Trip energy consumption estimation for electric buses
This study aims to develop a trip energy consumption (TEC) estimation model for the electric bus (EB) fleet planning, operation, and life-cycle assessment. Leveraging the vast variations of temperature in Jilin Province, China, real-world data of 31 EBs operating in 14 months were collected with te...
Ausführliche Beschreibung
Autor*in: |
Jinhua Ji [verfasserIn] Yiming Bie [verfasserIn] Ziling Zeng [verfasserIn] Linhong Wang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Communications in Transportation Research - Elsevier, 2021, 2(2022), Seite 100069- |
---|---|
Übergeordnetes Werk: |
volume:2 ; year:2022 ; pages:100069- |
Links: |
---|
DOI / URN: |
10.1016/j.commtr.2022.100069 |
---|
Katalog-ID: |
DOAJ083540822 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ083540822 | ||
003 | DE-627 | ||
005 | 20230502145222.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.commtr.2022.100069 |2 doi | |
035 | |a (DE-627)DOAJ083540822 | ||
035 | |a (DE-599)DOAJ56de542a090649c5bcc3f0532d70a792 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TA1001-1280 | |
100 | 0 | |a Jinhua Ji |e verfasserin |4 aut | |
245 | 1 | 0 | |a Trip energy consumption estimation for electric buses |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This study aims to develop a trip energy consumption (TEC) estimation model for the electric bus (EB) fleet planning, operation, and life-cycle assessment. Leveraging the vast variations of temperature in Jilin Province, China, real-world data of 31 EBs operating in 14 months were collected with temperatures fluctuating from −27.0 to 35.0 °C. TEC of an EB was divided into two parts, which are the energy required by the traction and battery thermal management system, and the energy required by the air conditioner (AC) system operation, respectively. The former was regressed by a logarithmic linear model with ambient temperature, curb weight, travel distance, and trip travel time as contributing factors. The optimum working temperature and regression parameters were obtained by combining Fibonacci and Weighted Least Square. The latter was estimated by the operation time of the AC system in cooling mode or heating mode. Model evaluation and sensitivity analysis were conducted. The results show that: (i) the mean absolute percentage error (MAPE) of the proposed model is 12.108%; (ii) the estimation accuracy of the model has a probability of 99.7814% meeting the requirements of EB fleet scheduling; (iii) the MAPE has a 1.746% reduction if considering passengers’ boarding and alighting. | ||
650 | 4 | |a Electric bus | |
650 | 4 | |a Trip energy consumption | |
650 | 4 | |a Regression model | |
650 | 4 | |a Operational data | |
650 | 4 | |a Cold region | |
653 | 0 | |a Transportation engineering | |
700 | 0 | |a Yiming Bie |e verfasserin |4 aut | |
700 | 0 | |a Ziling Zeng |e verfasserin |4 aut | |
700 | 0 | |a Linhong Wang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Communications in Transportation Research |d Elsevier, 2021 |g 2(2022), Seite 100069- |w (DE-627)1828250368 |x 27724247 |7 nnns |
773 | 1 | 8 | |g volume:2 |g year:2022 |g pages:100069- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.commtr.2022.100069 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/56de542a090649c5bcc3f0532d70a792 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2772424722000191 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2772-4247 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 2 |j 2022 |h 100069- |
author_variant |
j j jj y b yb z z zz l w lw |
---|---|
matchkey_str |
article:27724247:2022----::rpnryosmtoetmtof |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TA |
publishDate |
2022 |
allfields |
10.1016/j.commtr.2022.100069 doi (DE-627)DOAJ083540822 (DE-599)DOAJ56de542a090649c5bcc3f0532d70a792 DE-627 ger DE-627 rakwb eng TA1001-1280 Jinhua Ji verfasserin aut Trip energy consumption estimation for electric buses 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study aims to develop a trip energy consumption (TEC) estimation model for the electric bus (EB) fleet planning, operation, and life-cycle assessment. Leveraging the vast variations of temperature in Jilin Province, China, real-world data of 31 EBs operating in 14 months were collected with temperatures fluctuating from −27.0 to 35.0 °C. TEC of an EB was divided into two parts, which are the energy required by the traction and battery thermal management system, and the energy required by the air conditioner (AC) system operation, respectively. The former was regressed by a logarithmic linear model with ambient temperature, curb weight, travel distance, and trip travel time as contributing factors. The optimum working temperature and regression parameters were obtained by combining Fibonacci and Weighted Least Square. The latter was estimated by the operation time of the AC system in cooling mode or heating mode. Model evaluation and sensitivity analysis were conducted. The results show that: (i) the mean absolute percentage error (MAPE) of the proposed model is 12.108%; (ii) the estimation accuracy of the model has a probability of 99.7814% meeting the requirements of EB fleet scheduling; (iii) the MAPE has a 1.746% reduction if considering passengers’ boarding and alighting. Electric bus Trip energy consumption Regression model Operational data Cold region Transportation engineering Yiming Bie verfasserin aut Ziling Zeng verfasserin aut Linhong Wang verfasserin aut In Communications in Transportation Research Elsevier, 2021 2(2022), Seite 100069- (DE-627)1828250368 27724247 nnns volume:2 year:2022 pages:100069- https://doi.org/10.1016/j.commtr.2022.100069 kostenfrei https://doaj.org/article/56de542a090649c5bcc3f0532d70a792 kostenfrei http://www.sciencedirect.com/science/article/pii/S2772424722000191 kostenfrei https://doaj.org/toc/2772-4247 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 AR 2 2022 100069- |
spelling |
10.1016/j.commtr.2022.100069 doi (DE-627)DOAJ083540822 (DE-599)DOAJ56de542a090649c5bcc3f0532d70a792 DE-627 ger DE-627 rakwb eng TA1001-1280 Jinhua Ji verfasserin aut Trip energy consumption estimation for electric buses 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study aims to develop a trip energy consumption (TEC) estimation model for the electric bus (EB) fleet planning, operation, and life-cycle assessment. Leveraging the vast variations of temperature in Jilin Province, China, real-world data of 31 EBs operating in 14 months were collected with temperatures fluctuating from −27.0 to 35.0 °C. TEC of an EB was divided into two parts, which are the energy required by the traction and battery thermal management system, and the energy required by the air conditioner (AC) system operation, respectively. The former was regressed by a logarithmic linear model with ambient temperature, curb weight, travel distance, and trip travel time as contributing factors. The optimum working temperature and regression parameters were obtained by combining Fibonacci and Weighted Least Square. The latter was estimated by the operation time of the AC system in cooling mode or heating mode. Model evaluation and sensitivity analysis were conducted. The results show that: (i) the mean absolute percentage error (MAPE) of the proposed model is 12.108%; (ii) the estimation accuracy of the model has a probability of 99.7814% meeting the requirements of EB fleet scheduling; (iii) the MAPE has a 1.746% reduction if considering passengers’ boarding and alighting. Electric bus Trip energy consumption Regression model Operational data Cold region Transportation engineering Yiming Bie verfasserin aut Ziling Zeng verfasserin aut Linhong Wang verfasserin aut In Communications in Transportation Research Elsevier, 2021 2(2022), Seite 100069- (DE-627)1828250368 27724247 nnns volume:2 year:2022 pages:100069- https://doi.org/10.1016/j.commtr.2022.100069 kostenfrei https://doaj.org/article/56de542a090649c5bcc3f0532d70a792 kostenfrei http://www.sciencedirect.com/science/article/pii/S2772424722000191 kostenfrei https://doaj.org/toc/2772-4247 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 AR 2 2022 100069- |
allfields_unstemmed |
10.1016/j.commtr.2022.100069 doi (DE-627)DOAJ083540822 (DE-599)DOAJ56de542a090649c5bcc3f0532d70a792 DE-627 ger DE-627 rakwb eng TA1001-1280 Jinhua Ji verfasserin aut Trip energy consumption estimation for electric buses 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study aims to develop a trip energy consumption (TEC) estimation model for the electric bus (EB) fleet planning, operation, and life-cycle assessment. Leveraging the vast variations of temperature in Jilin Province, China, real-world data of 31 EBs operating in 14 months were collected with temperatures fluctuating from −27.0 to 35.0 °C. TEC of an EB was divided into two parts, which are the energy required by the traction and battery thermal management system, and the energy required by the air conditioner (AC) system operation, respectively. The former was regressed by a logarithmic linear model with ambient temperature, curb weight, travel distance, and trip travel time as contributing factors. The optimum working temperature and regression parameters were obtained by combining Fibonacci and Weighted Least Square. The latter was estimated by the operation time of the AC system in cooling mode or heating mode. Model evaluation and sensitivity analysis were conducted. The results show that: (i) the mean absolute percentage error (MAPE) of the proposed model is 12.108%; (ii) the estimation accuracy of the model has a probability of 99.7814% meeting the requirements of EB fleet scheduling; (iii) the MAPE has a 1.746% reduction if considering passengers’ boarding and alighting. Electric bus Trip energy consumption Regression model Operational data Cold region Transportation engineering Yiming Bie verfasserin aut Ziling Zeng verfasserin aut Linhong Wang verfasserin aut In Communications in Transportation Research Elsevier, 2021 2(2022), Seite 100069- (DE-627)1828250368 27724247 nnns volume:2 year:2022 pages:100069- https://doi.org/10.1016/j.commtr.2022.100069 kostenfrei https://doaj.org/article/56de542a090649c5bcc3f0532d70a792 kostenfrei http://www.sciencedirect.com/science/article/pii/S2772424722000191 kostenfrei https://doaj.org/toc/2772-4247 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 AR 2 2022 100069- |
allfieldsGer |
10.1016/j.commtr.2022.100069 doi (DE-627)DOAJ083540822 (DE-599)DOAJ56de542a090649c5bcc3f0532d70a792 DE-627 ger DE-627 rakwb eng TA1001-1280 Jinhua Ji verfasserin aut Trip energy consumption estimation for electric buses 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study aims to develop a trip energy consumption (TEC) estimation model for the electric bus (EB) fleet planning, operation, and life-cycle assessment. Leveraging the vast variations of temperature in Jilin Province, China, real-world data of 31 EBs operating in 14 months were collected with temperatures fluctuating from −27.0 to 35.0 °C. TEC of an EB was divided into two parts, which are the energy required by the traction and battery thermal management system, and the energy required by the air conditioner (AC) system operation, respectively. The former was regressed by a logarithmic linear model with ambient temperature, curb weight, travel distance, and trip travel time as contributing factors. The optimum working temperature and regression parameters were obtained by combining Fibonacci and Weighted Least Square. The latter was estimated by the operation time of the AC system in cooling mode or heating mode. Model evaluation and sensitivity analysis were conducted. The results show that: (i) the mean absolute percentage error (MAPE) of the proposed model is 12.108%; (ii) the estimation accuracy of the model has a probability of 99.7814% meeting the requirements of EB fleet scheduling; (iii) the MAPE has a 1.746% reduction if considering passengers’ boarding and alighting. Electric bus Trip energy consumption Regression model Operational data Cold region Transportation engineering Yiming Bie verfasserin aut Ziling Zeng verfasserin aut Linhong Wang verfasserin aut In Communications in Transportation Research Elsevier, 2021 2(2022), Seite 100069- (DE-627)1828250368 27724247 nnns volume:2 year:2022 pages:100069- https://doi.org/10.1016/j.commtr.2022.100069 kostenfrei https://doaj.org/article/56de542a090649c5bcc3f0532d70a792 kostenfrei http://www.sciencedirect.com/science/article/pii/S2772424722000191 kostenfrei https://doaj.org/toc/2772-4247 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 AR 2 2022 100069- |
allfieldsSound |
10.1016/j.commtr.2022.100069 doi (DE-627)DOAJ083540822 (DE-599)DOAJ56de542a090649c5bcc3f0532d70a792 DE-627 ger DE-627 rakwb eng TA1001-1280 Jinhua Ji verfasserin aut Trip energy consumption estimation for electric buses 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study aims to develop a trip energy consumption (TEC) estimation model for the electric bus (EB) fleet planning, operation, and life-cycle assessment. Leveraging the vast variations of temperature in Jilin Province, China, real-world data of 31 EBs operating in 14 months were collected with temperatures fluctuating from −27.0 to 35.0 °C. TEC of an EB was divided into two parts, which are the energy required by the traction and battery thermal management system, and the energy required by the air conditioner (AC) system operation, respectively. The former was regressed by a logarithmic linear model with ambient temperature, curb weight, travel distance, and trip travel time as contributing factors. The optimum working temperature and regression parameters were obtained by combining Fibonacci and Weighted Least Square. The latter was estimated by the operation time of the AC system in cooling mode or heating mode. Model evaluation and sensitivity analysis were conducted. The results show that: (i) the mean absolute percentage error (MAPE) of the proposed model is 12.108%; (ii) the estimation accuracy of the model has a probability of 99.7814% meeting the requirements of EB fleet scheduling; (iii) the MAPE has a 1.746% reduction if considering passengers’ boarding and alighting. Electric bus Trip energy consumption Regression model Operational data Cold region Transportation engineering Yiming Bie verfasserin aut Ziling Zeng verfasserin aut Linhong Wang verfasserin aut In Communications in Transportation Research Elsevier, 2021 2(2022), Seite 100069- (DE-627)1828250368 27724247 nnns volume:2 year:2022 pages:100069- https://doi.org/10.1016/j.commtr.2022.100069 kostenfrei https://doaj.org/article/56de542a090649c5bcc3f0532d70a792 kostenfrei http://www.sciencedirect.com/science/article/pii/S2772424722000191 kostenfrei https://doaj.org/toc/2772-4247 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 AR 2 2022 100069- |
language |
English |
source |
In Communications in Transportation Research 2(2022), Seite 100069- volume:2 year:2022 pages:100069- |
sourceStr |
In Communications in Transportation Research 2(2022), Seite 100069- volume:2 year:2022 pages:100069- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Electric bus Trip energy consumption Regression model Operational data Cold region Transportation engineering |
isfreeaccess_bool |
true |
container_title |
Communications in Transportation Research |
authorswithroles_txt_mv |
Jinhua Ji @@aut@@ Yiming Bie @@aut@@ Ziling Zeng @@aut@@ Linhong Wang @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
1828250368 |
id |
DOAJ083540822 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ083540822</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502145222.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.commtr.2022.100069</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ083540822</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ56de542a090649c5bcc3f0532d70a792</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1001-1280</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jinhua Ji</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Trip energy consumption estimation for electric buses</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study aims to develop a trip energy consumption (TEC) estimation model for the electric bus (EB) fleet planning, operation, and life-cycle assessment. Leveraging the vast variations of temperature in Jilin Province, China, real-world data of 31 EBs operating in 14 months were collected with temperatures fluctuating from −27.0 to 35.0 °C. TEC of an EB was divided into two parts, which are the energy required by the traction and battery thermal management system, and the energy required by the air conditioner (AC) system operation, respectively. The former was regressed by a logarithmic linear model with ambient temperature, curb weight, travel distance, and trip travel time as contributing factors. The optimum working temperature and regression parameters were obtained by combining Fibonacci and Weighted Least Square. The latter was estimated by the operation time of the AC system in cooling mode or heating mode. Model evaluation and sensitivity analysis were conducted. The results show that: (i) the mean absolute percentage error (MAPE) of the proposed model is 12.108%; (ii) the estimation accuracy of the model has a probability of 99.7814% meeting the requirements of EB fleet scheduling; (iii) the MAPE has a 1.746% reduction if considering passengers’ boarding and alighting.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electric bus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trip energy consumption</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Regression model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operational data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cold region</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Transportation engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yiming Bie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ziling Zeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Linhong Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Communications in Transportation Research</subfield><subfield code="d">Elsevier, 2021</subfield><subfield code="g">2(2022), Seite 100069-</subfield><subfield code="w">(DE-627)1828250368</subfield><subfield code="x">27724247</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:100069-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.commtr.2022.100069</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/56de542a090649c5bcc3f0532d70a792</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2772424722000191</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2772-4247</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2022</subfield><subfield code="h">100069-</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Jinhua Ji |
spellingShingle |
Jinhua Ji misc TA1001-1280 misc Electric bus misc Trip energy consumption misc Regression model misc Operational data misc Cold region misc Transportation engineering Trip energy consumption estimation for electric buses |
authorStr |
Jinhua Ji |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1828250368 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TA1001-1280 |
illustrated |
Not Illustrated |
issn |
27724247 |
topic_title |
TA1001-1280 Trip energy consumption estimation for electric buses Electric bus Trip energy consumption Regression model Operational data Cold region |
topic |
misc TA1001-1280 misc Electric bus misc Trip energy consumption misc Regression model misc Operational data misc Cold region misc Transportation engineering |
topic_unstemmed |
misc TA1001-1280 misc Electric bus misc Trip energy consumption misc Regression model misc Operational data misc Cold region misc Transportation engineering |
topic_browse |
misc TA1001-1280 misc Electric bus misc Trip energy consumption misc Regression model misc Operational data misc Cold region misc Transportation engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Communications in Transportation Research |
hierarchy_parent_id |
1828250368 |
hierarchy_top_title |
Communications in Transportation Research |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1828250368 |
title |
Trip energy consumption estimation for electric buses |
ctrlnum |
(DE-627)DOAJ083540822 (DE-599)DOAJ56de542a090649c5bcc3f0532d70a792 |
title_full |
Trip energy consumption estimation for electric buses |
author_sort |
Jinhua Ji |
journal |
Communications in Transportation Research |
journalStr |
Communications in Transportation Research |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
100069 |
author_browse |
Jinhua Ji Yiming Bie Ziling Zeng Linhong Wang |
container_volume |
2 |
class |
TA1001-1280 |
format_se |
Elektronische Aufsätze |
author-letter |
Jinhua Ji |
doi_str_mv |
10.1016/j.commtr.2022.100069 |
author2-role |
verfasserin |
title_sort |
trip energy consumption estimation for electric buses |
callnumber |
TA1001-1280 |
title_auth |
Trip energy consumption estimation for electric buses |
abstract |
This study aims to develop a trip energy consumption (TEC) estimation model for the electric bus (EB) fleet planning, operation, and life-cycle assessment. Leveraging the vast variations of temperature in Jilin Province, China, real-world data of 31 EBs operating in 14 months were collected with temperatures fluctuating from −27.0 to 35.0 °C. TEC of an EB was divided into two parts, which are the energy required by the traction and battery thermal management system, and the energy required by the air conditioner (AC) system operation, respectively. The former was regressed by a logarithmic linear model with ambient temperature, curb weight, travel distance, and trip travel time as contributing factors. The optimum working temperature and regression parameters were obtained by combining Fibonacci and Weighted Least Square. The latter was estimated by the operation time of the AC system in cooling mode or heating mode. Model evaluation and sensitivity analysis were conducted. The results show that: (i) the mean absolute percentage error (MAPE) of the proposed model is 12.108%; (ii) the estimation accuracy of the model has a probability of 99.7814% meeting the requirements of EB fleet scheduling; (iii) the MAPE has a 1.746% reduction if considering passengers’ boarding and alighting. |
abstractGer |
This study aims to develop a trip energy consumption (TEC) estimation model for the electric bus (EB) fleet planning, operation, and life-cycle assessment. Leveraging the vast variations of temperature in Jilin Province, China, real-world data of 31 EBs operating in 14 months were collected with temperatures fluctuating from −27.0 to 35.0 °C. TEC of an EB was divided into two parts, which are the energy required by the traction and battery thermal management system, and the energy required by the air conditioner (AC) system operation, respectively. The former was regressed by a logarithmic linear model with ambient temperature, curb weight, travel distance, and trip travel time as contributing factors. The optimum working temperature and regression parameters were obtained by combining Fibonacci and Weighted Least Square. The latter was estimated by the operation time of the AC system in cooling mode or heating mode. Model evaluation and sensitivity analysis were conducted. The results show that: (i) the mean absolute percentage error (MAPE) of the proposed model is 12.108%; (ii) the estimation accuracy of the model has a probability of 99.7814% meeting the requirements of EB fleet scheduling; (iii) the MAPE has a 1.746% reduction if considering passengers’ boarding and alighting. |
abstract_unstemmed |
This study aims to develop a trip energy consumption (TEC) estimation model for the electric bus (EB) fleet planning, operation, and life-cycle assessment. Leveraging the vast variations of temperature in Jilin Province, China, real-world data of 31 EBs operating in 14 months were collected with temperatures fluctuating from −27.0 to 35.0 °C. TEC of an EB was divided into two parts, which are the energy required by the traction and battery thermal management system, and the energy required by the air conditioner (AC) system operation, respectively. The former was regressed by a logarithmic linear model with ambient temperature, curb weight, travel distance, and trip travel time as contributing factors. The optimum working temperature and regression parameters were obtained by combining Fibonacci and Weighted Least Square. The latter was estimated by the operation time of the AC system in cooling mode or heating mode. Model evaluation and sensitivity analysis were conducted. The results show that: (i) the mean absolute percentage error (MAPE) of the proposed model is 12.108%; (ii) the estimation accuracy of the model has a probability of 99.7814% meeting the requirements of EB fleet scheduling; (iii) the MAPE has a 1.746% reduction if considering passengers’ boarding and alighting. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Trip energy consumption estimation for electric buses |
url |
https://doi.org/10.1016/j.commtr.2022.100069 https://doaj.org/article/56de542a090649c5bcc3f0532d70a792 http://www.sciencedirect.com/science/article/pii/S2772424722000191 https://doaj.org/toc/2772-4247 |
remote_bool |
true |
author2 |
Yiming Bie Ziling Zeng Linhong Wang |
author2Str |
Yiming Bie Ziling Zeng Linhong Wang |
ppnlink |
1828250368 |
callnumber-subject |
TA - General and Civil Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.commtr.2022.100069 |
callnumber-a |
TA1001-1280 |
up_date |
2024-07-03T18:02:17.515Z |
_version_ |
1803581902048722945 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ083540822</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502145222.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.commtr.2022.100069</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ083540822</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ56de542a090649c5bcc3f0532d70a792</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1001-1280</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jinhua Ji</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Trip energy consumption estimation for electric buses</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study aims to develop a trip energy consumption (TEC) estimation model for the electric bus (EB) fleet planning, operation, and life-cycle assessment. Leveraging the vast variations of temperature in Jilin Province, China, real-world data of 31 EBs operating in 14 months were collected with temperatures fluctuating from −27.0 to 35.0 °C. TEC of an EB was divided into two parts, which are the energy required by the traction and battery thermal management system, and the energy required by the air conditioner (AC) system operation, respectively. The former was regressed by a logarithmic linear model with ambient temperature, curb weight, travel distance, and trip travel time as contributing factors. The optimum working temperature and regression parameters were obtained by combining Fibonacci and Weighted Least Square. The latter was estimated by the operation time of the AC system in cooling mode or heating mode. Model evaluation and sensitivity analysis were conducted. The results show that: (i) the mean absolute percentage error (MAPE) of the proposed model is 12.108%; (ii) the estimation accuracy of the model has a probability of 99.7814% meeting the requirements of EB fleet scheduling; (iii) the MAPE has a 1.746% reduction if considering passengers’ boarding and alighting.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electric bus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trip energy consumption</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Regression model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operational data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cold region</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Transportation engineering</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yiming Bie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ziling Zeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Linhong Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Communications in Transportation Research</subfield><subfield code="d">Elsevier, 2021</subfield><subfield code="g">2(2022), Seite 100069-</subfield><subfield code="w">(DE-627)1828250368</subfield><subfield code="x">27724247</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2022</subfield><subfield code="g">pages:100069-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.commtr.2022.100069</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/56de542a090649c5bcc3f0532d70a792</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2772424722000191</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2772-4247</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2022</subfield><subfield code="h">100069-</subfield></datafield></record></collection>
|
score |
7.4017296 |