few-Shot PCB Surface Defect Detection Based on Feature Enhancement and Multi-Scale Fusion |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In printed circuit board (PCB) defect detection, it is difficult to collect defect samples, and the detection effect is poor due to the lack of data. On the basis of the few-shot learning method, a few-shot PCB defect detection model is proposed. This model introduces feature enhancement module and multi-scale fusion module. The feature enhancement module based on the improved convolution block attention module (CBAM) can highlight the key areas of the received feature maps and suppress the interference of useless information. Aiming at the small size of PCB defects, a multi-scale feature fusion strategy is proposed. It can extract multi-scale feature maps of PCB and fuse them into a high-quality feature map containing different scale information, which can improve the detection precision of the model for small object defects. A large number of experiments on PCB dataset show that our few-shot PCB defect detection model outperforms state-of-the-art methods under different shot settings (<inline-formula< <tex-math notation="LaTeX"<$\text{k}=1$ </tex-math<</inline-formula<,2,3,5,10,30). Notably, the proposed model can take into account both detection efficiency and precision, which means it has high practical application value. | ||
650 | 4 | |a PCB defect detection | |
650 | 4 | |a few-shot learning | |
650 | 4 | |a feature enhancement | |
650 | 4 | |a multi-scale fusion | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Jun Xie |e verfasserin |4 aut | |
700 | 0 | |a Xinying Xu |e verfasserin |4 aut | |
700 | 0 | |a Zihao Zheng |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 10(2022), Seite 129911-129924 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |g pages:129911-129924 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2022.3228392 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5456fed2772c4886ba7d72913ad12d15 |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9979794/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |h 129911-129924 |
author_variant |
h w hw j x jx x x xx z z zz |
---|---|
matchkey_str |
article:21693536:2022----::esopbufcdfcdtcinaeofauenacmn |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TK |
publishDate |
2022 |
allfields |
10.1109/ACCESS.2022.3228392 doi (DE-627)DOAJ083300805 (DE-599)DOAJ5456fed2772c4886ba7d72913ad12d15 DE-627 ger DE-627 rakwb eng TK1-9971 Haodong Wang verfasserin aut Few-Shot PCB Surface Defect Detection Based on Feature Enhancement and Multi-Scale Fusion 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In printed circuit board (PCB) defect detection, it is difficult to collect defect samples, and the detection effect is poor due to the lack of data. On the basis of the few-shot learning method, a few-shot PCB defect detection model is proposed. This model introduces feature enhancement module and multi-scale fusion module. The feature enhancement module based on the improved convolution block attention module (CBAM) can highlight the key areas of the received feature maps and suppress the interference of useless information. Aiming at the small size of PCB defects, a multi-scale feature fusion strategy is proposed. It can extract multi-scale feature maps of PCB and fuse them into a high-quality feature map containing different scale information, which can improve the detection precision of the model for small object defects. A large number of experiments on PCB dataset show that our few-shot PCB defect detection model outperforms state-of-the-art methods under different shot settings (<inline-formula< <tex-math notation="LaTeX"<$\text{k}=1$ </tex-math<</inline-formula<,2,3,5,10,30). Notably, the proposed model can take into account both detection efficiency and precision, which means it has high practical application value. PCB defect detection few-shot learning feature enhancement multi-scale fusion Electrical engineering. Electronics. Nuclear engineering Jun Xie verfasserin aut Xinying Xu verfasserin aut Zihao Zheng verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 129911-129924 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:129911-129924 https://doi.org/10.1109/ACCESS.2022.3228392 kostenfrei https://doaj.org/article/5456fed2772c4886ba7d72913ad12d15 kostenfrei https://ieeexplore.ieee.org/document/9979794/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 129911-129924 |
spelling |
10.1109/ACCESS.2022.3228392 doi (DE-627)DOAJ083300805 (DE-599)DOAJ5456fed2772c4886ba7d72913ad12d15 DE-627 ger DE-627 rakwb eng TK1-9971 Haodong Wang verfasserin aut Few-Shot PCB Surface Defect Detection Based on Feature Enhancement and Multi-Scale Fusion 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In printed circuit board (PCB) defect detection, it is difficult to collect defect samples, and the detection effect is poor due to the lack of data. On the basis of the few-shot learning method, a few-shot PCB defect detection model is proposed. This model introduces feature enhancement module and multi-scale fusion module. The feature enhancement module based on the improved convolution block attention module (CBAM) can highlight the key areas of the received feature maps and suppress the interference of useless information. Aiming at the small size of PCB defects, a multi-scale feature fusion strategy is proposed. It can extract multi-scale feature maps of PCB and fuse them into a high-quality feature map containing different scale information, which can improve the detection precision of the model for small object defects. A large number of experiments on PCB dataset show that our few-shot PCB defect detection model outperforms state-of-the-art methods under different shot settings (<inline-formula< <tex-math notation="LaTeX"<$\text{k}=1$ </tex-math<</inline-formula<,2,3,5,10,30). Notably, the proposed model can take into account both detection efficiency and precision, which means it has high practical application value. PCB defect detection few-shot learning feature enhancement multi-scale fusion Electrical engineering. Electronics. Nuclear engineering Jun Xie verfasserin aut Xinying Xu verfasserin aut Zihao Zheng verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 129911-129924 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:129911-129924 https://doi.org/10.1109/ACCESS.2022.3228392 kostenfrei https://doaj.org/article/5456fed2772c4886ba7d72913ad12d15 kostenfrei https://ieeexplore.ieee.org/document/9979794/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 129911-129924 |
allfields_unstemmed |
10.1109/ACCESS.2022.3228392 doi (DE-627)DOAJ083300805 (DE-599)DOAJ5456fed2772c4886ba7d72913ad12d15 DE-627 ger DE-627 rakwb eng TK1-9971 Haodong Wang verfasserin aut Few-Shot PCB Surface Defect Detection Based on Feature Enhancement and Multi-Scale Fusion 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In printed circuit board (PCB) defect detection, it is difficult to collect defect samples, and the detection effect is poor due to the lack of data. On the basis of the few-shot learning method, a few-shot PCB defect detection model is proposed. This model introduces feature enhancement module and multi-scale fusion module. The feature enhancement module based on the improved convolution block attention module (CBAM) can highlight the key areas of the received feature maps and suppress the interference of useless information. Aiming at the small size of PCB defects, a multi-scale feature fusion strategy is proposed. It can extract multi-scale feature maps of PCB and fuse them into a high-quality feature map containing different scale information, which can improve the detection precision of the model for small object defects. A large number of experiments on PCB dataset show that our few-shot PCB defect detection model outperforms state-of-the-art methods under different shot settings (<inline-formula< <tex-math notation="LaTeX"<$\text{k}=1$ </tex-math<</inline-formula<,2,3,5,10,30). Notably, the proposed model can take into account both detection efficiency and precision, which means it has high practical application value. PCB defect detection few-shot learning feature enhancement multi-scale fusion Electrical engineering. Electronics. Nuclear engineering Jun Xie verfasserin aut Xinying Xu verfasserin aut Zihao Zheng verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 129911-129924 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:129911-129924 https://doi.org/10.1109/ACCESS.2022.3228392 kostenfrei https://doaj.org/article/5456fed2772c4886ba7d72913ad12d15 kostenfrei https://ieeexplore.ieee.org/document/9979794/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 129911-129924 |
allfieldsGer |
10.1109/ACCESS.2022.3228392 doi (DE-627)DOAJ083300805 (DE-599)DOAJ5456fed2772c4886ba7d72913ad12d15 DE-627 ger DE-627 rakwb eng TK1-9971 Haodong Wang verfasserin aut Few-Shot PCB Surface Defect Detection Based on Feature Enhancement and Multi-Scale Fusion 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In printed circuit board (PCB) defect detection, it is difficult to collect defect samples, and the detection effect is poor due to the lack of data. On the basis of the few-shot learning method, a few-shot PCB defect detection model is proposed. This model introduces feature enhancement module and multi-scale fusion module. The feature enhancement module based on the improved convolution block attention module (CBAM) can highlight the key areas of the received feature maps and suppress the interference of useless information. Aiming at the small size of PCB defects, a multi-scale feature fusion strategy is proposed. It can extract multi-scale feature maps of PCB and fuse them into a high-quality feature map containing different scale information, which can improve the detection precision of the model for small object defects. A large number of experiments on PCB dataset show that our few-shot PCB defect detection model outperforms state-of-the-art methods under different shot settings (<inline-formula< <tex-math notation="LaTeX"<$\text{k}=1$ </tex-math<</inline-formula<,2,3,5,10,30). Notably, the proposed model can take into account both detection efficiency and precision, which means it has high practical application value. PCB defect detection few-shot learning feature enhancement multi-scale fusion Electrical engineering. Electronics. Nuclear engineering Jun Xie verfasserin aut Xinying Xu verfasserin aut Zihao Zheng verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 129911-129924 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:129911-129924 https://doi.org/10.1109/ACCESS.2022.3228392 kostenfrei https://doaj.org/article/5456fed2772c4886ba7d72913ad12d15 kostenfrei https://ieeexplore.ieee.org/document/9979794/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 129911-129924 |
allfieldsSound |
10.1109/ACCESS.2022.3228392 doi (DE-627)DOAJ083300805 (DE-599)DOAJ5456fed2772c4886ba7d72913ad12d15 DE-627 ger DE-627 rakwb eng TK1-9971 Haodong Wang verfasserin aut Few-Shot PCB Surface Defect Detection Based on Feature Enhancement and Multi-Scale Fusion 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In printed circuit board (PCB) defect detection, it is difficult to collect defect samples, and the detection effect is poor due to the lack of data. On the basis of the few-shot learning method, a few-shot PCB defect detection model is proposed. This model introduces feature enhancement module and multi-scale fusion module. The feature enhancement module based on the improved convolution block attention module (CBAM) can highlight the key areas of the received feature maps and suppress the interference of useless information. Aiming at the small size of PCB defects, a multi-scale feature fusion strategy is proposed. It can extract multi-scale feature maps of PCB and fuse them into a high-quality feature map containing different scale information, which can improve the detection precision of the model for small object defects. A large number of experiments on PCB dataset show that our few-shot PCB defect detection model outperforms state-of-the-art methods under different shot settings (<inline-formula< <tex-math notation="LaTeX"<$\text{k}=1$ </tex-math<</inline-formula<,2,3,5,10,30). Notably, the proposed model can take into account both detection efficiency and precision, which means it has high practical application value. PCB defect detection few-shot learning feature enhancement multi-scale fusion Electrical engineering. Electronics. Nuclear engineering Jun Xie verfasserin aut Xinying Xu verfasserin aut Zihao Zheng verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 129911-129924 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:129911-129924 https://doi.org/10.1109/ACCESS.2022.3228392 kostenfrei https://doaj.org/article/5456fed2772c4886ba7d72913ad12d15 kostenfrei https://ieeexplore.ieee.org/document/9979794/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 129911-129924 |
language |
English |
source |
In IEEE Access 10(2022), Seite 129911-129924 volume:10 year:2022 pages:129911-129924 |
sourceStr |
In IEEE Access 10(2022), Seite 129911-129924 volume:10 year:2022 pages:129911-129924 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
PCB defect detection few-shot learning feature enhancement multi-scale fusion Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
Haodong Wang @@aut@@ Jun Xie @@aut@@ Xinying Xu @@aut@@ Zihao Zheng @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ083300805 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ083300805</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311020659.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2022.3228392</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ083300805</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5456fed2772c4886ba7d72913ad12d15</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Haodong Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Few-Shot PCB Surface Defect Detection Based on Feature Enhancement and Multi-Scale Fusion</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In printed circuit board (PCB) defect detection, it is difficult to collect defect samples, and the detection effect is poor due to the lack of data. On the basis of the few-shot learning method, a few-shot PCB defect detection model is proposed. This model introduces feature enhancement module and multi-scale fusion module. The feature enhancement module based on the improved convolution block attention module (CBAM) can highlight the key areas of the received feature maps and suppress the interference of useless information. Aiming at the small size of PCB defects, a multi-scale feature fusion strategy is proposed. It can extract multi-scale feature maps of PCB and fuse them into a high-quality feature map containing different scale information, which can improve the detection precision of the model for small object defects. A large number of experiments on PCB dataset show that our few-shot PCB defect detection model outperforms state-of-the-art methods under different shot settings (<inline-formula< <tex-math notation="LaTeX"<$\text{k}=1$ </tex-math<</inline-formula<,2,3,5,10,30). Notably, the proposed model can take into account both detection efficiency and precision, which means it has high practical application value.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PCB defect detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">few-shot learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">feature enhancement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-scale fusion</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jun Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xinying Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zihao Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">10(2022), Seite 129911-129924</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:129911-129924</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2022.3228392</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5456fed2772c4886ba7d72913ad12d15</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9979794/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="h">129911-129924</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Haodong Wang |
spellingShingle |
Haodong Wang misc TK1-9971 misc PCB defect detection misc few-shot learning misc feature enhancement misc multi-scale fusion misc Electrical engineering. Electronics. Nuclear engineering Few-Shot PCB Surface Defect Detection Based on Feature Enhancement and Multi-Scale Fusion |
authorStr |
Haodong Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Few-Shot PCB Surface Defect Detection Based on Feature Enhancement and Multi-Scale Fusion PCB defect detection few-shot learning feature enhancement multi-scale fusion |
topic |
misc TK1-9971 misc PCB defect detection misc few-shot learning misc feature enhancement misc multi-scale fusion misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc PCB defect detection misc few-shot learning misc feature enhancement misc multi-scale fusion misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc PCB defect detection misc few-shot learning misc feature enhancement misc multi-scale fusion misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Few-Shot PCB Surface Defect Detection Based on Feature Enhancement and Multi-Scale Fusion |
ctrlnum |
(DE-627)DOAJ083300805 (DE-599)DOAJ5456fed2772c4886ba7d72913ad12d15 |
title_full |
Few-Shot PCB Surface Defect Detection Based on Feature Enhancement and Multi-Scale Fusion |
author_sort |
Haodong Wang |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
129911 |
author_browse |
Haodong Wang Jun Xie Xinying Xu Zihao Zheng |
container_volume |
10 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
Haodong Wang |
doi_str_mv |
10.1109/ACCESS.2022.3228392 |
author2-role |
verfasserin |
title_sort |
few-shot pcb surface defect detection based on feature enhancement and multi-scale fusion |
callnumber |
TK1-9971 |
title_auth |
Few-Shot PCB Surface Defect Detection Based on Feature Enhancement and Multi-Scale Fusion |
abstract |
In printed circuit board (PCB) defect detection, it is difficult to collect defect samples, and the detection effect is poor due to the lack of data. On the basis of the few-shot learning method, a few-shot PCB defect detection model is proposed. This model introduces feature enhancement module and multi-scale fusion module. The feature enhancement module based on the improved convolution block attention module (CBAM) can highlight the key areas of the received feature maps and suppress the interference of useless information. Aiming at the small size of PCB defects, a multi-scale feature fusion strategy is proposed. It can extract multi-scale feature maps of PCB and fuse them into a high-quality feature map containing different scale information, which can improve the detection precision of the model for small object defects. A large number of experiments on PCB dataset show that our few-shot PCB defect detection model outperforms state-of-the-art methods under different shot settings (<inline-formula< <tex-math notation="LaTeX"<$\text{k}=1$ </tex-math<</inline-formula<,2,3,5,10,30). Notably, the proposed model can take into account both detection efficiency and precision, which means it has high practical application value. |
abstractGer |
In printed circuit board (PCB) defect detection, it is difficult to collect defect samples, and the detection effect is poor due to the lack of data. On the basis of the few-shot learning method, a few-shot PCB defect detection model is proposed. This model introduces feature enhancement module and multi-scale fusion module. The feature enhancement module based on the improved convolution block attention module (CBAM) can highlight the key areas of the received feature maps and suppress the interference of useless information. Aiming at the small size of PCB defects, a multi-scale feature fusion strategy is proposed. It can extract multi-scale feature maps of PCB and fuse them into a high-quality feature map containing different scale information, which can improve the detection precision of the model for small object defects. A large number of experiments on PCB dataset show that our few-shot PCB defect detection model outperforms state-of-the-art methods under different shot settings (<inline-formula< <tex-math notation="LaTeX"<$\text{k}=1$ </tex-math<</inline-formula<,2,3,5,10,30). Notably, the proposed model can take into account both detection efficiency and precision, which means it has high practical application value. |
abstract_unstemmed |
In printed circuit board (PCB) defect detection, it is difficult to collect defect samples, and the detection effect is poor due to the lack of data. On the basis of the few-shot learning method, a few-shot PCB defect detection model is proposed. This model introduces feature enhancement module and multi-scale fusion module. The feature enhancement module based on the improved convolution block attention module (CBAM) can highlight the key areas of the received feature maps and suppress the interference of useless information. Aiming at the small size of PCB defects, a multi-scale feature fusion strategy is proposed. It can extract multi-scale feature maps of PCB and fuse them into a high-quality feature map containing different scale information, which can improve the detection precision of the model for small object defects. A large number of experiments on PCB dataset show that our few-shot PCB defect detection model outperforms state-of-the-art methods under different shot settings (<inline-formula< <tex-math notation="LaTeX"<$\text{k}=1$ </tex-math<</inline-formula<,2,3,5,10,30). Notably, the proposed model can take into account both detection efficiency and precision, which means it has high practical application value. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Few-Shot PCB Surface Defect Detection Based on Feature Enhancement and Multi-Scale Fusion |
url |
https://doi.org/10.1109/ACCESS.2022.3228392 https://doaj.org/article/5456fed2772c4886ba7d72913ad12d15 https://ieeexplore.ieee.org/document/9979794/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Jun Xie Xinying Xu Zihao Zheng |
author2Str |
Jun Xie Xinying Xu Zihao Zheng |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2022.3228392 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T16:42:03.051Z |
_version_ |
1803576853713125376 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ083300805</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311020659.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2022.3228392</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ083300805</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5456fed2772c4886ba7d72913ad12d15</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Haodong Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Few-Shot PCB Surface Defect Detection Based on Feature Enhancement and Multi-Scale Fusion</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In printed circuit board (PCB) defect detection, it is difficult to collect defect samples, and the detection effect is poor due to the lack of data. On the basis of the few-shot learning method, a few-shot PCB defect detection model is proposed. This model introduces feature enhancement module and multi-scale fusion module. The feature enhancement module based on the improved convolution block attention module (CBAM) can highlight the key areas of the received feature maps and suppress the interference of useless information. Aiming at the small size of PCB defects, a multi-scale feature fusion strategy is proposed. It can extract multi-scale feature maps of PCB and fuse them into a high-quality feature map containing different scale information, which can improve the detection precision of the model for small object defects. A large number of experiments on PCB dataset show that our few-shot PCB defect detection model outperforms state-of-the-art methods under different shot settings (<inline-formula< <tex-math notation="LaTeX"<$\text{k}=1$ </tex-math<</inline-formula<,2,3,5,10,30). Notably, the proposed model can take into account both detection efficiency and precision, which means it has high practical application value.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PCB defect detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">few-shot learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">feature enhancement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi-scale fusion</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jun Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xinying Xu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zihao Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">10(2022), Seite 129911-129924</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:129911-129924</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2022.3228392</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5456fed2772c4886ba7d72913ad12d15</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9979794/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="h">129911-129924</subfield></datafield></record></collection>
|
score |
7.4022093 |