Continuous real-time cow identification by reading ear tags from live-stream video
In precision dairy farming there is a need for continuous and real-time availability of data on cows and systems. Data collection using sensors is becoming more common and it can be difficult to connect sensor measurements to the identification of the individual cow that was measured. Cows can be id...
Ausführliche Beschreibung
Autor*in: |
John W.M. Bastiaansen [verfasserIn] Ina Hulsegge [verfasserIn] Dirkjan Schokker [verfasserIn] Esther D. Ellen [verfasserIn] Bert Klandermans [verfasserIn] Marjaneh Taghavi [verfasserIn] Claudia Kamphuis [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Frontiers in Animal Science - Frontiers Media S.A., 2021, 3(2022) |
---|---|
Übergeordnetes Werk: |
volume:3 ; year:2022 |
Links: |
---|
DOI / URN: |
10.3389/fanim.2022.846893 |
---|
Katalog-ID: |
DOAJ083342303 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ083342303 | ||
003 | DE-627 | ||
005 | 20230311020845.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3389/fanim.2022.846893 |2 doi | |
035 | |a (DE-627)DOAJ083342303 | ||
035 | |a (DE-599)DOAJb0e6b1b9a6a74b2590226f54ec9c4371 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a SF600-1100 | |
100 | 0 | |a John W.M. Bastiaansen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Continuous real-time cow identification by reading ear tags from live-stream video |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In precision dairy farming there is a need for continuous and real-time availability of data on cows and systems. Data collection using sensors is becoming more common and it can be difficult to connect sensor measurements to the identification of the individual cow that was measured. Cows can be identified by RFID tags, but ear tags with identification numbers are more widely used. Here we describe a system that makes the ear tag identification of the cow continuously available from a live-stream video so that this information can be added to other data streams that are collected in real-time. An ear tag reading model was implemented by retraining and existing model, and tested for accuracy of reading the digits on cows ear tag images obtained from two dairy farms. The ear tag reading model was then combined with a video set up in a milking robot on a dairy farm, where the identification by the milking robot was considered ground-truth. The system is reporting ear tag numbers obtained from live-stream video in real-time. Retraining a model using a small set of 750 images of ear tags increased the digit level accuracy to 87% in the test set. This compares to 80% accuracy obtained with the starting model trained on images of house numbers only. The ear tag numbers reported by real-time analysis of live-stream video identified the right cow 93% of the time. Precision and sensitivity were lower, with 65% and 41%, respectively, meaning that 41% of all cow visits to the milking robot were detected with the correct cow’s ear tag number. Further improvement in sensitivity needs to be investigated but when ear tag numbers are reported they are correct 93% of the time which is a promising starting point for future system improvements. | ||
650 | 4 | |a deep learning | |
650 | 4 | |a image analysis | |
650 | 4 | |a precision farming | |
650 | 4 | |a animal identification | |
650 | 4 | |a number recognition | |
653 | 0 | |a Veterinary medicine | |
700 | 0 | |a Ina Hulsegge |e verfasserin |4 aut | |
700 | 0 | |a Dirkjan Schokker |e verfasserin |4 aut | |
700 | 0 | |a Esther D. Ellen |e verfasserin |4 aut | |
700 | 0 | |a Bert Klandermans |e verfasserin |4 aut | |
700 | 0 | |a Marjaneh Taghavi |e verfasserin |4 aut | |
700 | 0 | |a Claudia Kamphuis |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Frontiers in Animal Science |d Frontiers Media S.A., 2021 |g 3(2022) |w (DE-627)1748214691 |w (DE-600)3053647-9 |x 26736225 |7 nnns |
773 | 1 | 8 | |g volume:3 |g year:2022 |
856 | 4 | 0 | |u https://doi.org/10.3389/fanim.2022.846893 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b0e6b1b9a6a74b2590226f54ec9c4371 |z kostenfrei |
856 | 4 | 0 | |u https://www.frontiersin.org/articles/10.3389/fanim.2022.846893/full |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2673-6225 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 3 |j 2022 |
author_variant |
j w b jwb i h ih d s ds e d e ede b k bk m t mt c k ck |
---|---|
matchkey_str |
article:26736225:2022----::otnoselieoietfctobraigatg |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
SF |
publishDate |
2022 |
allfields |
10.3389/fanim.2022.846893 doi (DE-627)DOAJ083342303 (DE-599)DOAJb0e6b1b9a6a74b2590226f54ec9c4371 DE-627 ger DE-627 rakwb eng SF600-1100 John W.M. Bastiaansen verfasserin aut Continuous real-time cow identification by reading ear tags from live-stream video 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In precision dairy farming there is a need for continuous and real-time availability of data on cows and systems. Data collection using sensors is becoming more common and it can be difficult to connect sensor measurements to the identification of the individual cow that was measured. Cows can be identified by RFID tags, but ear tags with identification numbers are more widely used. Here we describe a system that makes the ear tag identification of the cow continuously available from a live-stream video so that this information can be added to other data streams that are collected in real-time. An ear tag reading model was implemented by retraining and existing model, and tested for accuracy of reading the digits on cows ear tag images obtained from two dairy farms. The ear tag reading model was then combined with a video set up in a milking robot on a dairy farm, where the identification by the milking robot was considered ground-truth. The system is reporting ear tag numbers obtained from live-stream video in real-time. Retraining a model using a small set of 750 images of ear tags increased the digit level accuracy to 87% in the test set. This compares to 80% accuracy obtained with the starting model trained on images of house numbers only. The ear tag numbers reported by real-time analysis of live-stream video identified the right cow 93% of the time. Precision and sensitivity were lower, with 65% and 41%, respectively, meaning that 41% of all cow visits to the milking robot were detected with the correct cow’s ear tag number. Further improvement in sensitivity needs to be investigated but when ear tag numbers are reported they are correct 93% of the time which is a promising starting point for future system improvements. deep learning image analysis precision farming animal identification number recognition Veterinary medicine Ina Hulsegge verfasserin aut Dirkjan Schokker verfasserin aut Esther D. Ellen verfasserin aut Bert Klandermans verfasserin aut Marjaneh Taghavi verfasserin aut Claudia Kamphuis verfasserin aut In Frontiers in Animal Science Frontiers Media S.A., 2021 3(2022) (DE-627)1748214691 (DE-600)3053647-9 26736225 nnns volume:3 year:2022 https://doi.org/10.3389/fanim.2022.846893 kostenfrei https://doaj.org/article/b0e6b1b9a6a74b2590226f54ec9c4371 kostenfrei https://www.frontiersin.org/articles/10.3389/fanim.2022.846893/full kostenfrei https://doaj.org/toc/2673-6225 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2022 |
spelling |
10.3389/fanim.2022.846893 doi (DE-627)DOAJ083342303 (DE-599)DOAJb0e6b1b9a6a74b2590226f54ec9c4371 DE-627 ger DE-627 rakwb eng SF600-1100 John W.M. Bastiaansen verfasserin aut Continuous real-time cow identification by reading ear tags from live-stream video 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In precision dairy farming there is a need for continuous and real-time availability of data on cows and systems. Data collection using sensors is becoming more common and it can be difficult to connect sensor measurements to the identification of the individual cow that was measured. Cows can be identified by RFID tags, but ear tags with identification numbers are more widely used. Here we describe a system that makes the ear tag identification of the cow continuously available from a live-stream video so that this information can be added to other data streams that are collected in real-time. An ear tag reading model was implemented by retraining and existing model, and tested for accuracy of reading the digits on cows ear tag images obtained from two dairy farms. The ear tag reading model was then combined with a video set up in a milking robot on a dairy farm, where the identification by the milking robot was considered ground-truth. The system is reporting ear tag numbers obtained from live-stream video in real-time. Retraining a model using a small set of 750 images of ear tags increased the digit level accuracy to 87% in the test set. This compares to 80% accuracy obtained with the starting model trained on images of house numbers only. The ear tag numbers reported by real-time analysis of live-stream video identified the right cow 93% of the time. Precision and sensitivity were lower, with 65% and 41%, respectively, meaning that 41% of all cow visits to the milking robot were detected with the correct cow’s ear tag number. Further improvement in sensitivity needs to be investigated but when ear tag numbers are reported they are correct 93% of the time which is a promising starting point for future system improvements. deep learning image analysis precision farming animal identification number recognition Veterinary medicine Ina Hulsegge verfasserin aut Dirkjan Schokker verfasserin aut Esther D. Ellen verfasserin aut Bert Klandermans verfasserin aut Marjaneh Taghavi verfasserin aut Claudia Kamphuis verfasserin aut In Frontiers in Animal Science Frontiers Media S.A., 2021 3(2022) (DE-627)1748214691 (DE-600)3053647-9 26736225 nnns volume:3 year:2022 https://doi.org/10.3389/fanim.2022.846893 kostenfrei https://doaj.org/article/b0e6b1b9a6a74b2590226f54ec9c4371 kostenfrei https://www.frontiersin.org/articles/10.3389/fanim.2022.846893/full kostenfrei https://doaj.org/toc/2673-6225 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2022 |
allfields_unstemmed |
10.3389/fanim.2022.846893 doi (DE-627)DOAJ083342303 (DE-599)DOAJb0e6b1b9a6a74b2590226f54ec9c4371 DE-627 ger DE-627 rakwb eng SF600-1100 John W.M. Bastiaansen verfasserin aut Continuous real-time cow identification by reading ear tags from live-stream video 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In precision dairy farming there is a need for continuous and real-time availability of data on cows and systems. Data collection using sensors is becoming more common and it can be difficult to connect sensor measurements to the identification of the individual cow that was measured. Cows can be identified by RFID tags, but ear tags with identification numbers are more widely used. Here we describe a system that makes the ear tag identification of the cow continuously available from a live-stream video so that this information can be added to other data streams that are collected in real-time. An ear tag reading model was implemented by retraining and existing model, and tested for accuracy of reading the digits on cows ear tag images obtained from two dairy farms. The ear tag reading model was then combined with a video set up in a milking robot on a dairy farm, where the identification by the milking robot was considered ground-truth. The system is reporting ear tag numbers obtained from live-stream video in real-time. Retraining a model using a small set of 750 images of ear tags increased the digit level accuracy to 87% in the test set. This compares to 80% accuracy obtained with the starting model trained on images of house numbers only. The ear tag numbers reported by real-time analysis of live-stream video identified the right cow 93% of the time. Precision and sensitivity were lower, with 65% and 41%, respectively, meaning that 41% of all cow visits to the milking robot were detected with the correct cow’s ear tag number. Further improvement in sensitivity needs to be investigated but when ear tag numbers are reported they are correct 93% of the time which is a promising starting point for future system improvements. deep learning image analysis precision farming animal identification number recognition Veterinary medicine Ina Hulsegge verfasserin aut Dirkjan Schokker verfasserin aut Esther D. Ellen verfasserin aut Bert Klandermans verfasserin aut Marjaneh Taghavi verfasserin aut Claudia Kamphuis verfasserin aut In Frontiers in Animal Science Frontiers Media S.A., 2021 3(2022) (DE-627)1748214691 (DE-600)3053647-9 26736225 nnns volume:3 year:2022 https://doi.org/10.3389/fanim.2022.846893 kostenfrei https://doaj.org/article/b0e6b1b9a6a74b2590226f54ec9c4371 kostenfrei https://www.frontiersin.org/articles/10.3389/fanim.2022.846893/full kostenfrei https://doaj.org/toc/2673-6225 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2022 |
allfieldsGer |
10.3389/fanim.2022.846893 doi (DE-627)DOAJ083342303 (DE-599)DOAJb0e6b1b9a6a74b2590226f54ec9c4371 DE-627 ger DE-627 rakwb eng SF600-1100 John W.M. Bastiaansen verfasserin aut Continuous real-time cow identification by reading ear tags from live-stream video 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In precision dairy farming there is a need for continuous and real-time availability of data on cows and systems. Data collection using sensors is becoming more common and it can be difficult to connect sensor measurements to the identification of the individual cow that was measured. Cows can be identified by RFID tags, but ear tags with identification numbers are more widely used. Here we describe a system that makes the ear tag identification of the cow continuously available from a live-stream video so that this information can be added to other data streams that are collected in real-time. An ear tag reading model was implemented by retraining and existing model, and tested for accuracy of reading the digits on cows ear tag images obtained from two dairy farms. The ear tag reading model was then combined with a video set up in a milking robot on a dairy farm, where the identification by the milking robot was considered ground-truth. The system is reporting ear tag numbers obtained from live-stream video in real-time. Retraining a model using a small set of 750 images of ear tags increased the digit level accuracy to 87% in the test set. This compares to 80% accuracy obtained with the starting model trained on images of house numbers only. The ear tag numbers reported by real-time analysis of live-stream video identified the right cow 93% of the time. Precision and sensitivity were lower, with 65% and 41%, respectively, meaning that 41% of all cow visits to the milking robot were detected with the correct cow’s ear tag number. Further improvement in sensitivity needs to be investigated but when ear tag numbers are reported they are correct 93% of the time which is a promising starting point for future system improvements. deep learning image analysis precision farming animal identification number recognition Veterinary medicine Ina Hulsegge verfasserin aut Dirkjan Schokker verfasserin aut Esther D. Ellen verfasserin aut Bert Klandermans verfasserin aut Marjaneh Taghavi verfasserin aut Claudia Kamphuis verfasserin aut In Frontiers in Animal Science Frontiers Media S.A., 2021 3(2022) (DE-627)1748214691 (DE-600)3053647-9 26736225 nnns volume:3 year:2022 https://doi.org/10.3389/fanim.2022.846893 kostenfrei https://doaj.org/article/b0e6b1b9a6a74b2590226f54ec9c4371 kostenfrei https://www.frontiersin.org/articles/10.3389/fanim.2022.846893/full kostenfrei https://doaj.org/toc/2673-6225 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2022 |
allfieldsSound |
10.3389/fanim.2022.846893 doi (DE-627)DOAJ083342303 (DE-599)DOAJb0e6b1b9a6a74b2590226f54ec9c4371 DE-627 ger DE-627 rakwb eng SF600-1100 John W.M. Bastiaansen verfasserin aut Continuous real-time cow identification by reading ear tags from live-stream video 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In precision dairy farming there is a need for continuous and real-time availability of data on cows and systems. Data collection using sensors is becoming more common and it can be difficult to connect sensor measurements to the identification of the individual cow that was measured. Cows can be identified by RFID tags, but ear tags with identification numbers are more widely used. Here we describe a system that makes the ear tag identification of the cow continuously available from a live-stream video so that this information can be added to other data streams that are collected in real-time. An ear tag reading model was implemented by retraining and existing model, and tested for accuracy of reading the digits on cows ear tag images obtained from two dairy farms. The ear tag reading model was then combined with a video set up in a milking robot on a dairy farm, where the identification by the milking robot was considered ground-truth. The system is reporting ear tag numbers obtained from live-stream video in real-time. Retraining a model using a small set of 750 images of ear tags increased the digit level accuracy to 87% in the test set. This compares to 80% accuracy obtained with the starting model trained on images of house numbers only. The ear tag numbers reported by real-time analysis of live-stream video identified the right cow 93% of the time. Precision and sensitivity were lower, with 65% and 41%, respectively, meaning that 41% of all cow visits to the milking robot were detected with the correct cow’s ear tag number. Further improvement in sensitivity needs to be investigated but when ear tag numbers are reported they are correct 93% of the time which is a promising starting point for future system improvements. deep learning image analysis precision farming animal identification number recognition Veterinary medicine Ina Hulsegge verfasserin aut Dirkjan Schokker verfasserin aut Esther D. Ellen verfasserin aut Bert Klandermans verfasserin aut Marjaneh Taghavi verfasserin aut Claudia Kamphuis verfasserin aut In Frontiers in Animal Science Frontiers Media S.A., 2021 3(2022) (DE-627)1748214691 (DE-600)3053647-9 26736225 nnns volume:3 year:2022 https://doi.org/10.3389/fanim.2022.846893 kostenfrei https://doaj.org/article/b0e6b1b9a6a74b2590226f54ec9c4371 kostenfrei https://www.frontiersin.org/articles/10.3389/fanim.2022.846893/full kostenfrei https://doaj.org/toc/2673-6225 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2022 |
language |
English |
source |
In Frontiers in Animal Science 3(2022) volume:3 year:2022 |
sourceStr |
In Frontiers in Animal Science 3(2022) volume:3 year:2022 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
deep learning image analysis precision farming animal identification number recognition Veterinary medicine |
isfreeaccess_bool |
true |
container_title |
Frontiers in Animal Science |
authorswithroles_txt_mv |
John W.M. Bastiaansen @@aut@@ Ina Hulsegge @@aut@@ Dirkjan Schokker @@aut@@ Esther D. Ellen @@aut@@ Bert Klandermans @@aut@@ Marjaneh Taghavi @@aut@@ Claudia Kamphuis @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
1748214691 |
id |
DOAJ083342303 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ083342303</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311020845.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fanim.2022.846893</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ083342303</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb0e6b1b9a6a74b2590226f54ec9c4371</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">SF600-1100</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">John W.M. Bastiaansen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Continuous real-time cow identification by reading ear tags from live-stream video</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In precision dairy farming there is a need for continuous and real-time availability of data on cows and systems. Data collection using sensors is becoming more common and it can be difficult to connect sensor measurements to the identification of the individual cow that was measured. Cows can be identified by RFID tags, but ear tags with identification numbers are more widely used. Here we describe a system that makes the ear tag identification of the cow continuously available from a live-stream video so that this information can be added to other data streams that are collected in real-time. An ear tag reading model was implemented by retraining and existing model, and tested for accuracy of reading the digits on cows ear tag images obtained from two dairy farms. The ear tag reading model was then combined with a video set up in a milking robot on a dairy farm, where the identification by the milking robot was considered ground-truth. The system is reporting ear tag numbers obtained from live-stream video in real-time. Retraining a model using a small set of 750 images of ear tags increased the digit level accuracy to 87% in the test set. This compares to 80% accuracy obtained with the starting model trained on images of house numbers only. The ear tag numbers reported by real-time analysis of live-stream video identified the right cow 93% of the time. Precision and sensitivity were lower, with 65% and 41%, respectively, meaning that 41% of all cow visits to the milking robot were detected with the correct cow’s ear tag number. Further improvement in sensitivity needs to be investigated but when ear tag numbers are reported they are correct 93% of the time which is a promising starting point for future system improvements.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">precision farming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">animal identification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">number recognition</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Veterinary medicine</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ina Hulsegge</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dirkjan Schokker</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Esther D. Ellen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bert Klandermans</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marjaneh Taghavi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claudia Kamphuis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Animal Science</subfield><subfield code="d">Frontiers Media S.A., 2021</subfield><subfield code="g">3(2022)</subfield><subfield code="w">(DE-627)1748214691</subfield><subfield code="w">(DE-600)3053647-9</subfield><subfield code="x">26736225</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fanim.2022.846893</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b0e6b1b9a6a74b2590226f54ec9c4371</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fanim.2022.846893/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2673-6225</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2022</subfield></datafield></record></collection>
|
callnumber-first |
S - Agriculture |
author |
John W.M. Bastiaansen |
spellingShingle |
John W.M. Bastiaansen misc SF600-1100 misc deep learning misc image analysis misc precision farming misc animal identification misc number recognition misc Veterinary medicine Continuous real-time cow identification by reading ear tags from live-stream video |
authorStr |
John W.M. Bastiaansen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1748214691 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
SF600-1100 |
illustrated |
Not Illustrated |
issn |
26736225 |
topic_title |
SF600-1100 Continuous real-time cow identification by reading ear tags from live-stream video deep learning image analysis precision farming animal identification number recognition |
topic |
misc SF600-1100 misc deep learning misc image analysis misc precision farming misc animal identification misc number recognition misc Veterinary medicine |
topic_unstemmed |
misc SF600-1100 misc deep learning misc image analysis misc precision farming misc animal identification misc number recognition misc Veterinary medicine |
topic_browse |
misc SF600-1100 misc deep learning misc image analysis misc precision farming misc animal identification misc number recognition misc Veterinary medicine |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers in Animal Science |
hierarchy_parent_id |
1748214691 |
hierarchy_top_title |
Frontiers in Animal Science |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1748214691 (DE-600)3053647-9 |
title |
Continuous real-time cow identification by reading ear tags from live-stream video |
ctrlnum |
(DE-627)DOAJ083342303 (DE-599)DOAJb0e6b1b9a6a74b2590226f54ec9c4371 |
title_full |
Continuous real-time cow identification by reading ear tags from live-stream video |
author_sort |
John W.M. Bastiaansen |
journal |
Frontiers in Animal Science |
journalStr |
Frontiers in Animal Science |
callnumber-first-code |
S |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
John W.M. Bastiaansen Ina Hulsegge Dirkjan Schokker Esther D. Ellen Bert Klandermans Marjaneh Taghavi Claudia Kamphuis |
container_volume |
3 |
class |
SF600-1100 |
format_se |
Elektronische Aufsätze |
author-letter |
John W.M. Bastiaansen |
doi_str_mv |
10.3389/fanim.2022.846893 |
author2-role |
verfasserin |
title_sort |
continuous real-time cow identification by reading ear tags from live-stream video |
callnumber |
SF600-1100 |
title_auth |
Continuous real-time cow identification by reading ear tags from live-stream video |
abstract |
In precision dairy farming there is a need for continuous and real-time availability of data on cows and systems. Data collection using sensors is becoming more common and it can be difficult to connect sensor measurements to the identification of the individual cow that was measured. Cows can be identified by RFID tags, but ear tags with identification numbers are more widely used. Here we describe a system that makes the ear tag identification of the cow continuously available from a live-stream video so that this information can be added to other data streams that are collected in real-time. An ear tag reading model was implemented by retraining and existing model, and tested for accuracy of reading the digits on cows ear tag images obtained from two dairy farms. The ear tag reading model was then combined with a video set up in a milking robot on a dairy farm, where the identification by the milking robot was considered ground-truth. The system is reporting ear tag numbers obtained from live-stream video in real-time. Retraining a model using a small set of 750 images of ear tags increased the digit level accuracy to 87% in the test set. This compares to 80% accuracy obtained with the starting model trained on images of house numbers only. The ear tag numbers reported by real-time analysis of live-stream video identified the right cow 93% of the time. Precision and sensitivity were lower, with 65% and 41%, respectively, meaning that 41% of all cow visits to the milking robot were detected with the correct cow’s ear tag number. Further improvement in sensitivity needs to be investigated but when ear tag numbers are reported they are correct 93% of the time which is a promising starting point for future system improvements. |
abstractGer |
In precision dairy farming there is a need for continuous and real-time availability of data on cows and systems. Data collection using sensors is becoming more common and it can be difficult to connect sensor measurements to the identification of the individual cow that was measured. Cows can be identified by RFID tags, but ear tags with identification numbers are more widely used. Here we describe a system that makes the ear tag identification of the cow continuously available from a live-stream video so that this information can be added to other data streams that are collected in real-time. An ear tag reading model was implemented by retraining and existing model, and tested for accuracy of reading the digits on cows ear tag images obtained from two dairy farms. The ear tag reading model was then combined with a video set up in a milking robot on a dairy farm, where the identification by the milking robot was considered ground-truth. The system is reporting ear tag numbers obtained from live-stream video in real-time. Retraining a model using a small set of 750 images of ear tags increased the digit level accuracy to 87% in the test set. This compares to 80% accuracy obtained with the starting model trained on images of house numbers only. The ear tag numbers reported by real-time analysis of live-stream video identified the right cow 93% of the time. Precision and sensitivity were lower, with 65% and 41%, respectively, meaning that 41% of all cow visits to the milking robot were detected with the correct cow’s ear tag number. Further improvement in sensitivity needs to be investigated but when ear tag numbers are reported they are correct 93% of the time which is a promising starting point for future system improvements. |
abstract_unstemmed |
In precision dairy farming there is a need for continuous and real-time availability of data on cows and systems. Data collection using sensors is becoming more common and it can be difficult to connect sensor measurements to the identification of the individual cow that was measured. Cows can be identified by RFID tags, but ear tags with identification numbers are more widely used. Here we describe a system that makes the ear tag identification of the cow continuously available from a live-stream video so that this information can be added to other data streams that are collected in real-time. An ear tag reading model was implemented by retraining and existing model, and tested for accuracy of reading the digits on cows ear tag images obtained from two dairy farms. The ear tag reading model was then combined with a video set up in a milking robot on a dairy farm, where the identification by the milking robot was considered ground-truth. The system is reporting ear tag numbers obtained from live-stream video in real-time. Retraining a model using a small set of 750 images of ear tags increased the digit level accuracy to 87% in the test set. This compares to 80% accuracy obtained with the starting model trained on images of house numbers only. The ear tag numbers reported by real-time analysis of live-stream video identified the right cow 93% of the time. Precision and sensitivity were lower, with 65% and 41%, respectively, meaning that 41% of all cow visits to the milking robot were detected with the correct cow’s ear tag number. Further improvement in sensitivity needs to be investigated but when ear tag numbers are reported they are correct 93% of the time which is a promising starting point for future system improvements. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Continuous real-time cow identification by reading ear tags from live-stream video |
url |
https://doi.org/10.3389/fanim.2022.846893 https://doaj.org/article/b0e6b1b9a6a74b2590226f54ec9c4371 https://www.frontiersin.org/articles/10.3389/fanim.2022.846893/full https://doaj.org/toc/2673-6225 |
remote_bool |
true |
author2 |
Ina Hulsegge Dirkjan Schokker Esther D. Ellen Bert Klandermans Marjaneh Taghavi Claudia Kamphuis |
author2Str |
Ina Hulsegge Dirkjan Schokker Esther D. Ellen Bert Klandermans Marjaneh Taghavi Claudia Kamphuis |
ppnlink |
1748214691 |
callnumber-subject |
SF - Animal Culture |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3389/fanim.2022.846893 |
callnumber-a |
SF600-1100 |
up_date |
2024-07-03T16:55:34.742Z |
_version_ |
1803577704838070272 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ083342303</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311020845.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3389/fanim.2022.846893</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ083342303</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb0e6b1b9a6a74b2590226f54ec9c4371</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">SF600-1100</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">John W.M. Bastiaansen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Continuous real-time cow identification by reading ear tags from live-stream video</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In precision dairy farming there is a need for continuous and real-time availability of data on cows and systems. Data collection using sensors is becoming more common and it can be difficult to connect sensor measurements to the identification of the individual cow that was measured. Cows can be identified by RFID tags, but ear tags with identification numbers are more widely used. Here we describe a system that makes the ear tag identification of the cow continuously available from a live-stream video so that this information can be added to other data streams that are collected in real-time. An ear tag reading model was implemented by retraining and existing model, and tested for accuracy of reading the digits on cows ear tag images obtained from two dairy farms. The ear tag reading model was then combined with a video set up in a milking robot on a dairy farm, where the identification by the milking robot was considered ground-truth. The system is reporting ear tag numbers obtained from live-stream video in real-time. Retraining a model using a small set of 750 images of ear tags increased the digit level accuracy to 87% in the test set. This compares to 80% accuracy obtained with the starting model trained on images of house numbers only. The ear tag numbers reported by real-time analysis of live-stream video identified the right cow 93% of the time. Precision and sensitivity were lower, with 65% and 41%, respectively, meaning that 41% of all cow visits to the milking robot were detected with the correct cow’s ear tag number. Further improvement in sensitivity needs to be investigated but when ear tag numbers are reported they are correct 93% of the time which is a promising starting point for future system improvements.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">deep learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">precision farming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">animal identification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">number recognition</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Veterinary medicine</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ina Hulsegge</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dirkjan Schokker</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Esther D. Ellen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bert Klandermans</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marjaneh Taghavi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claudia Kamphuis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Frontiers in Animal Science</subfield><subfield code="d">Frontiers Media S.A., 2021</subfield><subfield code="g">3(2022)</subfield><subfield code="w">(DE-627)1748214691</subfield><subfield code="w">(DE-600)3053647-9</subfield><subfield code="x">26736225</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3389/fanim.2022.846893</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b0e6b1b9a6a74b2590226f54ec9c4371</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.frontiersin.org/articles/10.3389/fanim.2022.846893/full</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2673-6225</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2022</subfield></datafield></record></collection>
|
score |
7.402936 |