Transposon-Directed Insertion-Site Sequencing Reveals Glycolysis Gene <i<gpmA</i< as Part of the H<sub<2</sub<O<sub<2</sub< Defense Mechanisms in <i<Escherichia coli</i<
Hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<) is a common effector of defense mechanisms against pathogenic infections. However, bacterial factors involved in H<sub<2</sub<O<sub<2</sub< tolerance remain unclear. Here we used transposon-directed insert...
Ausführliche Beschreibung
Autor*in: |
Myriam Roth [verfasserIn] Emily C. A. Goodall [verfasserIn] Karthik Pullela [verfasserIn] Vincent Jaquet [verfasserIn] Patrice François [verfasserIn] Ian R. Henderson [verfasserIn] Karl-Heinz Krause [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Antioxidants - MDPI AG, 2013, 11(2022), 10, p 2053 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2022 ; number:10, p 2053 |
Links: |
---|
DOI / URN: |
10.3390/antiox11102053 |
---|
Katalog-ID: |
DOAJ083689354 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ083689354 | ||
003 | DE-627 | ||
005 | 20240414181958.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/antiox11102053 |2 doi | |
035 | |a (DE-627)DOAJ083689354 | ||
035 | |a (DE-599)DOAJe8d29753612b459dbe5e7dadb85bf4a3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a RM1-950 | |
100 | 0 | |a Myriam Roth |e verfasserin |4 aut | |
245 | 1 | 0 | |a Transposon-Directed Insertion-Site Sequencing Reveals Glycolysis Gene <i<gpmA</i< as Part of the H<sub<2</sub<O<sub<2</sub< Defense Mechanisms in <i<Escherichia coli</i< |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<) is a common effector of defense mechanisms against pathogenic infections. However, bacterial factors involved in H<sub<2</sub<O<sub<2</sub< tolerance remain unclear. Here we used transposon-directed insertion-site sequencing (TraDIS), a technique allowing the screening of the whole genome, to identify genes implicated in H<sub<2</sub<O<sub<2</sub< tolerance in <i<Escherichia coli</i<. Our TraDIS analysis identified 10 mutants with fitness defect upon H<sub<2</sub<O<sub<2</sub< exposure, among which previously H<sub<2</sub<O<sub<2</sub<-associated genes (<i<oxyR</i<, <i<dps</i<, <i<dksA</i<, <i<rpoS</i<, <i<hfq</i< and <i<polA</i<) and other genes with no known association with H<sub<2</sub<O<sub<2</sub< tolerance in <i<E. coli</i< (<i<corA</i<, <i<rbsR</i<, <i<nhaA</i< and <i<gpmA</i<). This is the first description of the impact of <i<gpmA</i<, a gene involved in glycolysis, on the susceptibility of <i<E. coli</i< to H<sub<2</sub<O<sub<2</sub<. Indeed, confirmatory experiments showed that the deletion of <i<gpmA</i< led to a specific hypersensitivity to H<sub<2</sub<O<sub<2</sub< comparable to the deletion of the major H<sub<2</sub<O<sub<2</sub< scavenger gene <i<katG</i<. This hypersensitivity was not due to an alteration of catalase function and was independent of the carbon source or the presence of oxygen. Transcription of <i<gpmA</i< was upregulated under H<sub<2</sub<O<sub<2</sub< exposure, highlighting its role under oxidative stress. In summary, our TraDIS approach identified <i<gpmA</i< as a member of the oxidative stress defense mechanism in <i<E. coli</i<. | ||
650 | 4 | |a <i<E. coli</i< | |
650 | 4 | |a H<sub<2</sub<O<sub<2</sub< | |
650 | 4 | |a TraDIS | |
650 | 4 | |a Tn-seq | |
650 | 4 | |a phophoglycerate mutase | |
650 | 4 | |a <i<gpmA</i< | |
653 | 0 | |a Therapeutics. Pharmacology | |
700 | 0 | |a Emily C. A. Goodall |e verfasserin |4 aut | |
700 | 0 | |a Karthik Pullela |e verfasserin |4 aut | |
700 | 0 | |a Vincent Jaquet |e verfasserin |4 aut | |
700 | 0 | |a Patrice François |e verfasserin |4 aut | |
700 | 0 | |a Ian R. Henderson |e verfasserin |4 aut | |
700 | 0 | |a Karl-Heinz Krause |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Antioxidants |d MDPI AG, 2013 |g 11(2022), 10, p 2053 |w (DE-627)737287578 |w (DE-600)2704216-9 |x 20763921 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2022 |g number:10, p 2053 |
856 | 4 | 0 | |u https://doi.org/10.3390/antiox11102053 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e8d29753612b459dbe5e7dadb85bf4a3 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2076-3921/11/10/2053 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2076-3921 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2022 |e 10, p 2053 |
author_variant |
m r mr e c a g ecag k p kp v j vj p f pf i r h irh k h k khk |
---|---|
matchkey_str |
article:20763921:2022----::rnpsnietdnetostsqecnrvaslclsseegmisatfhhu2uou2ud |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
RM |
publishDate |
2022 |
allfields |
10.3390/antiox11102053 doi (DE-627)DOAJ083689354 (DE-599)DOAJe8d29753612b459dbe5e7dadb85bf4a3 DE-627 ger DE-627 rakwb eng RM1-950 Myriam Roth verfasserin aut Transposon-Directed Insertion-Site Sequencing Reveals Glycolysis Gene <i<gpmA</i< as Part of the H<sub<2</sub<O<sub<2</sub< Defense Mechanisms in <i<Escherichia coli</i< 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<) is a common effector of defense mechanisms against pathogenic infections. However, bacterial factors involved in H<sub<2</sub<O<sub<2</sub< tolerance remain unclear. Here we used transposon-directed insertion-site sequencing (TraDIS), a technique allowing the screening of the whole genome, to identify genes implicated in H<sub<2</sub<O<sub<2</sub< tolerance in <i<Escherichia coli</i<. Our TraDIS analysis identified 10 mutants with fitness defect upon H<sub<2</sub<O<sub<2</sub< exposure, among which previously H<sub<2</sub<O<sub<2</sub<-associated genes (<i<oxyR</i<, <i<dps</i<, <i<dksA</i<, <i<rpoS</i<, <i<hfq</i< and <i<polA</i<) and other genes with no known association with H<sub<2</sub<O<sub<2</sub< tolerance in <i<E. coli</i< (<i<corA</i<, <i<rbsR</i<, <i<nhaA</i< and <i<gpmA</i<). This is the first description of the impact of <i<gpmA</i<, a gene involved in glycolysis, on the susceptibility of <i<E. coli</i< to H<sub<2</sub<O<sub<2</sub<. Indeed, confirmatory experiments showed that the deletion of <i<gpmA</i< led to a specific hypersensitivity to H<sub<2</sub<O<sub<2</sub< comparable to the deletion of the major H<sub<2</sub<O<sub<2</sub< scavenger gene <i<katG</i<. This hypersensitivity was not due to an alteration of catalase function and was independent of the carbon source or the presence of oxygen. Transcription of <i<gpmA</i< was upregulated under H<sub<2</sub<O<sub<2</sub< exposure, highlighting its role under oxidative stress. In summary, our TraDIS approach identified <i<gpmA</i< as a member of the oxidative stress defense mechanism in <i<E. coli</i<. <i<E. coli</i< H<sub<2</sub<O<sub<2</sub< TraDIS Tn-seq phophoglycerate mutase <i<gpmA</i< Therapeutics. Pharmacology Emily C. A. Goodall verfasserin aut Karthik Pullela verfasserin aut Vincent Jaquet verfasserin aut Patrice François verfasserin aut Ian R. Henderson verfasserin aut Karl-Heinz Krause verfasserin aut In Antioxidants MDPI AG, 2013 11(2022), 10, p 2053 (DE-627)737287578 (DE-600)2704216-9 20763921 nnns volume:11 year:2022 number:10, p 2053 https://doi.org/10.3390/antiox11102053 kostenfrei https://doaj.org/article/e8d29753612b459dbe5e7dadb85bf4a3 kostenfrei https://www.mdpi.com/2076-3921/11/10/2053 kostenfrei https://doaj.org/toc/2076-3921 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 10, p 2053 |
spelling |
10.3390/antiox11102053 doi (DE-627)DOAJ083689354 (DE-599)DOAJe8d29753612b459dbe5e7dadb85bf4a3 DE-627 ger DE-627 rakwb eng RM1-950 Myriam Roth verfasserin aut Transposon-Directed Insertion-Site Sequencing Reveals Glycolysis Gene <i<gpmA</i< as Part of the H<sub<2</sub<O<sub<2</sub< Defense Mechanisms in <i<Escherichia coli</i< 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<) is a common effector of defense mechanisms against pathogenic infections. However, bacterial factors involved in H<sub<2</sub<O<sub<2</sub< tolerance remain unclear. Here we used transposon-directed insertion-site sequencing (TraDIS), a technique allowing the screening of the whole genome, to identify genes implicated in H<sub<2</sub<O<sub<2</sub< tolerance in <i<Escherichia coli</i<. Our TraDIS analysis identified 10 mutants with fitness defect upon H<sub<2</sub<O<sub<2</sub< exposure, among which previously H<sub<2</sub<O<sub<2</sub<-associated genes (<i<oxyR</i<, <i<dps</i<, <i<dksA</i<, <i<rpoS</i<, <i<hfq</i< and <i<polA</i<) and other genes with no known association with H<sub<2</sub<O<sub<2</sub< tolerance in <i<E. coli</i< (<i<corA</i<, <i<rbsR</i<, <i<nhaA</i< and <i<gpmA</i<). This is the first description of the impact of <i<gpmA</i<, a gene involved in glycolysis, on the susceptibility of <i<E. coli</i< to H<sub<2</sub<O<sub<2</sub<. Indeed, confirmatory experiments showed that the deletion of <i<gpmA</i< led to a specific hypersensitivity to H<sub<2</sub<O<sub<2</sub< comparable to the deletion of the major H<sub<2</sub<O<sub<2</sub< scavenger gene <i<katG</i<. This hypersensitivity was not due to an alteration of catalase function and was independent of the carbon source or the presence of oxygen. Transcription of <i<gpmA</i< was upregulated under H<sub<2</sub<O<sub<2</sub< exposure, highlighting its role under oxidative stress. In summary, our TraDIS approach identified <i<gpmA</i< as a member of the oxidative stress defense mechanism in <i<E. coli</i<. <i<E. coli</i< H<sub<2</sub<O<sub<2</sub< TraDIS Tn-seq phophoglycerate mutase <i<gpmA</i< Therapeutics. Pharmacology Emily C. A. Goodall verfasserin aut Karthik Pullela verfasserin aut Vincent Jaquet verfasserin aut Patrice François verfasserin aut Ian R. Henderson verfasserin aut Karl-Heinz Krause verfasserin aut In Antioxidants MDPI AG, 2013 11(2022), 10, p 2053 (DE-627)737287578 (DE-600)2704216-9 20763921 nnns volume:11 year:2022 number:10, p 2053 https://doi.org/10.3390/antiox11102053 kostenfrei https://doaj.org/article/e8d29753612b459dbe5e7dadb85bf4a3 kostenfrei https://www.mdpi.com/2076-3921/11/10/2053 kostenfrei https://doaj.org/toc/2076-3921 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 10, p 2053 |
allfields_unstemmed |
10.3390/antiox11102053 doi (DE-627)DOAJ083689354 (DE-599)DOAJe8d29753612b459dbe5e7dadb85bf4a3 DE-627 ger DE-627 rakwb eng RM1-950 Myriam Roth verfasserin aut Transposon-Directed Insertion-Site Sequencing Reveals Glycolysis Gene <i<gpmA</i< as Part of the H<sub<2</sub<O<sub<2</sub< Defense Mechanisms in <i<Escherichia coli</i< 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<) is a common effector of defense mechanisms against pathogenic infections. However, bacterial factors involved in H<sub<2</sub<O<sub<2</sub< tolerance remain unclear. Here we used transposon-directed insertion-site sequencing (TraDIS), a technique allowing the screening of the whole genome, to identify genes implicated in H<sub<2</sub<O<sub<2</sub< tolerance in <i<Escherichia coli</i<. Our TraDIS analysis identified 10 mutants with fitness defect upon H<sub<2</sub<O<sub<2</sub< exposure, among which previously H<sub<2</sub<O<sub<2</sub<-associated genes (<i<oxyR</i<, <i<dps</i<, <i<dksA</i<, <i<rpoS</i<, <i<hfq</i< and <i<polA</i<) and other genes with no known association with H<sub<2</sub<O<sub<2</sub< tolerance in <i<E. coli</i< (<i<corA</i<, <i<rbsR</i<, <i<nhaA</i< and <i<gpmA</i<). This is the first description of the impact of <i<gpmA</i<, a gene involved in glycolysis, on the susceptibility of <i<E. coli</i< to H<sub<2</sub<O<sub<2</sub<. Indeed, confirmatory experiments showed that the deletion of <i<gpmA</i< led to a specific hypersensitivity to H<sub<2</sub<O<sub<2</sub< comparable to the deletion of the major H<sub<2</sub<O<sub<2</sub< scavenger gene <i<katG</i<. This hypersensitivity was not due to an alteration of catalase function and was independent of the carbon source or the presence of oxygen. Transcription of <i<gpmA</i< was upregulated under H<sub<2</sub<O<sub<2</sub< exposure, highlighting its role under oxidative stress. In summary, our TraDIS approach identified <i<gpmA</i< as a member of the oxidative stress defense mechanism in <i<E. coli</i<. <i<E. coli</i< H<sub<2</sub<O<sub<2</sub< TraDIS Tn-seq phophoglycerate mutase <i<gpmA</i< Therapeutics. Pharmacology Emily C. A. Goodall verfasserin aut Karthik Pullela verfasserin aut Vincent Jaquet verfasserin aut Patrice François verfasserin aut Ian R. Henderson verfasserin aut Karl-Heinz Krause verfasserin aut In Antioxidants MDPI AG, 2013 11(2022), 10, p 2053 (DE-627)737287578 (DE-600)2704216-9 20763921 nnns volume:11 year:2022 number:10, p 2053 https://doi.org/10.3390/antiox11102053 kostenfrei https://doaj.org/article/e8d29753612b459dbe5e7dadb85bf4a3 kostenfrei https://www.mdpi.com/2076-3921/11/10/2053 kostenfrei https://doaj.org/toc/2076-3921 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 10, p 2053 |
allfieldsGer |
10.3390/antiox11102053 doi (DE-627)DOAJ083689354 (DE-599)DOAJe8d29753612b459dbe5e7dadb85bf4a3 DE-627 ger DE-627 rakwb eng RM1-950 Myriam Roth verfasserin aut Transposon-Directed Insertion-Site Sequencing Reveals Glycolysis Gene <i<gpmA</i< as Part of the H<sub<2</sub<O<sub<2</sub< Defense Mechanisms in <i<Escherichia coli</i< 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<) is a common effector of defense mechanisms against pathogenic infections. However, bacterial factors involved in H<sub<2</sub<O<sub<2</sub< tolerance remain unclear. Here we used transposon-directed insertion-site sequencing (TraDIS), a technique allowing the screening of the whole genome, to identify genes implicated in H<sub<2</sub<O<sub<2</sub< tolerance in <i<Escherichia coli</i<. Our TraDIS analysis identified 10 mutants with fitness defect upon H<sub<2</sub<O<sub<2</sub< exposure, among which previously H<sub<2</sub<O<sub<2</sub<-associated genes (<i<oxyR</i<, <i<dps</i<, <i<dksA</i<, <i<rpoS</i<, <i<hfq</i< and <i<polA</i<) and other genes with no known association with H<sub<2</sub<O<sub<2</sub< tolerance in <i<E. coli</i< (<i<corA</i<, <i<rbsR</i<, <i<nhaA</i< and <i<gpmA</i<). This is the first description of the impact of <i<gpmA</i<, a gene involved in glycolysis, on the susceptibility of <i<E. coli</i< to H<sub<2</sub<O<sub<2</sub<. Indeed, confirmatory experiments showed that the deletion of <i<gpmA</i< led to a specific hypersensitivity to H<sub<2</sub<O<sub<2</sub< comparable to the deletion of the major H<sub<2</sub<O<sub<2</sub< scavenger gene <i<katG</i<. This hypersensitivity was not due to an alteration of catalase function and was independent of the carbon source or the presence of oxygen. Transcription of <i<gpmA</i< was upregulated under H<sub<2</sub<O<sub<2</sub< exposure, highlighting its role under oxidative stress. In summary, our TraDIS approach identified <i<gpmA</i< as a member of the oxidative stress defense mechanism in <i<E. coli</i<. <i<E. coli</i< H<sub<2</sub<O<sub<2</sub< TraDIS Tn-seq phophoglycerate mutase <i<gpmA</i< Therapeutics. Pharmacology Emily C. A. Goodall verfasserin aut Karthik Pullela verfasserin aut Vincent Jaquet verfasserin aut Patrice François verfasserin aut Ian R. Henderson verfasserin aut Karl-Heinz Krause verfasserin aut In Antioxidants MDPI AG, 2013 11(2022), 10, p 2053 (DE-627)737287578 (DE-600)2704216-9 20763921 nnns volume:11 year:2022 number:10, p 2053 https://doi.org/10.3390/antiox11102053 kostenfrei https://doaj.org/article/e8d29753612b459dbe5e7dadb85bf4a3 kostenfrei https://www.mdpi.com/2076-3921/11/10/2053 kostenfrei https://doaj.org/toc/2076-3921 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 10, p 2053 |
allfieldsSound |
10.3390/antiox11102053 doi (DE-627)DOAJ083689354 (DE-599)DOAJe8d29753612b459dbe5e7dadb85bf4a3 DE-627 ger DE-627 rakwb eng RM1-950 Myriam Roth verfasserin aut Transposon-Directed Insertion-Site Sequencing Reveals Glycolysis Gene <i<gpmA</i< as Part of the H<sub<2</sub<O<sub<2</sub< Defense Mechanisms in <i<Escherichia coli</i< 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<) is a common effector of defense mechanisms against pathogenic infections. However, bacterial factors involved in H<sub<2</sub<O<sub<2</sub< tolerance remain unclear. Here we used transposon-directed insertion-site sequencing (TraDIS), a technique allowing the screening of the whole genome, to identify genes implicated in H<sub<2</sub<O<sub<2</sub< tolerance in <i<Escherichia coli</i<. Our TraDIS analysis identified 10 mutants with fitness defect upon H<sub<2</sub<O<sub<2</sub< exposure, among which previously H<sub<2</sub<O<sub<2</sub<-associated genes (<i<oxyR</i<, <i<dps</i<, <i<dksA</i<, <i<rpoS</i<, <i<hfq</i< and <i<polA</i<) and other genes with no known association with H<sub<2</sub<O<sub<2</sub< tolerance in <i<E. coli</i< (<i<corA</i<, <i<rbsR</i<, <i<nhaA</i< and <i<gpmA</i<). This is the first description of the impact of <i<gpmA</i<, a gene involved in glycolysis, on the susceptibility of <i<E. coli</i< to H<sub<2</sub<O<sub<2</sub<. Indeed, confirmatory experiments showed that the deletion of <i<gpmA</i< led to a specific hypersensitivity to H<sub<2</sub<O<sub<2</sub< comparable to the deletion of the major H<sub<2</sub<O<sub<2</sub< scavenger gene <i<katG</i<. This hypersensitivity was not due to an alteration of catalase function and was independent of the carbon source or the presence of oxygen. Transcription of <i<gpmA</i< was upregulated under H<sub<2</sub<O<sub<2</sub< exposure, highlighting its role under oxidative stress. In summary, our TraDIS approach identified <i<gpmA</i< as a member of the oxidative stress defense mechanism in <i<E. coli</i<. <i<E. coli</i< H<sub<2</sub<O<sub<2</sub< TraDIS Tn-seq phophoglycerate mutase <i<gpmA</i< Therapeutics. Pharmacology Emily C. A. Goodall verfasserin aut Karthik Pullela verfasserin aut Vincent Jaquet verfasserin aut Patrice François verfasserin aut Ian R. Henderson verfasserin aut Karl-Heinz Krause verfasserin aut In Antioxidants MDPI AG, 2013 11(2022), 10, p 2053 (DE-627)737287578 (DE-600)2704216-9 20763921 nnns volume:11 year:2022 number:10, p 2053 https://doi.org/10.3390/antiox11102053 kostenfrei https://doaj.org/article/e8d29753612b459dbe5e7dadb85bf4a3 kostenfrei https://www.mdpi.com/2076-3921/11/10/2053 kostenfrei https://doaj.org/toc/2076-3921 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 10, p 2053 |
language |
English |
source |
In Antioxidants 11(2022), 10, p 2053 volume:11 year:2022 number:10, p 2053 |
sourceStr |
In Antioxidants 11(2022), 10, p 2053 volume:11 year:2022 number:10, p 2053 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
<i<E. coli</i< H<sub<2</sub<O<sub<2</sub< TraDIS Tn-seq phophoglycerate mutase <i<gpmA</i< Therapeutics. Pharmacology |
isfreeaccess_bool |
true |
container_title |
Antioxidants |
authorswithroles_txt_mv |
Myriam Roth @@aut@@ Emily C. A. Goodall @@aut@@ Karthik Pullela @@aut@@ Vincent Jaquet @@aut@@ Patrice François @@aut@@ Ian R. Henderson @@aut@@ Karl-Heinz Krause @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
737287578 |
id |
DOAJ083689354 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ083689354</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414181958.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/antiox11102053</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ083689354</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe8d29753612b459dbe5e7dadb85bf4a3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RM1-950</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Myriam Roth</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transposon-Directed Insertion-Site Sequencing Reveals Glycolysis Gene <i<gpmA</i< as Part of the H<sub<2</sub<O<sub<2</sub< Defense Mechanisms in <i<Escherichia coli</i<</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<) is a common effector of defense mechanisms against pathogenic infections. However, bacterial factors involved in H<sub<2</sub<O<sub<2</sub< tolerance remain unclear. Here we used transposon-directed insertion-site sequencing (TraDIS), a technique allowing the screening of the whole genome, to identify genes implicated in H<sub<2</sub<O<sub<2</sub< tolerance in <i<Escherichia coli</i<. Our TraDIS analysis identified 10 mutants with fitness defect upon H<sub<2</sub<O<sub<2</sub< exposure, among which previously H<sub<2</sub<O<sub<2</sub<-associated genes (<i<oxyR</i<, <i<dps</i<, <i<dksA</i<, <i<rpoS</i<, <i<hfq</i< and <i<polA</i<) and other genes with no known association with H<sub<2</sub<O<sub<2</sub< tolerance in <i<E. coli</i< (<i<corA</i<, <i<rbsR</i<, <i<nhaA</i< and <i<gpmA</i<). This is the first description of the impact of <i<gpmA</i<, a gene involved in glycolysis, on the susceptibility of <i<E. coli</i< to H<sub<2</sub<O<sub<2</sub<. Indeed, confirmatory experiments showed that the deletion of <i<gpmA</i< led to a specific hypersensitivity to H<sub<2</sub<O<sub<2</sub< comparable to the deletion of the major H<sub<2</sub<O<sub<2</sub< scavenger gene <i<katG</i<. This hypersensitivity was not due to an alteration of catalase function and was independent of the carbon source or the presence of oxygen. Transcription of <i<gpmA</i< was upregulated under H<sub<2</sub<O<sub<2</sub< exposure, highlighting its role under oxidative stress. In summary, our TraDIS approach identified <i<gpmA</i< as a member of the oxidative stress defense mechanism in <i<E. coli</i<.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<E. coli</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">H<sub<2</sub<O<sub<2</sub<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TraDIS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tn-seq</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phophoglycerate mutase</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<gpmA</i<</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Therapeutics. Pharmacology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Emily C. A. Goodall</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Karthik Pullela</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vincent Jaquet</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Patrice François</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ian R. Henderson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Karl-Heinz Krause</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Antioxidants</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">11(2022), 10, p 2053</subfield><subfield code="w">(DE-627)737287578</subfield><subfield code="w">(DE-600)2704216-9</subfield><subfield code="x">20763921</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:10, p 2053</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/antiox11102053</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e8d29753612b459dbe5e7dadb85bf4a3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3921/11/10/2053</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3921</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2022</subfield><subfield code="e">10, p 2053</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Myriam Roth |
spellingShingle |
Myriam Roth misc RM1-950 misc <i<E. coli</i< misc H<sub<2</sub<O<sub<2</sub< misc TraDIS misc Tn-seq misc phophoglycerate mutase misc <i<gpmA</i< misc Therapeutics. Pharmacology Transposon-Directed Insertion-Site Sequencing Reveals Glycolysis Gene <i<gpmA</i< as Part of the H<sub<2</sub<O<sub<2</sub< Defense Mechanisms in <i<Escherichia coli</i< |
authorStr |
Myriam Roth |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)737287578 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
RM1-950 |
illustrated |
Not Illustrated |
issn |
20763921 |
topic_title |
RM1-950 Transposon-Directed Insertion-Site Sequencing Reveals Glycolysis Gene <i<gpmA</i< as Part of the H<sub<2</sub<O<sub<2</sub< Defense Mechanisms in <i<Escherichia coli</i< <i<E. coli</i< H<sub<2</sub<O<sub<2</sub< TraDIS Tn-seq phophoglycerate mutase <i<gpmA</i< |
topic |
misc RM1-950 misc <i<E. coli</i< misc H<sub<2</sub<O<sub<2</sub< misc TraDIS misc Tn-seq misc phophoglycerate mutase misc <i<gpmA</i< misc Therapeutics. Pharmacology |
topic_unstemmed |
misc RM1-950 misc <i<E. coli</i< misc H<sub<2</sub<O<sub<2</sub< misc TraDIS misc Tn-seq misc phophoglycerate mutase misc <i<gpmA</i< misc Therapeutics. Pharmacology |
topic_browse |
misc RM1-950 misc <i<E. coli</i< misc H<sub<2</sub<O<sub<2</sub< misc TraDIS misc Tn-seq misc phophoglycerate mutase misc <i<gpmA</i< misc Therapeutics. Pharmacology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Antioxidants |
hierarchy_parent_id |
737287578 |
hierarchy_top_title |
Antioxidants |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)737287578 (DE-600)2704216-9 |
title |
Transposon-Directed Insertion-Site Sequencing Reveals Glycolysis Gene <i<gpmA</i< as Part of the H<sub<2</sub<O<sub<2</sub< Defense Mechanisms in <i<Escherichia coli</i< |
ctrlnum |
(DE-627)DOAJ083689354 (DE-599)DOAJe8d29753612b459dbe5e7dadb85bf4a3 |
title_full |
Transposon-Directed Insertion-Site Sequencing Reveals Glycolysis Gene <i<gpmA</i< as Part of the H<sub<2</sub<O<sub<2</sub< Defense Mechanisms in <i<Escherichia coli</i< |
author_sort |
Myriam Roth |
journal |
Antioxidants |
journalStr |
Antioxidants |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Myriam Roth Emily C. A. Goodall Karthik Pullela Vincent Jaquet Patrice François Ian R. Henderson Karl-Heinz Krause |
container_volume |
11 |
class |
RM1-950 |
format_se |
Elektronische Aufsätze |
author-letter |
Myriam Roth |
doi_str_mv |
10.3390/antiox11102053 |
author2-role |
verfasserin |
title_sort |
transposon-directed insertion-site sequencing reveals glycolysis gene <i<gpma</i< as part of the h<sub<2</sub<o<sub<2</sub< defense mechanisms in <i<escherichia coli</i< |
callnumber |
RM1-950 |
title_auth |
Transposon-Directed Insertion-Site Sequencing Reveals Glycolysis Gene <i<gpmA</i< as Part of the H<sub<2</sub<O<sub<2</sub< Defense Mechanisms in <i<Escherichia coli</i< |
abstract |
Hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<) is a common effector of defense mechanisms against pathogenic infections. However, bacterial factors involved in H<sub<2</sub<O<sub<2</sub< tolerance remain unclear. Here we used transposon-directed insertion-site sequencing (TraDIS), a technique allowing the screening of the whole genome, to identify genes implicated in H<sub<2</sub<O<sub<2</sub< tolerance in <i<Escherichia coli</i<. Our TraDIS analysis identified 10 mutants with fitness defect upon H<sub<2</sub<O<sub<2</sub< exposure, among which previously H<sub<2</sub<O<sub<2</sub<-associated genes (<i<oxyR</i<, <i<dps</i<, <i<dksA</i<, <i<rpoS</i<, <i<hfq</i< and <i<polA</i<) and other genes with no known association with H<sub<2</sub<O<sub<2</sub< tolerance in <i<E. coli</i< (<i<corA</i<, <i<rbsR</i<, <i<nhaA</i< and <i<gpmA</i<). This is the first description of the impact of <i<gpmA</i<, a gene involved in glycolysis, on the susceptibility of <i<E. coli</i< to H<sub<2</sub<O<sub<2</sub<. Indeed, confirmatory experiments showed that the deletion of <i<gpmA</i< led to a specific hypersensitivity to H<sub<2</sub<O<sub<2</sub< comparable to the deletion of the major H<sub<2</sub<O<sub<2</sub< scavenger gene <i<katG</i<. This hypersensitivity was not due to an alteration of catalase function and was independent of the carbon source or the presence of oxygen. Transcription of <i<gpmA</i< was upregulated under H<sub<2</sub<O<sub<2</sub< exposure, highlighting its role under oxidative stress. In summary, our TraDIS approach identified <i<gpmA</i< as a member of the oxidative stress defense mechanism in <i<E. coli</i<. |
abstractGer |
Hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<) is a common effector of defense mechanisms against pathogenic infections. However, bacterial factors involved in H<sub<2</sub<O<sub<2</sub< tolerance remain unclear. Here we used transposon-directed insertion-site sequencing (TraDIS), a technique allowing the screening of the whole genome, to identify genes implicated in H<sub<2</sub<O<sub<2</sub< tolerance in <i<Escherichia coli</i<. Our TraDIS analysis identified 10 mutants with fitness defect upon H<sub<2</sub<O<sub<2</sub< exposure, among which previously H<sub<2</sub<O<sub<2</sub<-associated genes (<i<oxyR</i<, <i<dps</i<, <i<dksA</i<, <i<rpoS</i<, <i<hfq</i< and <i<polA</i<) and other genes with no known association with H<sub<2</sub<O<sub<2</sub< tolerance in <i<E. coli</i< (<i<corA</i<, <i<rbsR</i<, <i<nhaA</i< and <i<gpmA</i<). This is the first description of the impact of <i<gpmA</i<, a gene involved in glycolysis, on the susceptibility of <i<E. coli</i< to H<sub<2</sub<O<sub<2</sub<. Indeed, confirmatory experiments showed that the deletion of <i<gpmA</i< led to a specific hypersensitivity to H<sub<2</sub<O<sub<2</sub< comparable to the deletion of the major H<sub<2</sub<O<sub<2</sub< scavenger gene <i<katG</i<. This hypersensitivity was not due to an alteration of catalase function and was independent of the carbon source or the presence of oxygen. Transcription of <i<gpmA</i< was upregulated under H<sub<2</sub<O<sub<2</sub< exposure, highlighting its role under oxidative stress. In summary, our TraDIS approach identified <i<gpmA</i< as a member of the oxidative stress defense mechanism in <i<E. coli</i<. |
abstract_unstemmed |
Hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<) is a common effector of defense mechanisms against pathogenic infections. However, bacterial factors involved in H<sub<2</sub<O<sub<2</sub< tolerance remain unclear. Here we used transposon-directed insertion-site sequencing (TraDIS), a technique allowing the screening of the whole genome, to identify genes implicated in H<sub<2</sub<O<sub<2</sub< tolerance in <i<Escherichia coli</i<. Our TraDIS analysis identified 10 mutants with fitness defect upon H<sub<2</sub<O<sub<2</sub< exposure, among which previously H<sub<2</sub<O<sub<2</sub<-associated genes (<i<oxyR</i<, <i<dps</i<, <i<dksA</i<, <i<rpoS</i<, <i<hfq</i< and <i<polA</i<) and other genes with no known association with H<sub<2</sub<O<sub<2</sub< tolerance in <i<E. coli</i< (<i<corA</i<, <i<rbsR</i<, <i<nhaA</i< and <i<gpmA</i<). This is the first description of the impact of <i<gpmA</i<, a gene involved in glycolysis, on the susceptibility of <i<E. coli</i< to H<sub<2</sub<O<sub<2</sub<. Indeed, confirmatory experiments showed that the deletion of <i<gpmA</i< led to a specific hypersensitivity to H<sub<2</sub<O<sub<2</sub< comparable to the deletion of the major H<sub<2</sub<O<sub<2</sub< scavenger gene <i<katG</i<. This hypersensitivity was not due to an alteration of catalase function and was independent of the carbon source or the presence of oxygen. Transcription of <i<gpmA</i< was upregulated under H<sub<2</sub<O<sub<2</sub< exposure, highlighting its role under oxidative stress. In summary, our TraDIS approach identified <i<gpmA</i< as a member of the oxidative stress defense mechanism in <i<E. coli</i<. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
10, p 2053 |
title_short |
Transposon-Directed Insertion-Site Sequencing Reveals Glycolysis Gene <i<gpmA</i< as Part of the H<sub<2</sub<O<sub<2</sub< Defense Mechanisms in <i<Escherichia coli</i< |
url |
https://doi.org/10.3390/antiox11102053 https://doaj.org/article/e8d29753612b459dbe5e7dadb85bf4a3 https://www.mdpi.com/2076-3921/11/10/2053 https://doaj.org/toc/2076-3921 |
remote_bool |
true |
author2 |
Emily C. A. Goodall Karthik Pullela Vincent Jaquet Patrice François Ian R. Henderson Karl-Heinz Krause |
author2Str |
Emily C. A. Goodall Karthik Pullela Vincent Jaquet Patrice François Ian R. Henderson Karl-Heinz Krause |
ppnlink |
737287578 |
callnumber-subject |
RM - Therapeutics and Pharmacology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/antiox11102053 |
callnumber-a |
RM1-950 |
up_date |
2024-07-03T18:53:26.335Z |
_version_ |
1803585119941820416 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ083689354</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414181958.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/antiox11102053</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ083689354</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe8d29753612b459dbe5e7dadb85bf4a3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">RM1-950</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Myriam Roth</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transposon-Directed Insertion-Site Sequencing Reveals Glycolysis Gene <i<gpmA</i< as Part of the H<sub<2</sub<O<sub<2</sub< Defense Mechanisms in <i<Escherichia coli</i<</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hydrogen peroxide (H<sub<2</sub<O<sub<2</sub<) is a common effector of defense mechanisms against pathogenic infections. However, bacterial factors involved in H<sub<2</sub<O<sub<2</sub< tolerance remain unclear. Here we used transposon-directed insertion-site sequencing (TraDIS), a technique allowing the screening of the whole genome, to identify genes implicated in H<sub<2</sub<O<sub<2</sub< tolerance in <i<Escherichia coli</i<. Our TraDIS analysis identified 10 mutants with fitness defect upon H<sub<2</sub<O<sub<2</sub< exposure, among which previously H<sub<2</sub<O<sub<2</sub<-associated genes (<i<oxyR</i<, <i<dps</i<, <i<dksA</i<, <i<rpoS</i<, <i<hfq</i< and <i<polA</i<) and other genes with no known association with H<sub<2</sub<O<sub<2</sub< tolerance in <i<E. coli</i< (<i<corA</i<, <i<rbsR</i<, <i<nhaA</i< and <i<gpmA</i<). This is the first description of the impact of <i<gpmA</i<, a gene involved in glycolysis, on the susceptibility of <i<E. coli</i< to H<sub<2</sub<O<sub<2</sub<. Indeed, confirmatory experiments showed that the deletion of <i<gpmA</i< led to a specific hypersensitivity to H<sub<2</sub<O<sub<2</sub< comparable to the deletion of the major H<sub<2</sub<O<sub<2</sub< scavenger gene <i<katG</i<. This hypersensitivity was not due to an alteration of catalase function and was independent of the carbon source or the presence of oxygen. Transcription of <i<gpmA</i< was upregulated under H<sub<2</sub<O<sub<2</sub< exposure, highlighting its role under oxidative stress. In summary, our TraDIS approach identified <i<gpmA</i< as a member of the oxidative stress defense mechanism in <i<E. coli</i<.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<E. coli</i<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">H<sub<2</sub<O<sub<2</sub<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TraDIS</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tn-seq</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">phophoglycerate mutase</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a"><i<gpmA</i<</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Therapeutics. Pharmacology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Emily C. A. Goodall</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Karthik Pullela</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vincent Jaquet</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Patrice François</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ian R. Henderson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Karl-Heinz Krause</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Antioxidants</subfield><subfield code="d">MDPI AG, 2013</subfield><subfield code="g">11(2022), 10, p 2053</subfield><subfield code="w">(DE-627)737287578</subfield><subfield code="w">(DE-600)2704216-9</subfield><subfield code="x">20763921</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:10, p 2053</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/antiox11102053</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e8d29753612b459dbe5e7dadb85bf4a3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2076-3921/11/10/2053</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2076-3921</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2022</subfield><subfield code="e">10, p 2053</subfield></datafield></record></collection>
|
score |
7.4006615 |