Array Antennas for mmWave Applications: A Comprehensive Review
The demand for wide bandwidth has driven us to focus on the higher spectrum, the millimeter wave (mmWave) spectrum. The mmWave offers several advantages, such as wide bandwidth, low latency, and higher data rate, but the signal at these frequencies significantly suffers high atmospheric attenuation...
Ausführliche Beschreibung
Autor*in: |
B. G. Parveez Shariff [verfasserIn] Tanweer Ali [verfasserIn] Pallavi R. Mane [verfasserIn] Pradeep Kumar [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: IEEE Access - IEEE, 2014, 10(2022), Seite 126728-126766 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 ; pages:126728-126766 |
Links: |
---|
DOI / URN: |
10.1109/ACCESS.2022.3226272 |
---|
Katalog-ID: |
DOAJ083339558 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ083339558 | ||
003 | DE-627 | ||
005 | 20230503002316.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1109/ACCESS.2022.3226272 |2 doi | |
035 | |a (DE-627)DOAJ083339558 | ||
035 | |a (DE-599)DOAJe99a95f7ee4e49e1baad6ec14ff60cfd | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
100 | 0 | |a B. G. Parveez Shariff |e verfasserin |4 aut | |
245 | 1 | 0 | |a Array Antennas for mmWave Applications: A Comprehensive Review |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The demand for wide bandwidth has driven us to focus on the higher spectrum, the millimeter wave (mmWave) spectrum. The mmWave offers several advantages, such as wide bandwidth, low latency, and higher data rate, but the signal at these frequencies significantly suffers high atmospheric attenuation and path loss. To overcome these issues, array antennas are used as it provides high gain, better directivity, and bandwidth. This paper presents a detailed review of array antennas based on feeding methods and discusses reconfigurable arrays. The series-fed array results in a narrow bandwidth, high return losses, and low gain that can be resolved with tapered structures, coplanar waveguide (CPW), and SIW technique. Similarly, transmission losses, coupling losses, and high side lobe-levels in parallel-fed arrays can be addressed with multilayer structures, coplanar strips with CPW, pill-box transmission, ridge gap waveguide (RGWG), graphene material, and magnetoelectric dipoles. The merits of series and parallel feed methods are availed with the hybrid feed method. These feeding methods with arrays are extended to reconfigurable array along with active RF switch with stubs, continuous or discrete phase shifter, butler matrix, and/or graphene nanoplates. The parameter performance metrics of these arrays are summarized and concluded with the future scope. | ||
650 | 4 | |a Array antenna | |
650 | 4 | |a series-fed | |
650 | 4 | |a parallel-fed | |
650 | 4 | |a hybrid-fed | |
650 | 4 | |a reconfigurable array | |
650 | 4 | |a mmWave | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
700 | 0 | |a Tanweer Ali |e verfasserin |4 aut | |
700 | 0 | |a Pallavi R. Mane |e verfasserin |4 aut | |
700 | 0 | |a Pradeep Kumar |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IEEE Access |d IEEE, 2014 |g 10(2022), Seite 126728-126766 |w (DE-627)728440385 |w (DE-600)2687964-5 |x 21693536 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |g pages:126728-126766 |
856 | 4 | 0 | |u https://doi.org/10.1109/ACCESS.2022.3226272 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e99a95f7ee4e49e1baad6ec14ff60cfd |z kostenfrei |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/document/9968237/ |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2169-3536 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |h 126728-126766 |
author_variant |
b g p s bgps t a ta p r m prm p k pk |
---|---|
matchkey_str |
article:21693536:2022----::raatnafrmaeplctoscm |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TK |
publishDate |
2022 |
allfields |
10.1109/ACCESS.2022.3226272 doi (DE-627)DOAJ083339558 (DE-599)DOAJe99a95f7ee4e49e1baad6ec14ff60cfd DE-627 ger DE-627 rakwb eng TK1-9971 B. G. Parveez Shariff verfasserin aut Array Antennas for mmWave Applications: A Comprehensive Review 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The demand for wide bandwidth has driven us to focus on the higher spectrum, the millimeter wave (mmWave) spectrum. The mmWave offers several advantages, such as wide bandwidth, low latency, and higher data rate, but the signal at these frequencies significantly suffers high atmospheric attenuation and path loss. To overcome these issues, array antennas are used as it provides high gain, better directivity, and bandwidth. This paper presents a detailed review of array antennas based on feeding methods and discusses reconfigurable arrays. The series-fed array results in a narrow bandwidth, high return losses, and low gain that can be resolved with tapered structures, coplanar waveguide (CPW), and SIW technique. Similarly, transmission losses, coupling losses, and high side lobe-levels in parallel-fed arrays can be addressed with multilayer structures, coplanar strips with CPW, pill-box transmission, ridge gap waveguide (RGWG), graphene material, and magnetoelectric dipoles. The merits of series and parallel feed methods are availed with the hybrid feed method. These feeding methods with arrays are extended to reconfigurable array along with active RF switch with stubs, continuous or discrete phase shifter, butler matrix, and/or graphene nanoplates. The parameter performance metrics of these arrays are summarized and concluded with the future scope. Array antenna series-fed parallel-fed hybrid-fed reconfigurable array mmWave Electrical engineering. Electronics. Nuclear engineering Tanweer Ali verfasserin aut Pallavi R. Mane verfasserin aut Pradeep Kumar verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 126728-126766 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:126728-126766 https://doi.org/10.1109/ACCESS.2022.3226272 kostenfrei https://doaj.org/article/e99a95f7ee4e49e1baad6ec14ff60cfd kostenfrei https://ieeexplore.ieee.org/document/9968237/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 126728-126766 |
spelling |
10.1109/ACCESS.2022.3226272 doi (DE-627)DOAJ083339558 (DE-599)DOAJe99a95f7ee4e49e1baad6ec14ff60cfd DE-627 ger DE-627 rakwb eng TK1-9971 B. G. Parveez Shariff verfasserin aut Array Antennas for mmWave Applications: A Comprehensive Review 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The demand for wide bandwidth has driven us to focus on the higher spectrum, the millimeter wave (mmWave) spectrum. The mmWave offers several advantages, such as wide bandwidth, low latency, and higher data rate, but the signal at these frequencies significantly suffers high atmospheric attenuation and path loss. To overcome these issues, array antennas are used as it provides high gain, better directivity, and bandwidth. This paper presents a detailed review of array antennas based on feeding methods and discusses reconfigurable arrays. The series-fed array results in a narrow bandwidth, high return losses, and low gain that can be resolved with tapered structures, coplanar waveguide (CPW), and SIW technique. Similarly, transmission losses, coupling losses, and high side lobe-levels in parallel-fed arrays can be addressed with multilayer structures, coplanar strips with CPW, pill-box transmission, ridge gap waveguide (RGWG), graphene material, and magnetoelectric dipoles. The merits of series and parallel feed methods are availed with the hybrid feed method. These feeding methods with arrays are extended to reconfigurable array along with active RF switch with stubs, continuous or discrete phase shifter, butler matrix, and/or graphene nanoplates. The parameter performance metrics of these arrays are summarized and concluded with the future scope. Array antenna series-fed parallel-fed hybrid-fed reconfigurable array mmWave Electrical engineering. Electronics. Nuclear engineering Tanweer Ali verfasserin aut Pallavi R. Mane verfasserin aut Pradeep Kumar verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 126728-126766 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:126728-126766 https://doi.org/10.1109/ACCESS.2022.3226272 kostenfrei https://doaj.org/article/e99a95f7ee4e49e1baad6ec14ff60cfd kostenfrei https://ieeexplore.ieee.org/document/9968237/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 126728-126766 |
allfields_unstemmed |
10.1109/ACCESS.2022.3226272 doi (DE-627)DOAJ083339558 (DE-599)DOAJe99a95f7ee4e49e1baad6ec14ff60cfd DE-627 ger DE-627 rakwb eng TK1-9971 B. G. Parveez Shariff verfasserin aut Array Antennas for mmWave Applications: A Comprehensive Review 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The demand for wide bandwidth has driven us to focus on the higher spectrum, the millimeter wave (mmWave) spectrum. The mmWave offers several advantages, such as wide bandwidth, low latency, and higher data rate, but the signal at these frequencies significantly suffers high atmospheric attenuation and path loss. To overcome these issues, array antennas are used as it provides high gain, better directivity, and bandwidth. This paper presents a detailed review of array antennas based on feeding methods and discusses reconfigurable arrays. The series-fed array results in a narrow bandwidth, high return losses, and low gain that can be resolved with tapered structures, coplanar waveguide (CPW), and SIW technique. Similarly, transmission losses, coupling losses, and high side lobe-levels in parallel-fed arrays can be addressed with multilayer structures, coplanar strips with CPW, pill-box transmission, ridge gap waveguide (RGWG), graphene material, and magnetoelectric dipoles. The merits of series and parallel feed methods are availed with the hybrid feed method. These feeding methods with arrays are extended to reconfigurable array along with active RF switch with stubs, continuous or discrete phase shifter, butler matrix, and/or graphene nanoplates. The parameter performance metrics of these arrays are summarized and concluded with the future scope. Array antenna series-fed parallel-fed hybrid-fed reconfigurable array mmWave Electrical engineering. Electronics. Nuclear engineering Tanweer Ali verfasserin aut Pallavi R. Mane verfasserin aut Pradeep Kumar verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 126728-126766 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:126728-126766 https://doi.org/10.1109/ACCESS.2022.3226272 kostenfrei https://doaj.org/article/e99a95f7ee4e49e1baad6ec14ff60cfd kostenfrei https://ieeexplore.ieee.org/document/9968237/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 126728-126766 |
allfieldsGer |
10.1109/ACCESS.2022.3226272 doi (DE-627)DOAJ083339558 (DE-599)DOAJe99a95f7ee4e49e1baad6ec14ff60cfd DE-627 ger DE-627 rakwb eng TK1-9971 B. G. Parveez Shariff verfasserin aut Array Antennas for mmWave Applications: A Comprehensive Review 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The demand for wide bandwidth has driven us to focus on the higher spectrum, the millimeter wave (mmWave) spectrum. The mmWave offers several advantages, such as wide bandwidth, low latency, and higher data rate, but the signal at these frequencies significantly suffers high atmospheric attenuation and path loss. To overcome these issues, array antennas are used as it provides high gain, better directivity, and bandwidth. This paper presents a detailed review of array antennas based on feeding methods and discusses reconfigurable arrays. The series-fed array results in a narrow bandwidth, high return losses, and low gain that can be resolved with tapered structures, coplanar waveguide (CPW), and SIW technique. Similarly, transmission losses, coupling losses, and high side lobe-levels in parallel-fed arrays can be addressed with multilayer structures, coplanar strips with CPW, pill-box transmission, ridge gap waveguide (RGWG), graphene material, and magnetoelectric dipoles. The merits of series and parallel feed methods are availed with the hybrid feed method. These feeding methods with arrays are extended to reconfigurable array along with active RF switch with stubs, continuous or discrete phase shifter, butler matrix, and/or graphene nanoplates. The parameter performance metrics of these arrays are summarized and concluded with the future scope. Array antenna series-fed parallel-fed hybrid-fed reconfigurable array mmWave Electrical engineering. Electronics. Nuclear engineering Tanweer Ali verfasserin aut Pallavi R. Mane verfasserin aut Pradeep Kumar verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 126728-126766 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:126728-126766 https://doi.org/10.1109/ACCESS.2022.3226272 kostenfrei https://doaj.org/article/e99a95f7ee4e49e1baad6ec14ff60cfd kostenfrei https://ieeexplore.ieee.org/document/9968237/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 126728-126766 |
allfieldsSound |
10.1109/ACCESS.2022.3226272 doi (DE-627)DOAJ083339558 (DE-599)DOAJe99a95f7ee4e49e1baad6ec14ff60cfd DE-627 ger DE-627 rakwb eng TK1-9971 B. G. Parveez Shariff verfasserin aut Array Antennas for mmWave Applications: A Comprehensive Review 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The demand for wide bandwidth has driven us to focus on the higher spectrum, the millimeter wave (mmWave) spectrum. The mmWave offers several advantages, such as wide bandwidth, low latency, and higher data rate, but the signal at these frequencies significantly suffers high atmospheric attenuation and path loss. To overcome these issues, array antennas are used as it provides high gain, better directivity, and bandwidth. This paper presents a detailed review of array antennas based on feeding methods and discusses reconfigurable arrays. The series-fed array results in a narrow bandwidth, high return losses, and low gain that can be resolved with tapered structures, coplanar waveguide (CPW), and SIW technique. Similarly, transmission losses, coupling losses, and high side lobe-levels in parallel-fed arrays can be addressed with multilayer structures, coplanar strips with CPW, pill-box transmission, ridge gap waveguide (RGWG), graphene material, and magnetoelectric dipoles. The merits of series and parallel feed methods are availed with the hybrid feed method. These feeding methods with arrays are extended to reconfigurable array along with active RF switch with stubs, continuous or discrete phase shifter, butler matrix, and/or graphene nanoplates. The parameter performance metrics of these arrays are summarized and concluded with the future scope. Array antenna series-fed parallel-fed hybrid-fed reconfigurable array mmWave Electrical engineering. Electronics. Nuclear engineering Tanweer Ali verfasserin aut Pallavi R. Mane verfasserin aut Pradeep Kumar verfasserin aut In IEEE Access IEEE, 2014 10(2022), Seite 126728-126766 (DE-627)728440385 (DE-600)2687964-5 21693536 nnns volume:10 year:2022 pages:126728-126766 https://doi.org/10.1109/ACCESS.2022.3226272 kostenfrei https://doaj.org/article/e99a95f7ee4e49e1baad6ec14ff60cfd kostenfrei https://ieeexplore.ieee.org/document/9968237/ kostenfrei https://doaj.org/toc/2169-3536 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 126728-126766 |
language |
English |
source |
In IEEE Access 10(2022), Seite 126728-126766 volume:10 year:2022 pages:126728-126766 |
sourceStr |
In IEEE Access 10(2022), Seite 126728-126766 volume:10 year:2022 pages:126728-126766 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Array antenna series-fed parallel-fed hybrid-fed reconfigurable array mmWave Electrical engineering. Electronics. Nuclear engineering |
isfreeaccess_bool |
true |
container_title |
IEEE Access |
authorswithroles_txt_mv |
B. G. Parveez Shariff @@aut@@ Tanweer Ali @@aut@@ Pallavi R. Mane @@aut@@ Pradeep Kumar @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
728440385 |
id |
DOAJ083339558 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ083339558</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503002316.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2022.3226272</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ083339558</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe99a95f7ee4e49e1baad6ec14ff60cfd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">B. G. Parveez Shariff</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Array Antennas for mmWave Applications: A Comprehensive Review</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The demand for wide bandwidth has driven us to focus on the higher spectrum, the millimeter wave (mmWave) spectrum. The mmWave offers several advantages, such as wide bandwidth, low latency, and higher data rate, but the signal at these frequencies significantly suffers high atmospheric attenuation and path loss. To overcome these issues, array antennas are used as it provides high gain, better directivity, and bandwidth. This paper presents a detailed review of array antennas based on feeding methods and discusses reconfigurable arrays. The series-fed array results in a narrow bandwidth, high return losses, and low gain that can be resolved with tapered structures, coplanar waveguide (CPW), and SIW technique. Similarly, transmission losses, coupling losses, and high side lobe-levels in parallel-fed arrays can be addressed with multilayer structures, coplanar strips with CPW, pill-box transmission, ridge gap waveguide (RGWG), graphene material, and magnetoelectric dipoles. The merits of series and parallel feed methods are availed with the hybrid feed method. These feeding methods with arrays are extended to reconfigurable array along with active RF switch with stubs, continuous or discrete phase shifter, butler matrix, and/or graphene nanoplates. The parameter performance metrics of these arrays are summarized and concluded with the future scope.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Array antenna</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">series-fed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">parallel-fed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hybrid-fed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reconfigurable array</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mmWave</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tanweer Ali</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pallavi R. Mane</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pradeep Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">10(2022), Seite 126728-126766</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:126728-126766</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2022.3226272</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e99a95f7ee4e49e1baad6ec14ff60cfd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9968237/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="h">126728-126766</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
B. G. Parveez Shariff |
spellingShingle |
B. G. Parveez Shariff misc TK1-9971 misc Array antenna misc series-fed misc parallel-fed misc hybrid-fed misc reconfigurable array misc mmWave misc Electrical engineering. Electronics. Nuclear engineering Array Antennas for mmWave Applications: A Comprehensive Review |
authorStr |
B. G. Parveez Shariff |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)728440385 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
21693536 |
topic_title |
TK1-9971 Array Antennas for mmWave Applications: A Comprehensive Review Array antenna series-fed parallel-fed hybrid-fed reconfigurable array mmWave |
topic |
misc TK1-9971 misc Array antenna misc series-fed misc parallel-fed misc hybrid-fed misc reconfigurable array misc mmWave misc Electrical engineering. Electronics. Nuclear engineering |
topic_unstemmed |
misc TK1-9971 misc Array antenna misc series-fed misc parallel-fed misc hybrid-fed misc reconfigurable array misc mmWave misc Electrical engineering. Electronics. Nuclear engineering |
topic_browse |
misc TK1-9971 misc Array antenna misc series-fed misc parallel-fed misc hybrid-fed misc reconfigurable array misc mmWave misc Electrical engineering. Electronics. Nuclear engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IEEE Access |
hierarchy_parent_id |
728440385 |
hierarchy_top_title |
IEEE Access |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)728440385 (DE-600)2687964-5 |
title |
Array Antennas for mmWave Applications: A Comprehensive Review |
ctrlnum |
(DE-627)DOAJ083339558 (DE-599)DOAJe99a95f7ee4e49e1baad6ec14ff60cfd |
title_full |
Array Antennas for mmWave Applications: A Comprehensive Review |
author_sort |
B. G. Parveez Shariff |
journal |
IEEE Access |
journalStr |
IEEE Access |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
126728 |
author_browse |
B. G. Parveez Shariff Tanweer Ali Pallavi R. Mane Pradeep Kumar |
container_volume |
10 |
class |
TK1-9971 |
format_se |
Elektronische Aufsätze |
author-letter |
B. G. Parveez Shariff |
doi_str_mv |
10.1109/ACCESS.2022.3226272 |
author2-role |
verfasserin |
title_sort |
array antennas for mmwave applications: a comprehensive review |
callnumber |
TK1-9971 |
title_auth |
Array Antennas for mmWave Applications: A Comprehensive Review |
abstract |
The demand for wide bandwidth has driven us to focus on the higher spectrum, the millimeter wave (mmWave) spectrum. The mmWave offers several advantages, such as wide bandwidth, low latency, and higher data rate, but the signal at these frequencies significantly suffers high atmospheric attenuation and path loss. To overcome these issues, array antennas are used as it provides high gain, better directivity, and bandwidth. This paper presents a detailed review of array antennas based on feeding methods and discusses reconfigurable arrays. The series-fed array results in a narrow bandwidth, high return losses, and low gain that can be resolved with tapered structures, coplanar waveguide (CPW), and SIW technique. Similarly, transmission losses, coupling losses, and high side lobe-levels in parallel-fed arrays can be addressed with multilayer structures, coplanar strips with CPW, pill-box transmission, ridge gap waveguide (RGWG), graphene material, and magnetoelectric dipoles. The merits of series and parallel feed methods are availed with the hybrid feed method. These feeding methods with arrays are extended to reconfigurable array along with active RF switch with stubs, continuous or discrete phase shifter, butler matrix, and/or graphene nanoplates. The parameter performance metrics of these arrays are summarized and concluded with the future scope. |
abstractGer |
The demand for wide bandwidth has driven us to focus on the higher spectrum, the millimeter wave (mmWave) spectrum. The mmWave offers several advantages, such as wide bandwidth, low latency, and higher data rate, but the signal at these frequencies significantly suffers high atmospheric attenuation and path loss. To overcome these issues, array antennas are used as it provides high gain, better directivity, and bandwidth. This paper presents a detailed review of array antennas based on feeding methods and discusses reconfigurable arrays. The series-fed array results in a narrow bandwidth, high return losses, and low gain that can be resolved with tapered structures, coplanar waveguide (CPW), and SIW technique. Similarly, transmission losses, coupling losses, and high side lobe-levels in parallel-fed arrays can be addressed with multilayer structures, coplanar strips with CPW, pill-box transmission, ridge gap waveguide (RGWG), graphene material, and magnetoelectric dipoles. The merits of series and parallel feed methods are availed with the hybrid feed method. These feeding methods with arrays are extended to reconfigurable array along with active RF switch with stubs, continuous or discrete phase shifter, butler matrix, and/or graphene nanoplates. The parameter performance metrics of these arrays are summarized and concluded with the future scope. |
abstract_unstemmed |
The demand for wide bandwidth has driven us to focus on the higher spectrum, the millimeter wave (mmWave) spectrum. The mmWave offers several advantages, such as wide bandwidth, low latency, and higher data rate, but the signal at these frequencies significantly suffers high atmospheric attenuation and path loss. To overcome these issues, array antennas are used as it provides high gain, better directivity, and bandwidth. This paper presents a detailed review of array antennas based on feeding methods and discusses reconfigurable arrays. The series-fed array results in a narrow bandwidth, high return losses, and low gain that can be resolved with tapered structures, coplanar waveguide (CPW), and SIW technique. Similarly, transmission losses, coupling losses, and high side lobe-levels in parallel-fed arrays can be addressed with multilayer structures, coplanar strips with CPW, pill-box transmission, ridge gap waveguide (RGWG), graphene material, and magnetoelectric dipoles. The merits of series and parallel feed methods are availed with the hybrid feed method. These feeding methods with arrays are extended to reconfigurable array along with active RF switch with stubs, continuous or discrete phase shifter, butler matrix, and/or graphene nanoplates. The parameter performance metrics of these arrays are summarized and concluded with the future scope. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Array Antennas for mmWave Applications: A Comprehensive Review |
url |
https://doi.org/10.1109/ACCESS.2022.3226272 https://doaj.org/article/e99a95f7ee4e49e1baad6ec14ff60cfd https://ieeexplore.ieee.org/document/9968237/ https://doaj.org/toc/2169-3536 |
remote_bool |
true |
author2 |
Tanweer Ali Pallavi R. Mane Pradeep Kumar |
author2Str |
Tanweer Ali Pallavi R. Mane Pradeep Kumar |
ppnlink |
728440385 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1109/ACCESS.2022.3226272 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T16:54:43.151Z |
_version_ |
1803577650736791552 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ083339558</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503002316.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/ACCESS.2022.3226272</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ083339558</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe99a95f7ee4e49e1baad6ec14ff60cfd</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">B. G. Parveez Shariff</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Array Antennas for mmWave Applications: A Comprehensive Review</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The demand for wide bandwidth has driven us to focus on the higher spectrum, the millimeter wave (mmWave) spectrum. The mmWave offers several advantages, such as wide bandwidth, low latency, and higher data rate, but the signal at these frequencies significantly suffers high atmospheric attenuation and path loss. To overcome these issues, array antennas are used as it provides high gain, better directivity, and bandwidth. This paper presents a detailed review of array antennas based on feeding methods and discusses reconfigurable arrays. The series-fed array results in a narrow bandwidth, high return losses, and low gain that can be resolved with tapered structures, coplanar waveguide (CPW), and SIW technique. Similarly, transmission losses, coupling losses, and high side lobe-levels in parallel-fed arrays can be addressed with multilayer structures, coplanar strips with CPW, pill-box transmission, ridge gap waveguide (RGWG), graphene material, and magnetoelectric dipoles. The merits of series and parallel feed methods are availed with the hybrid feed method. These feeding methods with arrays are extended to reconfigurable array along with active RF switch with stubs, continuous or discrete phase shifter, butler matrix, and/or graphene nanoplates. The parameter performance metrics of these arrays are summarized and concluded with the future scope.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Array antenna</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">series-fed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">parallel-fed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hybrid-fed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reconfigurable array</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mmWave</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tanweer Ali</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pallavi R. Mane</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pradeep Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IEEE Access</subfield><subfield code="d">IEEE, 2014</subfield><subfield code="g">10(2022), Seite 126728-126766</subfield><subfield code="w">(DE-627)728440385</subfield><subfield code="w">(DE-600)2687964-5</subfield><subfield code="x">21693536</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:126728-126766</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1109/ACCESS.2022.3226272</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e99a95f7ee4e49e1baad6ec14ff60cfd</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/document/9968237/</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2169-3536</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="h">126728-126766</subfield></datafield></record></collection>
|
score |
7.4014473 |