Investigation of Fatigue Crack Growth in TA2 Cruciform Specimen with an Inclined Crack, Considering Stress Ratio and Biaxial Load Ratio
The biaxial fatigue crack growth behavior of commercial pure titanium TA2 of cruciform specimens with different crack inclination angles (<i<β</i< = 90°, 60°, 45°) under various biaxial load ratios (<i<λ</i< = 0, 0.5, 1) and different stress ratios (<i<R</i< = 0,...
Ausführliche Beschreibung
Autor*in: |
Wen-Jie Bao [verfasserIn] Jia-Yu Liu [verfasserIn] Zhi-Lin Tao [verfasserIn] Guang-Zhou Zhao [verfasserIn] Chang-Yu Zhou [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Crystals - MDPI AG, 2011, 12(2022), 11, p 1530 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2022 ; number:11, p 1530 |
Links: |
---|
DOI / URN: |
10.3390/cryst12111530 |
---|
Katalog-ID: |
DOAJ083491856 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ083491856 | ||
003 | DE-627 | ||
005 | 20240414172748.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/cryst12111530 |2 doi | |
035 | |a (DE-627)DOAJ083491856 | ||
035 | |a (DE-599)DOAJ6b08b48a6b324cba8db5a290a79abe0a | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QD901-999 | |
100 | 0 | |a Wen-Jie Bao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Investigation of Fatigue Crack Growth in TA2 Cruciform Specimen with an Inclined Crack, Considering Stress Ratio and Biaxial Load Ratio |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The biaxial fatigue crack growth behavior of commercial pure titanium TA2 of cruciform specimens with different crack inclination angles (<i<β</i< = 90°, 60°, 45°) under various biaxial load ratios (<i<λ</i< = 0, 0.5, 1) and different stress ratios (<i<R</i< = 0, 0.1, 0.3) is studied by an IPBF-5000 biaxial testing machine. The test results prove that the maximum tangential stress criterion is suitable for predicting the initiation angle of uniaxial and biaxial mixed-mode I–II fatigue cracks. The fatigue crack growth rate of a cruciform specimen with mode I and mixed-mode I–II cracks decreases with the increase of biaxial load ratio and increases with the stress ratio. The Walker model and Kujawski model have better compression effects on fatigue crack growth data than the Paris model. | ||
650 | 4 | |a commercial pure titanium TA2 | |
650 | 4 | |a biaxial fatigue crack growth | |
650 | 4 | |a stress ratio | |
650 | 4 | |a biaxial load ratio | |
650 | 4 | |a crack inclination angle | |
653 | 0 | |a Crystallography | |
700 | 0 | |a Jia-Yu Liu |e verfasserin |4 aut | |
700 | 0 | |a Zhi-Lin Tao |e verfasserin |4 aut | |
700 | 0 | |a Guang-Zhou Zhao |e verfasserin |4 aut | |
700 | 0 | |a Chang-Yu Zhou |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Crystals |d MDPI AG, 2011 |g 12(2022), 11, p 1530 |w (DE-627)718303067 |w (DE-600)2661516-2 |x 20734352 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2022 |g number:11, p 1530 |
856 | 4 | 0 | |u https://doi.org/10.3390/cryst12111530 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/6b08b48a6b324cba8db5a290a79abe0a |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2073-4352/12/11/1530 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2073-4352 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2022 |e 11, p 1530 |
author_variant |
w j b wjb j y l jyl z l t zlt g z z gzz c y z cyz |
---|---|
matchkey_str |
article:20734352:2022----::netgtooftgercgotit2rcfrseiewtaiciecakosdrn |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QD |
publishDate |
2022 |
allfields |
10.3390/cryst12111530 doi (DE-627)DOAJ083491856 (DE-599)DOAJ6b08b48a6b324cba8db5a290a79abe0a DE-627 ger DE-627 rakwb eng QD901-999 Wen-Jie Bao verfasserin aut Investigation of Fatigue Crack Growth in TA2 Cruciform Specimen with an Inclined Crack, Considering Stress Ratio and Biaxial Load Ratio 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The biaxial fatigue crack growth behavior of commercial pure titanium TA2 of cruciform specimens with different crack inclination angles (<i<β</i< = 90°, 60°, 45°) under various biaxial load ratios (<i<λ</i< = 0, 0.5, 1) and different stress ratios (<i<R</i< = 0, 0.1, 0.3) is studied by an IPBF-5000 biaxial testing machine. The test results prove that the maximum tangential stress criterion is suitable for predicting the initiation angle of uniaxial and biaxial mixed-mode I–II fatigue cracks. The fatigue crack growth rate of a cruciform specimen with mode I and mixed-mode I–II cracks decreases with the increase of biaxial load ratio and increases with the stress ratio. The Walker model and Kujawski model have better compression effects on fatigue crack growth data than the Paris model. commercial pure titanium TA2 biaxial fatigue crack growth stress ratio biaxial load ratio crack inclination angle Crystallography Jia-Yu Liu verfasserin aut Zhi-Lin Tao verfasserin aut Guang-Zhou Zhao verfasserin aut Chang-Yu Zhou verfasserin aut In Crystals MDPI AG, 2011 12(2022), 11, p 1530 (DE-627)718303067 (DE-600)2661516-2 20734352 nnns volume:12 year:2022 number:11, p 1530 https://doi.org/10.3390/cryst12111530 kostenfrei https://doaj.org/article/6b08b48a6b324cba8db5a290a79abe0a kostenfrei https://www.mdpi.com/2073-4352/12/11/1530 kostenfrei https://doaj.org/toc/2073-4352 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 11, p 1530 |
spelling |
10.3390/cryst12111530 doi (DE-627)DOAJ083491856 (DE-599)DOAJ6b08b48a6b324cba8db5a290a79abe0a DE-627 ger DE-627 rakwb eng QD901-999 Wen-Jie Bao verfasserin aut Investigation of Fatigue Crack Growth in TA2 Cruciform Specimen with an Inclined Crack, Considering Stress Ratio and Biaxial Load Ratio 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The biaxial fatigue crack growth behavior of commercial pure titanium TA2 of cruciform specimens with different crack inclination angles (<i<β</i< = 90°, 60°, 45°) under various biaxial load ratios (<i<λ</i< = 0, 0.5, 1) and different stress ratios (<i<R</i< = 0, 0.1, 0.3) is studied by an IPBF-5000 biaxial testing machine. The test results prove that the maximum tangential stress criterion is suitable for predicting the initiation angle of uniaxial and biaxial mixed-mode I–II fatigue cracks. The fatigue crack growth rate of a cruciform specimen with mode I and mixed-mode I–II cracks decreases with the increase of biaxial load ratio and increases with the stress ratio. The Walker model and Kujawski model have better compression effects on fatigue crack growth data than the Paris model. commercial pure titanium TA2 biaxial fatigue crack growth stress ratio biaxial load ratio crack inclination angle Crystallography Jia-Yu Liu verfasserin aut Zhi-Lin Tao verfasserin aut Guang-Zhou Zhao verfasserin aut Chang-Yu Zhou verfasserin aut In Crystals MDPI AG, 2011 12(2022), 11, p 1530 (DE-627)718303067 (DE-600)2661516-2 20734352 nnns volume:12 year:2022 number:11, p 1530 https://doi.org/10.3390/cryst12111530 kostenfrei https://doaj.org/article/6b08b48a6b324cba8db5a290a79abe0a kostenfrei https://www.mdpi.com/2073-4352/12/11/1530 kostenfrei https://doaj.org/toc/2073-4352 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 11, p 1530 |
allfields_unstemmed |
10.3390/cryst12111530 doi (DE-627)DOAJ083491856 (DE-599)DOAJ6b08b48a6b324cba8db5a290a79abe0a DE-627 ger DE-627 rakwb eng QD901-999 Wen-Jie Bao verfasserin aut Investigation of Fatigue Crack Growth in TA2 Cruciform Specimen with an Inclined Crack, Considering Stress Ratio and Biaxial Load Ratio 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The biaxial fatigue crack growth behavior of commercial pure titanium TA2 of cruciform specimens with different crack inclination angles (<i<β</i< = 90°, 60°, 45°) under various biaxial load ratios (<i<λ</i< = 0, 0.5, 1) and different stress ratios (<i<R</i< = 0, 0.1, 0.3) is studied by an IPBF-5000 biaxial testing machine. The test results prove that the maximum tangential stress criterion is suitable for predicting the initiation angle of uniaxial and biaxial mixed-mode I–II fatigue cracks. The fatigue crack growth rate of a cruciform specimen with mode I and mixed-mode I–II cracks decreases with the increase of biaxial load ratio and increases with the stress ratio. The Walker model and Kujawski model have better compression effects on fatigue crack growth data than the Paris model. commercial pure titanium TA2 biaxial fatigue crack growth stress ratio biaxial load ratio crack inclination angle Crystallography Jia-Yu Liu verfasserin aut Zhi-Lin Tao verfasserin aut Guang-Zhou Zhao verfasserin aut Chang-Yu Zhou verfasserin aut In Crystals MDPI AG, 2011 12(2022), 11, p 1530 (DE-627)718303067 (DE-600)2661516-2 20734352 nnns volume:12 year:2022 number:11, p 1530 https://doi.org/10.3390/cryst12111530 kostenfrei https://doaj.org/article/6b08b48a6b324cba8db5a290a79abe0a kostenfrei https://www.mdpi.com/2073-4352/12/11/1530 kostenfrei https://doaj.org/toc/2073-4352 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 11, p 1530 |
allfieldsGer |
10.3390/cryst12111530 doi (DE-627)DOAJ083491856 (DE-599)DOAJ6b08b48a6b324cba8db5a290a79abe0a DE-627 ger DE-627 rakwb eng QD901-999 Wen-Jie Bao verfasserin aut Investigation of Fatigue Crack Growth in TA2 Cruciform Specimen with an Inclined Crack, Considering Stress Ratio and Biaxial Load Ratio 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The biaxial fatigue crack growth behavior of commercial pure titanium TA2 of cruciform specimens with different crack inclination angles (<i<β</i< = 90°, 60°, 45°) under various biaxial load ratios (<i<λ</i< = 0, 0.5, 1) and different stress ratios (<i<R</i< = 0, 0.1, 0.3) is studied by an IPBF-5000 biaxial testing machine. The test results prove that the maximum tangential stress criterion is suitable for predicting the initiation angle of uniaxial and biaxial mixed-mode I–II fatigue cracks. The fatigue crack growth rate of a cruciform specimen with mode I and mixed-mode I–II cracks decreases with the increase of biaxial load ratio and increases with the stress ratio. The Walker model and Kujawski model have better compression effects on fatigue crack growth data than the Paris model. commercial pure titanium TA2 biaxial fatigue crack growth stress ratio biaxial load ratio crack inclination angle Crystallography Jia-Yu Liu verfasserin aut Zhi-Lin Tao verfasserin aut Guang-Zhou Zhao verfasserin aut Chang-Yu Zhou verfasserin aut In Crystals MDPI AG, 2011 12(2022), 11, p 1530 (DE-627)718303067 (DE-600)2661516-2 20734352 nnns volume:12 year:2022 number:11, p 1530 https://doi.org/10.3390/cryst12111530 kostenfrei https://doaj.org/article/6b08b48a6b324cba8db5a290a79abe0a kostenfrei https://www.mdpi.com/2073-4352/12/11/1530 kostenfrei https://doaj.org/toc/2073-4352 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 11, p 1530 |
allfieldsSound |
10.3390/cryst12111530 doi (DE-627)DOAJ083491856 (DE-599)DOAJ6b08b48a6b324cba8db5a290a79abe0a DE-627 ger DE-627 rakwb eng QD901-999 Wen-Jie Bao verfasserin aut Investigation of Fatigue Crack Growth in TA2 Cruciform Specimen with an Inclined Crack, Considering Stress Ratio and Biaxial Load Ratio 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The biaxial fatigue crack growth behavior of commercial pure titanium TA2 of cruciform specimens with different crack inclination angles (<i<β</i< = 90°, 60°, 45°) under various biaxial load ratios (<i<λ</i< = 0, 0.5, 1) and different stress ratios (<i<R</i< = 0, 0.1, 0.3) is studied by an IPBF-5000 biaxial testing machine. The test results prove that the maximum tangential stress criterion is suitable for predicting the initiation angle of uniaxial and biaxial mixed-mode I–II fatigue cracks. The fatigue crack growth rate of a cruciform specimen with mode I and mixed-mode I–II cracks decreases with the increase of biaxial load ratio and increases with the stress ratio. The Walker model and Kujawski model have better compression effects on fatigue crack growth data than the Paris model. commercial pure titanium TA2 biaxial fatigue crack growth stress ratio biaxial load ratio crack inclination angle Crystallography Jia-Yu Liu verfasserin aut Zhi-Lin Tao verfasserin aut Guang-Zhou Zhao verfasserin aut Chang-Yu Zhou verfasserin aut In Crystals MDPI AG, 2011 12(2022), 11, p 1530 (DE-627)718303067 (DE-600)2661516-2 20734352 nnns volume:12 year:2022 number:11, p 1530 https://doi.org/10.3390/cryst12111530 kostenfrei https://doaj.org/article/6b08b48a6b324cba8db5a290a79abe0a kostenfrei https://www.mdpi.com/2073-4352/12/11/1530 kostenfrei https://doaj.org/toc/2073-4352 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 11, p 1530 |
language |
English |
source |
In Crystals 12(2022), 11, p 1530 volume:12 year:2022 number:11, p 1530 |
sourceStr |
In Crystals 12(2022), 11, p 1530 volume:12 year:2022 number:11, p 1530 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
commercial pure titanium TA2 biaxial fatigue crack growth stress ratio biaxial load ratio crack inclination angle Crystallography |
isfreeaccess_bool |
true |
container_title |
Crystals |
authorswithroles_txt_mv |
Wen-Jie Bao @@aut@@ Jia-Yu Liu @@aut@@ Zhi-Lin Tao @@aut@@ Guang-Zhou Zhao @@aut@@ Chang-Yu Zhou @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
718303067 |
id |
DOAJ083491856 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ083491856</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414172748.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/cryst12111530</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ083491856</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6b08b48a6b324cba8db5a290a79abe0a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD901-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wen-Jie Bao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Investigation of Fatigue Crack Growth in TA2 Cruciform Specimen with an Inclined Crack, Considering Stress Ratio and Biaxial Load Ratio</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The biaxial fatigue crack growth behavior of commercial pure titanium TA2 of cruciform specimens with different crack inclination angles (<i<β</i< = 90°, 60°, 45°) under various biaxial load ratios (<i<λ</i< = 0, 0.5, 1) and different stress ratios (<i<R</i< = 0, 0.1, 0.3) is studied by an IPBF-5000 biaxial testing machine. The test results prove that the maximum tangential stress criterion is suitable for predicting the initiation angle of uniaxial and biaxial mixed-mode I–II fatigue cracks. The fatigue crack growth rate of a cruciform specimen with mode I and mixed-mode I–II cracks decreases with the increase of biaxial load ratio and increases with the stress ratio. The Walker model and Kujawski model have better compression effects on fatigue crack growth data than the Paris model.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">commercial pure titanium TA2</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biaxial fatigue crack growth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stress ratio</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biaxial load ratio</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crack inclination angle</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Crystallography</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jia-Yu Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhi-Lin Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guang-Zhou Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chang-Yu Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Crystals</subfield><subfield code="d">MDPI AG, 2011</subfield><subfield code="g">12(2022), 11, p 1530</subfield><subfield code="w">(DE-627)718303067</subfield><subfield code="w">(DE-600)2661516-2</subfield><subfield code="x">20734352</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:11, p 1530</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/cryst12111530</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6b08b48a6b324cba8db5a290a79abe0a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4352/12/11/1530</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4352</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">11, p 1530</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Wen-Jie Bao |
spellingShingle |
Wen-Jie Bao misc QD901-999 misc commercial pure titanium TA2 misc biaxial fatigue crack growth misc stress ratio misc biaxial load ratio misc crack inclination angle misc Crystallography Investigation of Fatigue Crack Growth in TA2 Cruciform Specimen with an Inclined Crack, Considering Stress Ratio and Biaxial Load Ratio |
authorStr |
Wen-Jie Bao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718303067 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QD901-999 |
illustrated |
Not Illustrated |
issn |
20734352 |
topic_title |
QD901-999 Investigation of Fatigue Crack Growth in TA2 Cruciform Specimen with an Inclined Crack, Considering Stress Ratio and Biaxial Load Ratio commercial pure titanium TA2 biaxial fatigue crack growth stress ratio biaxial load ratio crack inclination angle |
topic |
misc QD901-999 misc commercial pure titanium TA2 misc biaxial fatigue crack growth misc stress ratio misc biaxial load ratio misc crack inclination angle misc Crystallography |
topic_unstemmed |
misc QD901-999 misc commercial pure titanium TA2 misc biaxial fatigue crack growth misc stress ratio misc biaxial load ratio misc crack inclination angle misc Crystallography |
topic_browse |
misc QD901-999 misc commercial pure titanium TA2 misc biaxial fatigue crack growth misc stress ratio misc biaxial load ratio misc crack inclination angle misc Crystallography |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Crystals |
hierarchy_parent_id |
718303067 |
hierarchy_top_title |
Crystals |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718303067 (DE-600)2661516-2 |
title |
Investigation of Fatigue Crack Growth in TA2 Cruciform Specimen with an Inclined Crack, Considering Stress Ratio and Biaxial Load Ratio |
ctrlnum |
(DE-627)DOAJ083491856 (DE-599)DOAJ6b08b48a6b324cba8db5a290a79abe0a |
title_full |
Investigation of Fatigue Crack Growth in TA2 Cruciform Specimen with an Inclined Crack, Considering Stress Ratio and Biaxial Load Ratio |
author_sort |
Wen-Jie Bao |
journal |
Crystals |
journalStr |
Crystals |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Wen-Jie Bao Jia-Yu Liu Zhi-Lin Tao Guang-Zhou Zhao Chang-Yu Zhou |
container_volume |
12 |
class |
QD901-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Wen-Jie Bao |
doi_str_mv |
10.3390/cryst12111530 |
author2-role |
verfasserin |
title_sort |
investigation of fatigue crack growth in ta2 cruciform specimen with an inclined crack, considering stress ratio and biaxial load ratio |
callnumber |
QD901-999 |
title_auth |
Investigation of Fatigue Crack Growth in TA2 Cruciform Specimen with an Inclined Crack, Considering Stress Ratio and Biaxial Load Ratio |
abstract |
The biaxial fatigue crack growth behavior of commercial pure titanium TA2 of cruciform specimens with different crack inclination angles (<i<β</i< = 90°, 60°, 45°) under various biaxial load ratios (<i<λ</i< = 0, 0.5, 1) and different stress ratios (<i<R</i< = 0, 0.1, 0.3) is studied by an IPBF-5000 biaxial testing machine. The test results prove that the maximum tangential stress criterion is suitable for predicting the initiation angle of uniaxial and biaxial mixed-mode I–II fatigue cracks. The fatigue crack growth rate of a cruciform specimen with mode I and mixed-mode I–II cracks decreases with the increase of biaxial load ratio and increases with the stress ratio. The Walker model and Kujawski model have better compression effects on fatigue crack growth data than the Paris model. |
abstractGer |
The biaxial fatigue crack growth behavior of commercial pure titanium TA2 of cruciform specimens with different crack inclination angles (<i<β</i< = 90°, 60°, 45°) under various biaxial load ratios (<i<λ</i< = 0, 0.5, 1) and different stress ratios (<i<R</i< = 0, 0.1, 0.3) is studied by an IPBF-5000 biaxial testing machine. The test results prove that the maximum tangential stress criterion is suitable for predicting the initiation angle of uniaxial and biaxial mixed-mode I–II fatigue cracks. The fatigue crack growth rate of a cruciform specimen with mode I and mixed-mode I–II cracks decreases with the increase of biaxial load ratio and increases with the stress ratio. The Walker model and Kujawski model have better compression effects on fatigue crack growth data than the Paris model. |
abstract_unstemmed |
The biaxial fatigue crack growth behavior of commercial pure titanium TA2 of cruciform specimens with different crack inclination angles (<i<β</i< = 90°, 60°, 45°) under various biaxial load ratios (<i<λ</i< = 0, 0.5, 1) and different stress ratios (<i<R</i< = 0, 0.1, 0.3) is studied by an IPBF-5000 biaxial testing machine. The test results prove that the maximum tangential stress criterion is suitable for predicting the initiation angle of uniaxial and biaxial mixed-mode I–II fatigue cracks. The fatigue crack growth rate of a cruciform specimen with mode I and mixed-mode I–II cracks decreases with the increase of biaxial load ratio and increases with the stress ratio. The Walker model and Kujawski model have better compression effects on fatigue crack growth data than the Paris model. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
11, p 1530 |
title_short |
Investigation of Fatigue Crack Growth in TA2 Cruciform Specimen with an Inclined Crack, Considering Stress Ratio and Biaxial Load Ratio |
url |
https://doi.org/10.3390/cryst12111530 https://doaj.org/article/6b08b48a6b324cba8db5a290a79abe0a https://www.mdpi.com/2073-4352/12/11/1530 https://doaj.org/toc/2073-4352 |
remote_bool |
true |
author2 |
Jia-Yu Liu Zhi-Lin Tao Guang-Zhou Zhao Chang-Yu Zhou |
author2Str |
Jia-Yu Liu Zhi-Lin Tao Guang-Zhou Zhao Chang-Yu Zhou |
ppnlink |
718303067 |
callnumber-subject |
QD - Chemistry |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/cryst12111530 |
callnumber-a |
QD901-999 |
up_date |
2024-07-03T17:46:14.840Z |
_version_ |
1803580892620259328 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ083491856</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414172748.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/cryst12111530</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ083491856</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ6b08b48a6b324cba8db5a290a79abe0a</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD901-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Wen-Jie Bao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Investigation of Fatigue Crack Growth in TA2 Cruciform Specimen with an Inclined Crack, Considering Stress Ratio and Biaxial Load Ratio</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The biaxial fatigue crack growth behavior of commercial pure titanium TA2 of cruciform specimens with different crack inclination angles (<i<β</i< = 90°, 60°, 45°) under various biaxial load ratios (<i<λ</i< = 0, 0.5, 1) and different stress ratios (<i<R</i< = 0, 0.1, 0.3) is studied by an IPBF-5000 biaxial testing machine. The test results prove that the maximum tangential stress criterion is suitable for predicting the initiation angle of uniaxial and biaxial mixed-mode I–II fatigue cracks. The fatigue crack growth rate of a cruciform specimen with mode I and mixed-mode I–II cracks decreases with the increase of biaxial load ratio and increases with the stress ratio. The Walker model and Kujawski model have better compression effects on fatigue crack growth data than the Paris model.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">commercial pure titanium TA2</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biaxial fatigue crack growth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stress ratio</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biaxial load ratio</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">crack inclination angle</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Crystallography</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jia-Yu Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhi-Lin Tao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guang-Zhou Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chang-Yu Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Crystals</subfield><subfield code="d">MDPI AG, 2011</subfield><subfield code="g">12(2022), 11, p 1530</subfield><subfield code="w">(DE-627)718303067</subfield><subfield code="w">(DE-600)2661516-2</subfield><subfield code="x">20734352</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:11, p 1530</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/cryst12111530</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/6b08b48a6b324cba8db5a290a79abe0a</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2073-4352/12/11/1530</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2073-4352</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">11, p 1530</subfield></datafield></record></collection>
|
score |
7.4005623 |