A time-saving FEM-based approach for structural topology optimization with exact boundary representation
A time-saving finite element method (FEM) based approach for structural topology optimization with exact boundary representation is proposed in this work. The optimization process consists of two loops. The first loop adopts a fixed and fairly coarse mesh. Afterwards, the second loop reconstructs th...
Ausführliche Beschreibung
Autor*in: |
Yi CUI [verfasserIn] Toru TAKAHASHI [verfasserIn] Toshiro MATSUMOTO [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Mechanical Engineering Journal - The Japan Society of Mechanical Engineers, 2021, 9(2022), 6, Seite 22-00281-22-00281 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2022 ; number:6 ; pages:22-00281-22-00281 |
Links: |
---|
DOI / URN: |
10.1299/mej.22-00281 |
---|
Katalog-ID: |
DOAJ083347917 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ083347917 | ||
003 | DE-627 | ||
005 | 20230311020859.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1299/mej.22-00281 |2 doi | |
035 | |a (DE-627)DOAJ083347917 | ||
035 | |a (DE-599)DOAJ315f21c63363460488779b85a58c819e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TJ1-1570 | |
100 | 0 | |a Yi CUI |e verfasserin |4 aut | |
245 | 1 | 2 | |a A time-saving FEM-based approach for structural topology optimization with exact boundary representation |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A time-saving finite element method (FEM) based approach for structural topology optimization with exact boundary representation is proposed in this work. The optimization process consists of two loops. The first loop adopts a fixed and fairly coarse mesh. Afterwards, the second loop reconstructs the material domain and hence the boundary representation becomes exact. A novelty of this work is that our two-loop approach is realized with the domain reconstruction (not just remeshing). The convergence of the second loop is only made possible by imposing the volume constraint in an exact fashion. The proposed approach can save a substantial amount of computational time while allowing the exact representation of boundary (no grayscale throughout the second loop). For the two-loop approach, its computational time can be reduced to merely 13.6% of that for the single loop approach. The optimized structure is also found independent of mesh size. In addition, the two-loop approach resolves the issue of a deteriorated connectivity of the reconstructed domain Ω once the constrained volume is set extremely small. | ||
650 | 4 | |a topology optimization | |
650 | 4 | |a exact boundary representation | |
650 | 4 | |a time-saving | |
650 | 4 | |a reaction-diffusion equation | |
650 | 4 | |a level set function | |
653 | 0 | |a Mechanical engineering and machinery | |
700 | 0 | |a Toru TAKAHASHI |e verfasserin |4 aut | |
700 | 0 | |a Toshiro MATSUMOTO |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Mechanical Engineering Journal |d The Japan Society of Mechanical Engineers, 2021 |g 9(2022), 6, Seite 22-00281-22-00281 |w (DE-627)785704310 |w (DE-600)2769790-3 |x 21879745 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2022 |g number:6 |g pages:22-00281-22-00281 |
856 | 4 | 0 | |u https://doi.org/10.1299/mej.22-00281 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/315f21c63363460488779b85a58c819e |z kostenfrei |
856 | 4 | 0 | |u https://www.jstage.jst.go.jp/article/mej/9/6/9_22-00281/_pdf/-char/en |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2187-9745 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2022 |e 6 |h 22-00281-22-00281 |
author_variant |
y c yc t t tt t m tm |
---|---|
matchkey_str |
article:21879745:2022----::tmsvnfmaeapocfrtutrloooypiiainihx |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TJ |
publishDate |
2022 |
allfields |
10.1299/mej.22-00281 doi (DE-627)DOAJ083347917 (DE-599)DOAJ315f21c63363460488779b85a58c819e DE-627 ger DE-627 rakwb eng TJ1-1570 Yi CUI verfasserin aut A time-saving FEM-based approach for structural topology optimization with exact boundary representation 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A time-saving finite element method (FEM) based approach for structural topology optimization with exact boundary representation is proposed in this work. The optimization process consists of two loops. The first loop adopts a fixed and fairly coarse mesh. Afterwards, the second loop reconstructs the material domain and hence the boundary representation becomes exact. A novelty of this work is that our two-loop approach is realized with the domain reconstruction (not just remeshing). The convergence of the second loop is only made possible by imposing the volume constraint in an exact fashion. The proposed approach can save a substantial amount of computational time while allowing the exact representation of boundary (no grayscale throughout the second loop). For the two-loop approach, its computational time can be reduced to merely 13.6% of that for the single loop approach. The optimized structure is also found independent of mesh size. In addition, the two-loop approach resolves the issue of a deteriorated connectivity of the reconstructed domain Ω once the constrained volume is set extremely small. topology optimization exact boundary representation time-saving reaction-diffusion equation level set function Mechanical engineering and machinery Toru TAKAHASHI verfasserin aut Toshiro MATSUMOTO verfasserin aut In Mechanical Engineering Journal The Japan Society of Mechanical Engineers, 2021 9(2022), 6, Seite 22-00281-22-00281 (DE-627)785704310 (DE-600)2769790-3 21879745 nnns volume:9 year:2022 number:6 pages:22-00281-22-00281 https://doi.org/10.1299/mej.22-00281 kostenfrei https://doaj.org/article/315f21c63363460488779b85a58c819e kostenfrei https://www.jstage.jst.go.jp/article/mej/9/6/9_22-00281/_pdf/-char/en kostenfrei https://doaj.org/toc/2187-9745 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 6 22-00281-22-00281 |
spelling |
10.1299/mej.22-00281 doi (DE-627)DOAJ083347917 (DE-599)DOAJ315f21c63363460488779b85a58c819e DE-627 ger DE-627 rakwb eng TJ1-1570 Yi CUI verfasserin aut A time-saving FEM-based approach for structural topology optimization with exact boundary representation 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A time-saving finite element method (FEM) based approach for structural topology optimization with exact boundary representation is proposed in this work. The optimization process consists of two loops. The first loop adopts a fixed and fairly coarse mesh. Afterwards, the second loop reconstructs the material domain and hence the boundary representation becomes exact. A novelty of this work is that our two-loop approach is realized with the domain reconstruction (not just remeshing). The convergence of the second loop is only made possible by imposing the volume constraint in an exact fashion. The proposed approach can save a substantial amount of computational time while allowing the exact representation of boundary (no grayscale throughout the second loop). For the two-loop approach, its computational time can be reduced to merely 13.6% of that for the single loop approach. The optimized structure is also found independent of mesh size. In addition, the two-loop approach resolves the issue of a deteriorated connectivity of the reconstructed domain Ω once the constrained volume is set extremely small. topology optimization exact boundary representation time-saving reaction-diffusion equation level set function Mechanical engineering and machinery Toru TAKAHASHI verfasserin aut Toshiro MATSUMOTO verfasserin aut In Mechanical Engineering Journal The Japan Society of Mechanical Engineers, 2021 9(2022), 6, Seite 22-00281-22-00281 (DE-627)785704310 (DE-600)2769790-3 21879745 nnns volume:9 year:2022 number:6 pages:22-00281-22-00281 https://doi.org/10.1299/mej.22-00281 kostenfrei https://doaj.org/article/315f21c63363460488779b85a58c819e kostenfrei https://www.jstage.jst.go.jp/article/mej/9/6/9_22-00281/_pdf/-char/en kostenfrei https://doaj.org/toc/2187-9745 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 6 22-00281-22-00281 |
allfields_unstemmed |
10.1299/mej.22-00281 doi (DE-627)DOAJ083347917 (DE-599)DOAJ315f21c63363460488779b85a58c819e DE-627 ger DE-627 rakwb eng TJ1-1570 Yi CUI verfasserin aut A time-saving FEM-based approach for structural topology optimization with exact boundary representation 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A time-saving finite element method (FEM) based approach for structural topology optimization with exact boundary representation is proposed in this work. The optimization process consists of two loops. The first loop adopts a fixed and fairly coarse mesh. Afterwards, the second loop reconstructs the material domain and hence the boundary representation becomes exact. A novelty of this work is that our two-loop approach is realized with the domain reconstruction (not just remeshing). The convergence of the second loop is only made possible by imposing the volume constraint in an exact fashion. The proposed approach can save a substantial amount of computational time while allowing the exact representation of boundary (no grayscale throughout the second loop). For the two-loop approach, its computational time can be reduced to merely 13.6% of that for the single loop approach. The optimized structure is also found independent of mesh size. In addition, the two-loop approach resolves the issue of a deteriorated connectivity of the reconstructed domain Ω once the constrained volume is set extremely small. topology optimization exact boundary representation time-saving reaction-diffusion equation level set function Mechanical engineering and machinery Toru TAKAHASHI verfasserin aut Toshiro MATSUMOTO verfasserin aut In Mechanical Engineering Journal The Japan Society of Mechanical Engineers, 2021 9(2022), 6, Seite 22-00281-22-00281 (DE-627)785704310 (DE-600)2769790-3 21879745 nnns volume:9 year:2022 number:6 pages:22-00281-22-00281 https://doi.org/10.1299/mej.22-00281 kostenfrei https://doaj.org/article/315f21c63363460488779b85a58c819e kostenfrei https://www.jstage.jst.go.jp/article/mej/9/6/9_22-00281/_pdf/-char/en kostenfrei https://doaj.org/toc/2187-9745 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 6 22-00281-22-00281 |
allfieldsGer |
10.1299/mej.22-00281 doi (DE-627)DOAJ083347917 (DE-599)DOAJ315f21c63363460488779b85a58c819e DE-627 ger DE-627 rakwb eng TJ1-1570 Yi CUI verfasserin aut A time-saving FEM-based approach for structural topology optimization with exact boundary representation 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A time-saving finite element method (FEM) based approach for structural topology optimization with exact boundary representation is proposed in this work. The optimization process consists of two loops. The first loop adopts a fixed and fairly coarse mesh. Afterwards, the second loop reconstructs the material domain and hence the boundary representation becomes exact. A novelty of this work is that our two-loop approach is realized with the domain reconstruction (not just remeshing). The convergence of the second loop is only made possible by imposing the volume constraint in an exact fashion. The proposed approach can save a substantial amount of computational time while allowing the exact representation of boundary (no grayscale throughout the second loop). For the two-loop approach, its computational time can be reduced to merely 13.6% of that for the single loop approach. The optimized structure is also found independent of mesh size. In addition, the two-loop approach resolves the issue of a deteriorated connectivity of the reconstructed domain Ω once the constrained volume is set extremely small. topology optimization exact boundary representation time-saving reaction-diffusion equation level set function Mechanical engineering and machinery Toru TAKAHASHI verfasserin aut Toshiro MATSUMOTO verfasserin aut In Mechanical Engineering Journal The Japan Society of Mechanical Engineers, 2021 9(2022), 6, Seite 22-00281-22-00281 (DE-627)785704310 (DE-600)2769790-3 21879745 nnns volume:9 year:2022 number:6 pages:22-00281-22-00281 https://doi.org/10.1299/mej.22-00281 kostenfrei https://doaj.org/article/315f21c63363460488779b85a58c819e kostenfrei https://www.jstage.jst.go.jp/article/mej/9/6/9_22-00281/_pdf/-char/en kostenfrei https://doaj.org/toc/2187-9745 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 6 22-00281-22-00281 |
allfieldsSound |
10.1299/mej.22-00281 doi (DE-627)DOAJ083347917 (DE-599)DOAJ315f21c63363460488779b85a58c819e DE-627 ger DE-627 rakwb eng TJ1-1570 Yi CUI verfasserin aut A time-saving FEM-based approach for structural topology optimization with exact boundary representation 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A time-saving finite element method (FEM) based approach for structural topology optimization with exact boundary representation is proposed in this work. The optimization process consists of two loops. The first loop adopts a fixed and fairly coarse mesh. Afterwards, the second loop reconstructs the material domain and hence the boundary representation becomes exact. A novelty of this work is that our two-loop approach is realized with the domain reconstruction (not just remeshing). The convergence of the second loop is only made possible by imposing the volume constraint in an exact fashion. The proposed approach can save a substantial amount of computational time while allowing the exact representation of boundary (no grayscale throughout the second loop). For the two-loop approach, its computational time can be reduced to merely 13.6% of that for the single loop approach. The optimized structure is also found independent of mesh size. In addition, the two-loop approach resolves the issue of a deteriorated connectivity of the reconstructed domain Ω once the constrained volume is set extremely small. topology optimization exact boundary representation time-saving reaction-diffusion equation level set function Mechanical engineering and machinery Toru TAKAHASHI verfasserin aut Toshiro MATSUMOTO verfasserin aut In Mechanical Engineering Journal The Japan Society of Mechanical Engineers, 2021 9(2022), 6, Seite 22-00281-22-00281 (DE-627)785704310 (DE-600)2769790-3 21879745 nnns volume:9 year:2022 number:6 pages:22-00281-22-00281 https://doi.org/10.1299/mej.22-00281 kostenfrei https://doaj.org/article/315f21c63363460488779b85a58c819e kostenfrei https://www.jstage.jst.go.jp/article/mej/9/6/9_22-00281/_pdf/-char/en kostenfrei https://doaj.org/toc/2187-9745 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 6 22-00281-22-00281 |
language |
English |
source |
In Mechanical Engineering Journal 9(2022), 6, Seite 22-00281-22-00281 volume:9 year:2022 number:6 pages:22-00281-22-00281 |
sourceStr |
In Mechanical Engineering Journal 9(2022), 6, Seite 22-00281-22-00281 volume:9 year:2022 number:6 pages:22-00281-22-00281 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
topology optimization exact boundary representation time-saving reaction-diffusion equation level set function Mechanical engineering and machinery |
isfreeaccess_bool |
true |
container_title |
Mechanical Engineering Journal |
authorswithroles_txt_mv |
Yi CUI @@aut@@ Toru TAKAHASHI @@aut@@ Toshiro MATSUMOTO @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
785704310 |
id |
DOAJ083347917 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ083347917</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311020859.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1299/mej.22-00281</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ083347917</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ315f21c63363460488779b85a58c819e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ1-1570</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yi CUI</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A time-saving FEM-based approach for structural topology optimization with exact boundary representation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A time-saving finite element method (FEM) based approach for structural topology optimization with exact boundary representation is proposed in this work. The optimization process consists of two loops. The first loop adopts a fixed and fairly coarse mesh. Afterwards, the second loop reconstructs the material domain and hence the boundary representation becomes exact. A novelty of this work is that our two-loop approach is realized with the domain reconstruction (not just remeshing). The convergence of the second loop is only made possible by imposing the volume constraint in an exact fashion. The proposed approach can save a substantial amount of computational time while allowing the exact representation of boundary (no grayscale throughout the second loop). For the two-loop approach, its computational time can be reduced to merely 13.6% of that for the single loop approach. The optimized structure is also found independent of mesh size. In addition, the two-loop approach resolves the issue of a deteriorated connectivity of the reconstructed domain Ω once the constrained volume is set extremely small.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">topology optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">exact boundary representation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time-saving</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reaction-diffusion equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">level set function</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mechanical engineering and machinery</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Toru TAKAHASHI</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Toshiro MATSUMOTO</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Mechanical Engineering Journal</subfield><subfield code="d">The Japan Society of Mechanical Engineers, 2021</subfield><subfield code="g">9(2022), 6, Seite 22-00281-22-00281</subfield><subfield code="w">(DE-627)785704310</subfield><subfield code="w">(DE-600)2769790-3</subfield><subfield code="x">21879745</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:22-00281-22-00281</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1299/mej.22-00281</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/315f21c63363460488779b85a58c819e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.jstage.jst.go.jp/article/mej/9/6/9_22-00281/_pdf/-char/en</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2187-9745</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2022</subfield><subfield code="e">6</subfield><subfield code="h">22-00281-22-00281</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Yi CUI |
spellingShingle |
Yi CUI misc TJ1-1570 misc topology optimization misc exact boundary representation misc time-saving misc reaction-diffusion equation misc level set function misc Mechanical engineering and machinery A time-saving FEM-based approach for structural topology optimization with exact boundary representation |
authorStr |
Yi CUI |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)785704310 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TJ1-1570 |
illustrated |
Not Illustrated |
issn |
21879745 |
topic_title |
TJ1-1570 A time-saving FEM-based approach for structural topology optimization with exact boundary representation topology optimization exact boundary representation time-saving reaction-diffusion equation level set function |
topic |
misc TJ1-1570 misc topology optimization misc exact boundary representation misc time-saving misc reaction-diffusion equation misc level set function misc Mechanical engineering and machinery |
topic_unstemmed |
misc TJ1-1570 misc topology optimization misc exact boundary representation misc time-saving misc reaction-diffusion equation misc level set function misc Mechanical engineering and machinery |
topic_browse |
misc TJ1-1570 misc topology optimization misc exact boundary representation misc time-saving misc reaction-diffusion equation misc level set function misc Mechanical engineering and machinery |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Mechanical Engineering Journal |
hierarchy_parent_id |
785704310 |
hierarchy_top_title |
Mechanical Engineering Journal |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)785704310 (DE-600)2769790-3 |
title |
A time-saving FEM-based approach for structural topology optimization with exact boundary representation |
ctrlnum |
(DE-627)DOAJ083347917 (DE-599)DOAJ315f21c63363460488779b85a58c819e |
title_full |
A time-saving FEM-based approach for structural topology optimization with exact boundary representation |
author_sort |
Yi CUI |
journal |
Mechanical Engineering Journal |
journalStr |
Mechanical Engineering Journal |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
22 |
author_browse |
Yi CUI Toru TAKAHASHI Toshiro MATSUMOTO |
container_volume |
9 |
class |
TJ1-1570 |
format_se |
Elektronische Aufsätze |
author-letter |
Yi CUI |
doi_str_mv |
10.1299/mej.22-00281 |
author2-role |
verfasserin |
title_sort |
time-saving fem-based approach for structural topology optimization with exact boundary representation |
callnumber |
TJ1-1570 |
title_auth |
A time-saving FEM-based approach for structural topology optimization with exact boundary representation |
abstract |
A time-saving finite element method (FEM) based approach for structural topology optimization with exact boundary representation is proposed in this work. The optimization process consists of two loops. The first loop adopts a fixed and fairly coarse mesh. Afterwards, the second loop reconstructs the material domain and hence the boundary representation becomes exact. A novelty of this work is that our two-loop approach is realized with the domain reconstruction (not just remeshing). The convergence of the second loop is only made possible by imposing the volume constraint in an exact fashion. The proposed approach can save a substantial amount of computational time while allowing the exact representation of boundary (no grayscale throughout the second loop). For the two-loop approach, its computational time can be reduced to merely 13.6% of that for the single loop approach. The optimized structure is also found independent of mesh size. In addition, the two-loop approach resolves the issue of a deteriorated connectivity of the reconstructed domain Ω once the constrained volume is set extremely small. |
abstractGer |
A time-saving finite element method (FEM) based approach for structural topology optimization with exact boundary representation is proposed in this work. The optimization process consists of two loops. The first loop adopts a fixed and fairly coarse mesh. Afterwards, the second loop reconstructs the material domain and hence the boundary representation becomes exact. A novelty of this work is that our two-loop approach is realized with the domain reconstruction (not just remeshing). The convergence of the second loop is only made possible by imposing the volume constraint in an exact fashion. The proposed approach can save a substantial amount of computational time while allowing the exact representation of boundary (no grayscale throughout the second loop). For the two-loop approach, its computational time can be reduced to merely 13.6% of that for the single loop approach. The optimized structure is also found independent of mesh size. In addition, the two-loop approach resolves the issue of a deteriorated connectivity of the reconstructed domain Ω once the constrained volume is set extremely small. |
abstract_unstemmed |
A time-saving finite element method (FEM) based approach for structural topology optimization with exact boundary representation is proposed in this work. The optimization process consists of two loops. The first loop adopts a fixed and fairly coarse mesh. Afterwards, the second loop reconstructs the material domain and hence the boundary representation becomes exact. A novelty of this work is that our two-loop approach is realized with the domain reconstruction (not just remeshing). The convergence of the second loop is only made possible by imposing the volume constraint in an exact fashion. The proposed approach can save a substantial amount of computational time while allowing the exact representation of boundary (no grayscale throughout the second loop). For the two-loop approach, its computational time can be reduced to merely 13.6% of that for the single loop approach. The optimized structure is also found independent of mesh size. In addition, the two-loop approach resolves the issue of a deteriorated connectivity of the reconstructed domain Ω once the constrained volume is set extremely small. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6 |
title_short |
A time-saving FEM-based approach for structural topology optimization with exact boundary representation |
url |
https://doi.org/10.1299/mej.22-00281 https://doaj.org/article/315f21c63363460488779b85a58c819e https://www.jstage.jst.go.jp/article/mej/9/6/9_22-00281/_pdf/-char/en https://doaj.org/toc/2187-9745 |
remote_bool |
true |
author2 |
Toru TAKAHASHI Toshiro MATSUMOTO |
author2Str |
Toru TAKAHASHI Toshiro MATSUMOTO |
ppnlink |
785704310 |
callnumber-subject |
TJ - Mechanical Engineering and Machinery |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1299/mej.22-00281 |
callnumber-a |
TJ1-1570 |
up_date |
2024-07-03T16:57:24.336Z |
_version_ |
1803577819751514112 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ083347917</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311020859.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1299/mej.22-00281</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ083347917</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ315f21c63363460488779b85a58c819e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ1-1570</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yi CUI</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A time-saving FEM-based approach for structural topology optimization with exact boundary representation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A time-saving finite element method (FEM) based approach for structural topology optimization with exact boundary representation is proposed in this work. The optimization process consists of two loops. The first loop adopts a fixed and fairly coarse mesh. Afterwards, the second loop reconstructs the material domain and hence the boundary representation becomes exact. A novelty of this work is that our two-loop approach is realized with the domain reconstruction (not just remeshing). The convergence of the second loop is only made possible by imposing the volume constraint in an exact fashion. The proposed approach can save a substantial amount of computational time while allowing the exact representation of boundary (no grayscale throughout the second loop). For the two-loop approach, its computational time can be reduced to merely 13.6% of that for the single loop approach. The optimized structure is also found independent of mesh size. In addition, the two-loop approach resolves the issue of a deteriorated connectivity of the reconstructed domain Ω once the constrained volume is set extremely small.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">topology optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">exact boundary representation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time-saving</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reaction-diffusion equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">level set function</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mechanical engineering and machinery</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Toru TAKAHASHI</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Toshiro MATSUMOTO</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Mechanical Engineering Journal</subfield><subfield code="d">The Japan Society of Mechanical Engineers, 2021</subfield><subfield code="g">9(2022), 6, Seite 22-00281-22-00281</subfield><subfield code="w">(DE-627)785704310</subfield><subfield code="w">(DE-600)2769790-3</subfield><subfield code="x">21879745</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:22-00281-22-00281</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1299/mej.22-00281</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/315f21c63363460488779b85a58c819e</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.jstage.jst.go.jp/article/mej/9/6/9_22-00281/_pdf/-char/en</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2187-9745</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2022</subfield><subfield code="e">6</subfield><subfield code="h">22-00281-22-00281</subfield></datafield></record></collection>
|
score |
7.402297 |