A Cost-Effective Distributed Acoustic Sensor for Engineering Geology
A simple and cost-effective architecture of a distributed acoustic sensor (DAS) or a phase-OTDR for engineering geology is proposed. The architecture is based on the dual-pulse acquisition principle, where the dual probing pulse is formed via an unbalanced Michelson interferometer (MI). The necessar...
Ausführliche Beschreibung
Autor*in: |
Boris G. Gorshkov [verfasserIn] Alexey E. Alekseev [verfasserIn] Denis E. Simikin [verfasserIn] Mikhail A. Taranov [verfasserIn] Konstantin M. Zhukov [verfasserIn] Vladimir T. Potapov [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Sensors - MDPI AG, 2003, 22(2022), 23, p 9482 |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2022 ; number:23, p 9482 |
Links: |
---|
DOI / URN: |
10.3390/s22239482 |
---|
Katalog-ID: |
DOAJ083426515 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ083426515 | ||
003 | DE-627 | ||
005 | 20240414154831.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/s22239482 |2 doi | |
035 | |a (DE-627)DOAJ083426515 | ||
035 | |a (DE-599)DOAJ16cf7727c8074b109cb828cd314727e8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
100 | 0 | |a Boris G. Gorshkov |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Cost-Effective Distributed Acoustic Sensor for Engineering Geology |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A simple and cost-effective architecture of a distributed acoustic sensor (DAS) or a phase-OTDR for engineering geology is proposed. The architecture is based on the dual-pulse acquisition principle, where the dual probing pulse is formed via an unbalanced Michelson interferometer (MI). The necessary phase shifts between the sub-pulses of the dual-pulse are introduced using a 3 × 3 coupler built into the MI. Laser pulses are generated by direct modulation of the injection current, which obtains optical pulses with a duration of 7 ns. The use of an unbalanced MI for the formation of a dual-pulse reduces the requirements for the coherence of the laser source, as the introduced delay between sub-pulses is compensated in the fiber under test (FUT). Therefore, a laser with a relatively broad spectral linewidth of about 1 GHz can be used. To overcome the fading problem, as well as to ensure the linearity of the DAS response, the averaging of over 16 optical frequencies is used. The performance of the DAS was tested by recording a strong vibration impact on a horizontally buried cable and by the recording of seismic waves in a borehole in the seabed. | ||
650 | 4 | |a optical reflectometry | |
650 | 4 | |a fiber optic sensors | |
650 | 4 | |a distributed acoustic sensing (DAS) | |
653 | 0 | |a Chemical technology | |
700 | 0 | |a Alexey E. Alekseev |e verfasserin |4 aut | |
700 | 0 | |a Denis E. Simikin |e verfasserin |4 aut | |
700 | 0 | |a Mikhail A. Taranov |e verfasserin |4 aut | |
700 | 0 | |a Konstantin M. Zhukov |e verfasserin |4 aut | |
700 | 0 | |a Vladimir T. Potapov |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Sensors |d MDPI AG, 2003 |g 22(2022), 23, p 9482 |w (DE-627)331640910 |w (DE-600)2052857-7 |x 14248220 |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2022 |g number:23, p 9482 |
856 | 4 | 0 | |u https://doi.org/10.3390/s22239482 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/16cf7727c8074b109cb828cd314727e8 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1424-8220/22/23/9482 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1424-8220 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 22 |j 2022 |e 23, p 9482 |
author_variant |
b g g bgg a e a aea d e s des m a t mat k m z kmz v t p vtp |
---|---|
matchkey_str |
article:14248220:2022----::csefcieitiueaosisnofrn |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TP |
publishDate |
2022 |
allfields |
10.3390/s22239482 doi (DE-627)DOAJ083426515 (DE-599)DOAJ16cf7727c8074b109cb828cd314727e8 DE-627 ger DE-627 rakwb eng TP1-1185 Boris G. Gorshkov verfasserin aut A Cost-Effective Distributed Acoustic Sensor for Engineering Geology 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A simple and cost-effective architecture of a distributed acoustic sensor (DAS) or a phase-OTDR for engineering geology is proposed. The architecture is based on the dual-pulse acquisition principle, where the dual probing pulse is formed via an unbalanced Michelson interferometer (MI). The necessary phase shifts between the sub-pulses of the dual-pulse are introduced using a 3 × 3 coupler built into the MI. Laser pulses are generated by direct modulation of the injection current, which obtains optical pulses with a duration of 7 ns. The use of an unbalanced MI for the formation of a dual-pulse reduces the requirements for the coherence of the laser source, as the introduced delay between sub-pulses is compensated in the fiber under test (FUT). Therefore, a laser with a relatively broad spectral linewidth of about 1 GHz can be used. To overcome the fading problem, as well as to ensure the linearity of the DAS response, the averaging of over 16 optical frequencies is used. The performance of the DAS was tested by recording a strong vibration impact on a horizontally buried cable and by the recording of seismic waves in a borehole in the seabed. optical reflectometry fiber optic sensors distributed acoustic sensing (DAS) Chemical technology Alexey E. Alekseev verfasserin aut Denis E. Simikin verfasserin aut Mikhail A. Taranov verfasserin aut Konstantin M. Zhukov verfasserin aut Vladimir T. Potapov verfasserin aut In Sensors MDPI AG, 2003 22(2022), 23, p 9482 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:22 year:2022 number:23, p 9482 https://doi.org/10.3390/s22239482 kostenfrei https://doaj.org/article/16cf7727c8074b109cb828cd314727e8 kostenfrei https://www.mdpi.com/1424-8220/22/23/9482 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 23, p 9482 |
spelling |
10.3390/s22239482 doi (DE-627)DOAJ083426515 (DE-599)DOAJ16cf7727c8074b109cb828cd314727e8 DE-627 ger DE-627 rakwb eng TP1-1185 Boris G. Gorshkov verfasserin aut A Cost-Effective Distributed Acoustic Sensor for Engineering Geology 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A simple and cost-effective architecture of a distributed acoustic sensor (DAS) or a phase-OTDR for engineering geology is proposed. The architecture is based on the dual-pulse acquisition principle, where the dual probing pulse is formed via an unbalanced Michelson interferometer (MI). The necessary phase shifts between the sub-pulses of the dual-pulse are introduced using a 3 × 3 coupler built into the MI. Laser pulses are generated by direct modulation of the injection current, which obtains optical pulses with a duration of 7 ns. The use of an unbalanced MI for the formation of a dual-pulse reduces the requirements for the coherence of the laser source, as the introduced delay between sub-pulses is compensated in the fiber under test (FUT). Therefore, a laser with a relatively broad spectral linewidth of about 1 GHz can be used. To overcome the fading problem, as well as to ensure the linearity of the DAS response, the averaging of over 16 optical frequencies is used. The performance of the DAS was tested by recording a strong vibration impact on a horizontally buried cable and by the recording of seismic waves in a borehole in the seabed. optical reflectometry fiber optic sensors distributed acoustic sensing (DAS) Chemical technology Alexey E. Alekseev verfasserin aut Denis E. Simikin verfasserin aut Mikhail A. Taranov verfasserin aut Konstantin M. Zhukov verfasserin aut Vladimir T. Potapov verfasserin aut In Sensors MDPI AG, 2003 22(2022), 23, p 9482 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:22 year:2022 number:23, p 9482 https://doi.org/10.3390/s22239482 kostenfrei https://doaj.org/article/16cf7727c8074b109cb828cd314727e8 kostenfrei https://www.mdpi.com/1424-8220/22/23/9482 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 23, p 9482 |
allfields_unstemmed |
10.3390/s22239482 doi (DE-627)DOAJ083426515 (DE-599)DOAJ16cf7727c8074b109cb828cd314727e8 DE-627 ger DE-627 rakwb eng TP1-1185 Boris G. Gorshkov verfasserin aut A Cost-Effective Distributed Acoustic Sensor for Engineering Geology 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A simple and cost-effective architecture of a distributed acoustic sensor (DAS) or a phase-OTDR for engineering geology is proposed. The architecture is based on the dual-pulse acquisition principle, where the dual probing pulse is formed via an unbalanced Michelson interferometer (MI). The necessary phase shifts between the sub-pulses of the dual-pulse are introduced using a 3 × 3 coupler built into the MI. Laser pulses are generated by direct modulation of the injection current, which obtains optical pulses with a duration of 7 ns. The use of an unbalanced MI for the formation of a dual-pulse reduces the requirements for the coherence of the laser source, as the introduced delay between sub-pulses is compensated in the fiber under test (FUT). Therefore, a laser with a relatively broad spectral linewidth of about 1 GHz can be used. To overcome the fading problem, as well as to ensure the linearity of the DAS response, the averaging of over 16 optical frequencies is used. The performance of the DAS was tested by recording a strong vibration impact on a horizontally buried cable and by the recording of seismic waves in a borehole in the seabed. optical reflectometry fiber optic sensors distributed acoustic sensing (DAS) Chemical technology Alexey E. Alekseev verfasserin aut Denis E. Simikin verfasserin aut Mikhail A. Taranov verfasserin aut Konstantin M. Zhukov verfasserin aut Vladimir T. Potapov verfasserin aut In Sensors MDPI AG, 2003 22(2022), 23, p 9482 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:22 year:2022 number:23, p 9482 https://doi.org/10.3390/s22239482 kostenfrei https://doaj.org/article/16cf7727c8074b109cb828cd314727e8 kostenfrei https://www.mdpi.com/1424-8220/22/23/9482 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 23, p 9482 |
allfieldsGer |
10.3390/s22239482 doi (DE-627)DOAJ083426515 (DE-599)DOAJ16cf7727c8074b109cb828cd314727e8 DE-627 ger DE-627 rakwb eng TP1-1185 Boris G. Gorshkov verfasserin aut A Cost-Effective Distributed Acoustic Sensor for Engineering Geology 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A simple and cost-effective architecture of a distributed acoustic sensor (DAS) or a phase-OTDR for engineering geology is proposed. The architecture is based on the dual-pulse acquisition principle, where the dual probing pulse is formed via an unbalanced Michelson interferometer (MI). The necessary phase shifts between the sub-pulses of the dual-pulse are introduced using a 3 × 3 coupler built into the MI. Laser pulses are generated by direct modulation of the injection current, which obtains optical pulses with a duration of 7 ns. The use of an unbalanced MI for the formation of a dual-pulse reduces the requirements for the coherence of the laser source, as the introduced delay between sub-pulses is compensated in the fiber under test (FUT). Therefore, a laser with a relatively broad spectral linewidth of about 1 GHz can be used. To overcome the fading problem, as well as to ensure the linearity of the DAS response, the averaging of over 16 optical frequencies is used. The performance of the DAS was tested by recording a strong vibration impact on a horizontally buried cable and by the recording of seismic waves in a borehole in the seabed. optical reflectometry fiber optic sensors distributed acoustic sensing (DAS) Chemical technology Alexey E. Alekseev verfasserin aut Denis E. Simikin verfasserin aut Mikhail A. Taranov verfasserin aut Konstantin M. Zhukov verfasserin aut Vladimir T. Potapov verfasserin aut In Sensors MDPI AG, 2003 22(2022), 23, p 9482 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:22 year:2022 number:23, p 9482 https://doi.org/10.3390/s22239482 kostenfrei https://doaj.org/article/16cf7727c8074b109cb828cd314727e8 kostenfrei https://www.mdpi.com/1424-8220/22/23/9482 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 23, p 9482 |
allfieldsSound |
10.3390/s22239482 doi (DE-627)DOAJ083426515 (DE-599)DOAJ16cf7727c8074b109cb828cd314727e8 DE-627 ger DE-627 rakwb eng TP1-1185 Boris G. Gorshkov verfasserin aut A Cost-Effective Distributed Acoustic Sensor for Engineering Geology 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A simple and cost-effective architecture of a distributed acoustic sensor (DAS) or a phase-OTDR for engineering geology is proposed. The architecture is based on the dual-pulse acquisition principle, where the dual probing pulse is formed via an unbalanced Michelson interferometer (MI). The necessary phase shifts between the sub-pulses of the dual-pulse are introduced using a 3 × 3 coupler built into the MI. Laser pulses are generated by direct modulation of the injection current, which obtains optical pulses with a duration of 7 ns. The use of an unbalanced MI for the formation of a dual-pulse reduces the requirements for the coherence of the laser source, as the introduced delay between sub-pulses is compensated in the fiber under test (FUT). Therefore, a laser with a relatively broad spectral linewidth of about 1 GHz can be used. To overcome the fading problem, as well as to ensure the linearity of the DAS response, the averaging of over 16 optical frequencies is used. The performance of the DAS was tested by recording a strong vibration impact on a horizontally buried cable and by the recording of seismic waves in a borehole in the seabed. optical reflectometry fiber optic sensors distributed acoustic sensing (DAS) Chemical technology Alexey E. Alekseev verfasserin aut Denis E. Simikin verfasserin aut Mikhail A. Taranov verfasserin aut Konstantin M. Zhukov verfasserin aut Vladimir T. Potapov verfasserin aut In Sensors MDPI AG, 2003 22(2022), 23, p 9482 (DE-627)331640910 (DE-600)2052857-7 14248220 nnns volume:22 year:2022 number:23, p 9482 https://doi.org/10.3390/s22239482 kostenfrei https://doaj.org/article/16cf7727c8074b109cb828cd314727e8 kostenfrei https://www.mdpi.com/1424-8220/22/23/9482 kostenfrei https://doaj.org/toc/1424-8220 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 23, p 9482 |
language |
English |
source |
In Sensors 22(2022), 23, p 9482 volume:22 year:2022 number:23, p 9482 |
sourceStr |
In Sensors 22(2022), 23, p 9482 volume:22 year:2022 number:23, p 9482 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
optical reflectometry fiber optic sensors distributed acoustic sensing (DAS) Chemical technology |
isfreeaccess_bool |
true |
container_title |
Sensors |
authorswithroles_txt_mv |
Boris G. Gorshkov @@aut@@ Alexey E. Alekseev @@aut@@ Denis E. Simikin @@aut@@ Mikhail A. Taranov @@aut@@ Konstantin M. Zhukov @@aut@@ Vladimir T. Potapov @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
331640910 |
id |
DOAJ083426515 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ083426515</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414154831.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s22239482</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ083426515</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ16cf7727c8074b109cb828cd314727e8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Boris G. Gorshkov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Cost-Effective Distributed Acoustic Sensor for Engineering Geology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A simple and cost-effective architecture of a distributed acoustic sensor (DAS) or a phase-OTDR for engineering geology is proposed. The architecture is based on the dual-pulse acquisition principle, where the dual probing pulse is formed via an unbalanced Michelson interferometer (MI). The necessary phase shifts between the sub-pulses of the dual-pulse are introduced using a 3 × 3 coupler built into the MI. Laser pulses are generated by direct modulation of the injection current, which obtains optical pulses with a duration of 7 ns. The use of an unbalanced MI for the formation of a dual-pulse reduces the requirements for the coherence of the laser source, as the introduced delay between sub-pulses is compensated in the fiber under test (FUT). Therefore, a laser with a relatively broad spectral linewidth of about 1 GHz can be used. To overcome the fading problem, as well as to ensure the linearity of the DAS response, the averaging of over 16 optical frequencies is used. The performance of the DAS was tested by recording a strong vibration impact on a horizontally buried cable and by the recording of seismic waves in a borehole in the seabed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical reflectometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fiber optic sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distributed acoustic sensing (DAS)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alexey E. Alekseev</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Denis E. Simikin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mikhail A. Taranov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Konstantin M. Zhukov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vladimir T. Potapov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">22(2022), 23, p 9482</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:23, p 9482</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s22239482</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/16cf7727c8074b109cb828cd314727e8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/22/23/9482</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2022</subfield><subfield code="e">23, p 9482</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Boris G. Gorshkov |
spellingShingle |
Boris G. Gorshkov misc TP1-1185 misc optical reflectometry misc fiber optic sensors misc distributed acoustic sensing (DAS) misc Chemical technology A Cost-Effective Distributed Acoustic Sensor for Engineering Geology |
authorStr |
Boris G. Gorshkov |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)331640910 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
14248220 |
topic_title |
TP1-1185 A Cost-Effective Distributed Acoustic Sensor for Engineering Geology optical reflectometry fiber optic sensors distributed acoustic sensing (DAS) |
topic |
misc TP1-1185 misc optical reflectometry misc fiber optic sensors misc distributed acoustic sensing (DAS) misc Chemical technology |
topic_unstemmed |
misc TP1-1185 misc optical reflectometry misc fiber optic sensors misc distributed acoustic sensing (DAS) misc Chemical technology |
topic_browse |
misc TP1-1185 misc optical reflectometry misc fiber optic sensors misc distributed acoustic sensing (DAS) misc Chemical technology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Sensors |
hierarchy_parent_id |
331640910 |
hierarchy_top_title |
Sensors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)331640910 (DE-600)2052857-7 |
title |
A Cost-Effective Distributed Acoustic Sensor for Engineering Geology |
ctrlnum |
(DE-627)DOAJ083426515 (DE-599)DOAJ16cf7727c8074b109cb828cd314727e8 |
title_full |
A Cost-Effective Distributed Acoustic Sensor for Engineering Geology |
author_sort |
Boris G. Gorshkov |
journal |
Sensors |
journalStr |
Sensors |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Boris G. Gorshkov Alexey E. Alekseev Denis E. Simikin Mikhail A. Taranov Konstantin M. Zhukov Vladimir T. Potapov |
container_volume |
22 |
class |
TP1-1185 |
format_se |
Elektronische Aufsätze |
author-letter |
Boris G. Gorshkov |
doi_str_mv |
10.3390/s22239482 |
author2-role |
verfasserin |
title_sort |
cost-effective distributed acoustic sensor for engineering geology |
callnumber |
TP1-1185 |
title_auth |
A Cost-Effective Distributed Acoustic Sensor for Engineering Geology |
abstract |
A simple and cost-effective architecture of a distributed acoustic sensor (DAS) or a phase-OTDR for engineering geology is proposed. The architecture is based on the dual-pulse acquisition principle, where the dual probing pulse is formed via an unbalanced Michelson interferometer (MI). The necessary phase shifts between the sub-pulses of the dual-pulse are introduced using a 3 × 3 coupler built into the MI. Laser pulses are generated by direct modulation of the injection current, which obtains optical pulses with a duration of 7 ns. The use of an unbalanced MI for the formation of a dual-pulse reduces the requirements for the coherence of the laser source, as the introduced delay between sub-pulses is compensated in the fiber under test (FUT). Therefore, a laser with a relatively broad spectral linewidth of about 1 GHz can be used. To overcome the fading problem, as well as to ensure the linearity of the DAS response, the averaging of over 16 optical frequencies is used. The performance of the DAS was tested by recording a strong vibration impact on a horizontally buried cable and by the recording of seismic waves in a borehole in the seabed. |
abstractGer |
A simple and cost-effective architecture of a distributed acoustic sensor (DAS) or a phase-OTDR for engineering geology is proposed. The architecture is based on the dual-pulse acquisition principle, where the dual probing pulse is formed via an unbalanced Michelson interferometer (MI). The necessary phase shifts between the sub-pulses of the dual-pulse are introduced using a 3 × 3 coupler built into the MI. Laser pulses are generated by direct modulation of the injection current, which obtains optical pulses with a duration of 7 ns. The use of an unbalanced MI for the formation of a dual-pulse reduces the requirements for the coherence of the laser source, as the introduced delay between sub-pulses is compensated in the fiber under test (FUT). Therefore, a laser with a relatively broad spectral linewidth of about 1 GHz can be used. To overcome the fading problem, as well as to ensure the linearity of the DAS response, the averaging of over 16 optical frequencies is used. The performance of the DAS was tested by recording a strong vibration impact on a horizontally buried cable and by the recording of seismic waves in a borehole in the seabed. |
abstract_unstemmed |
A simple and cost-effective architecture of a distributed acoustic sensor (DAS) or a phase-OTDR for engineering geology is proposed. The architecture is based on the dual-pulse acquisition principle, where the dual probing pulse is formed via an unbalanced Michelson interferometer (MI). The necessary phase shifts between the sub-pulses of the dual-pulse are introduced using a 3 × 3 coupler built into the MI. Laser pulses are generated by direct modulation of the injection current, which obtains optical pulses with a duration of 7 ns. The use of an unbalanced MI for the formation of a dual-pulse reduces the requirements for the coherence of the laser source, as the introduced delay between sub-pulses is compensated in the fiber under test (FUT). Therefore, a laser with a relatively broad spectral linewidth of about 1 GHz can be used. To overcome the fading problem, as well as to ensure the linearity of the DAS response, the averaging of over 16 optical frequencies is used. The performance of the DAS was tested by recording a strong vibration impact on a horizontally buried cable and by the recording of seismic waves in a borehole in the seabed. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2111 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
23, p 9482 |
title_short |
A Cost-Effective Distributed Acoustic Sensor for Engineering Geology |
url |
https://doi.org/10.3390/s22239482 https://doaj.org/article/16cf7727c8074b109cb828cd314727e8 https://www.mdpi.com/1424-8220/22/23/9482 https://doaj.org/toc/1424-8220 |
remote_bool |
true |
author2 |
Alexey E. Alekseev Denis E. Simikin Mikhail A. Taranov Konstantin M. Zhukov Vladimir T. Potapov |
author2Str |
Alexey E. Alekseev Denis E. Simikin Mikhail A. Taranov Konstantin M. Zhukov Vladimir T. Potapov |
ppnlink |
331640910 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/s22239482 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T17:24:43.586Z |
_version_ |
1803579538634964992 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ083426515</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414154831.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/s22239482</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ083426515</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ16cf7727c8074b109cb828cd314727e8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Boris G. Gorshkov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Cost-Effective Distributed Acoustic Sensor for Engineering Geology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A simple and cost-effective architecture of a distributed acoustic sensor (DAS) or a phase-OTDR for engineering geology is proposed. The architecture is based on the dual-pulse acquisition principle, where the dual probing pulse is formed via an unbalanced Michelson interferometer (MI). The necessary phase shifts between the sub-pulses of the dual-pulse are introduced using a 3 × 3 coupler built into the MI. Laser pulses are generated by direct modulation of the injection current, which obtains optical pulses with a duration of 7 ns. The use of an unbalanced MI for the formation of a dual-pulse reduces the requirements for the coherence of the laser source, as the introduced delay between sub-pulses is compensated in the fiber under test (FUT). Therefore, a laser with a relatively broad spectral linewidth of about 1 GHz can be used. To overcome the fading problem, as well as to ensure the linearity of the DAS response, the averaging of over 16 optical frequencies is used. The performance of the DAS was tested by recording a strong vibration impact on a horizontally buried cable and by the recording of seismic waves in a borehole in the seabed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optical reflectometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fiber optic sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distributed acoustic sensing (DAS)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alexey E. Alekseev</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Denis E. Simikin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mikhail A. Taranov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Konstantin M. Zhukov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vladimir T. Potapov</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Sensors</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">22(2022), 23, p 9482</subfield><subfield code="w">(DE-627)331640910</subfield><subfield code="w">(DE-600)2052857-7</subfield><subfield code="x">14248220</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:23, p 9482</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/s22239482</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/16cf7727c8074b109cb828cd314727e8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1424-8220/22/23/9482</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1424-8220</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2022</subfield><subfield code="e">23, p 9482</subfield></datafield></record></collection>
|
score |
7.402011 |