Pulsed laser-assisted synthesis of nano nickel(ii) oxide-anchored graphitic carbon nitride: Characterizations and their potential antibacterial/anti-biofilm applications
Nickel(ii) oxide-graphitic carbon nitride (n-NiOg-C3N4) nanocomposite, in which nickel oxide nanoparticles (n-NiO) are anchored on the polymeric surface of graphitic carbon nitride (g-C3N4), was synthesized using the pulsed laser post processing (PLPP) in liquid medium. In the PLPP method, the precu...
Ausführliche Beschreibung
Autor*in: |
Baig Umair [verfasserIn] AbuMousa Rasha A. [verfasserIn] Ansari Mohammad Azam [verfasserIn] Gondal Muhammad A. [verfasserIn] Dastageer Mohamed A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Nanotechnology Reviews - De Gruyter, 2020, 11(2022), 1, Seite 3053-3062 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2022 ; number:1 ; pages:3053-3062 |
Links: |
---|
DOI / URN: |
10.1515/ntrev-2022-0492 |
---|
Katalog-ID: |
DOAJ08379459X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ08379459X | ||
003 | DE-627 | ||
005 | 20230503072732.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1515/ntrev-2022-0492 |2 doi | |
035 | |a (DE-627)DOAJ08379459X | ||
035 | |a (DE-599)DOAJ757fc7645540474682d582bc17b12db8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TP1-1185 | |
050 | 0 | |a QD450-801 | |
100 | 0 | |a Baig Umair |e verfasserin |4 aut | |
245 | 1 | 0 | |a Pulsed laser-assisted synthesis of nano nickel(ii) oxide-anchored graphitic carbon nitride: Characterizations and their potential antibacterial/anti-biofilm applications |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Nickel(ii) oxide-graphitic carbon nitride (n-NiOg-C3N4) nanocomposite, in which nickel oxide nanoparticles (n-NiO) are anchored on the polymeric surface of graphitic carbon nitride (g-C3N4), was synthesized using the pulsed laser post processing (PLPP) in liquid medium. In the PLPP method, the precursors (NiO and g-C3N4) were simultaneously subjected to pulsed laser-induced fragmentation, and pulsed laser-induced defect engineering (anchoring of NiO on g-C3N4). To optimize the functionality of the material, n-NiO@g-C3N4 with four different mass contents of n-NiO was synthesized. The synthesized n-NiO@g-C3N4 nanocomposite and its composite partners (n-NiO and g-C3N4) were structurally, morphologically, elementally characterized by X-ray diffraction, filed emission scanning electron microscope, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analyses. As a first anti-microbial application, n-NiO@g-C3N4 was used to evaluate the minimal inhibitory concentration and minimal bactericidal concentration against the gram-positive Staphylococcus aureus and gram-negative Pseudomonas aeruginosa bacteria. As a second anti-microbial application, the efficacy of n-NiO@g-C3N4 nanocomposite to retard S. aureus and P. aeruginosa biofilms’ growth was evaluated. It was found that for both applications, n-NiO@g-C3N4 nanocomposite exhibited an excellent anti-bacterial activity compared to pure g-C3N4. | ||
650 | 4 | |a nanostructured material | |
650 | 4 | |a nanosecond pulsed laser | |
650 | 4 | |a characterizations | |
650 | 4 | |a antibacterial activity | |
650 | 4 | |a anti-biofilm activity. | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Chemical technology | |
653 | 0 | |a Physical and theoretical chemistry | |
700 | 0 | |a AbuMousa Rasha A. |e verfasserin |4 aut | |
700 | 0 | |a Ansari Mohammad Azam |e verfasserin |4 aut | |
700 | 0 | |a Gondal Muhammad A. |e verfasserin |4 aut | |
700 | 0 | |a Dastageer Mohamed A. |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Nanotechnology Reviews |d De Gruyter, 2020 |g 11(2022), 1, Seite 3053-3062 |w (DE-627)684126621 |w (DE-600)2646548-6 |x 21919097 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2022 |g number:1 |g pages:3053-3062 |
856 | 4 | 0 | |u https://doi.org/10.1515/ntrev-2022-0492 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/757fc7645540474682d582bc17b12db8 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1515/ntrev-2022-0492 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2191-9097 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2022 |e 1 |h 3053-3062 |
author_variant |
b u bu a r a ara a m a ama g m a gma d m a dma |
---|---|
matchkey_str |
article:21919097:2022----::usdaeassesnhssfaoiklixdacoegahtcabnirdcaatrztosnteroet |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TP |
publishDate |
2022 |
allfields |
10.1515/ntrev-2022-0492 doi (DE-627)DOAJ08379459X (DE-599)DOAJ757fc7645540474682d582bc17b12db8 DE-627 ger DE-627 rakwb eng TP1-1185 QD450-801 Baig Umair verfasserin aut Pulsed laser-assisted synthesis of nano nickel(ii) oxide-anchored graphitic carbon nitride: Characterizations and their potential antibacterial/anti-biofilm applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nickel(ii) oxide-graphitic carbon nitride (n-NiOg-C3N4) nanocomposite, in which nickel oxide nanoparticles (n-NiO) are anchored on the polymeric surface of graphitic carbon nitride (g-C3N4), was synthesized using the pulsed laser post processing (PLPP) in liquid medium. In the PLPP method, the precursors (NiO and g-C3N4) were simultaneously subjected to pulsed laser-induced fragmentation, and pulsed laser-induced defect engineering (anchoring of NiO on g-C3N4). To optimize the functionality of the material, n-NiO@g-C3N4 with four different mass contents of n-NiO was synthesized. The synthesized n-NiO@g-C3N4 nanocomposite and its composite partners (n-NiO and g-C3N4) were structurally, morphologically, elementally characterized by X-ray diffraction, filed emission scanning electron microscope, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analyses. As a first anti-microbial application, n-NiO@g-C3N4 was used to evaluate the minimal inhibitory concentration and minimal bactericidal concentration against the gram-positive Staphylococcus aureus and gram-negative Pseudomonas aeruginosa bacteria. As a second anti-microbial application, the efficacy of n-NiO@g-C3N4 nanocomposite to retard S. aureus and P. aeruginosa biofilms’ growth was evaluated. It was found that for both applications, n-NiO@g-C3N4 nanocomposite exhibited an excellent anti-bacterial activity compared to pure g-C3N4. nanostructured material nanosecond pulsed laser characterizations antibacterial activity anti-biofilm activity. Technology T Chemical technology Physical and theoretical chemistry AbuMousa Rasha A. verfasserin aut Ansari Mohammad Azam verfasserin aut Gondal Muhammad A. verfasserin aut Dastageer Mohamed A. verfasserin aut In Nanotechnology Reviews De Gruyter, 2020 11(2022), 1, Seite 3053-3062 (DE-627)684126621 (DE-600)2646548-6 21919097 nnns volume:11 year:2022 number:1 pages:3053-3062 https://doi.org/10.1515/ntrev-2022-0492 kostenfrei https://doaj.org/article/757fc7645540474682d582bc17b12db8 kostenfrei https://doi.org/10.1515/ntrev-2022-0492 kostenfrei https://doaj.org/toc/2191-9097 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 1 3053-3062 |
spelling |
10.1515/ntrev-2022-0492 doi (DE-627)DOAJ08379459X (DE-599)DOAJ757fc7645540474682d582bc17b12db8 DE-627 ger DE-627 rakwb eng TP1-1185 QD450-801 Baig Umair verfasserin aut Pulsed laser-assisted synthesis of nano nickel(ii) oxide-anchored graphitic carbon nitride: Characterizations and their potential antibacterial/anti-biofilm applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nickel(ii) oxide-graphitic carbon nitride (n-NiOg-C3N4) nanocomposite, in which nickel oxide nanoparticles (n-NiO) are anchored on the polymeric surface of graphitic carbon nitride (g-C3N4), was synthesized using the pulsed laser post processing (PLPP) in liquid medium. In the PLPP method, the precursors (NiO and g-C3N4) were simultaneously subjected to pulsed laser-induced fragmentation, and pulsed laser-induced defect engineering (anchoring of NiO on g-C3N4). To optimize the functionality of the material, n-NiO@g-C3N4 with four different mass contents of n-NiO was synthesized. The synthesized n-NiO@g-C3N4 nanocomposite and its composite partners (n-NiO and g-C3N4) were structurally, morphologically, elementally characterized by X-ray diffraction, filed emission scanning electron microscope, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analyses. As a first anti-microbial application, n-NiO@g-C3N4 was used to evaluate the minimal inhibitory concentration and minimal bactericidal concentration against the gram-positive Staphylococcus aureus and gram-negative Pseudomonas aeruginosa bacteria. As a second anti-microbial application, the efficacy of n-NiO@g-C3N4 nanocomposite to retard S. aureus and P. aeruginosa biofilms’ growth was evaluated. It was found that for both applications, n-NiO@g-C3N4 nanocomposite exhibited an excellent anti-bacterial activity compared to pure g-C3N4. nanostructured material nanosecond pulsed laser characterizations antibacterial activity anti-biofilm activity. Technology T Chemical technology Physical and theoretical chemistry AbuMousa Rasha A. verfasserin aut Ansari Mohammad Azam verfasserin aut Gondal Muhammad A. verfasserin aut Dastageer Mohamed A. verfasserin aut In Nanotechnology Reviews De Gruyter, 2020 11(2022), 1, Seite 3053-3062 (DE-627)684126621 (DE-600)2646548-6 21919097 nnns volume:11 year:2022 number:1 pages:3053-3062 https://doi.org/10.1515/ntrev-2022-0492 kostenfrei https://doaj.org/article/757fc7645540474682d582bc17b12db8 kostenfrei https://doi.org/10.1515/ntrev-2022-0492 kostenfrei https://doaj.org/toc/2191-9097 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 1 3053-3062 |
allfields_unstemmed |
10.1515/ntrev-2022-0492 doi (DE-627)DOAJ08379459X (DE-599)DOAJ757fc7645540474682d582bc17b12db8 DE-627 ger DE-627 rakwb eng TP1-1185 QD450-801 Baig Umair verfasserin aut Pulsed laser-assisted synthesis of nano nickel(ii) oxide-anchored graphitic carbon nitride: Characterizations and their potential antibacterial/anti-biofilm applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nickel(ii) oxide-graphitic carbon nitride (n-NiOg-C3N4) nanocomposite, in which nickel oxide nanoparticles (n-NiO) are anchored on the polymeric surface of graphitic carbon nitride (g-C3N4), was synthesized using the pulsed laser post processing (PLPP) in liquid medium. In the PLPP method, the precursors (NiO and g-C3N4) were simultaneously subjected to pulsed laser-induced fragmentation, and pulsed laser-induced defect engineering (anchoring of NiO on g-C3N4). To optimize the functionality of the material, n-NiO@g-C3N4 with four different mass contents of n-NiO was synthesized. The synthesized n-NiO@g-C3N4 nanocomposite and its composite partners (n-NiO and g-C3N4) were structurally, morphologically, elementally characterized by X-ray diffraction, filed emission scanning electron microscope, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analyses. As a first anti-microbial application, n-NiO@g-C3N4 was used to evaluate the minimal inhibitory concentration and minimal bactericidal concentration against the gram-positive Staphylococcus aureus and gram-negative Pseudomonas aeruginosa bacteria. As a second anti-microbial application, the efficacy of n-NiO@g-C3N4 nanocomposite to retard S. aureus and P. aeruginosa biofilms’ growth was evaluated. It was found that for both applications, n-NiO@g-C3N4 nanocomposite exhibited an excellent anti-bacterial activity compared to pure g-C3N4. nanostructured material nanosecond pulsed laser characterizations antibacterial activity anti-biofilm activity. Technology T Chemical technology Physical and theoretical chemistry AbuMousa Rasha A. verfasserin aut Ansari Mohammad Azam verfasserin aut Gondal Muhammad A. verfasserin aut Dastageer Mohamed A. verfasserin aut In Nanotechnology Reviews De Gruyter, 2020 11(2022), 1, Seite 3053-3062 (DE-627)684126621 (DE-600)2646548-6 21919097 nnns volume:11 year:2022 number:1 pages:3053-3062 https://doi.org/10.1515/ntrev-2022-0492 kostenfrei https://doaj.org/article/757fc7645540474682d582bc17b12db8 kostenfrei https://doi.org/10.1515/ntrev-2022-0492 kostenfrei https://doaj.org/toc/2191-9097 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 1 3053-3062 |
allfieldsGer |
10.1515/ntrev-2022-0492 doi (DE-627)DOAJ08379459X (DE-599)DOAJ757fc7645540474682d582bc17b12db8 DE-627 ger DE-627 rakwb eng TP1-1185 QD450-801 Baig Umair verfasserin aut Pulsed laser-assisted synthesis of nano nickel(ii) oxide-anchored graphitic carbon nitride: Characterizations and their potential antibacterial/anti-biofilm applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nickel(ii) oxide-graphitic carbon nitride (n-NiOg-C3N4) nanocomposite, in which nickel oxide nanoparticles (n-NiO) are anchored on the polymeric surface of graphitic carbon nitride (g-C3N4), was synthesized using the pulsed laser post processing (PLPP) in liquid medium. In the PLPP method, the precursors (NiO and g-C3N4) were simultaneously subjected to pulsed laser-induced fragmentation, and pulsed laser-induced defect engineering (anchoring of NiO on g-C3N4). To optimize the functionality of the material, n-NiO@g-C3N4 with four different mass contents of n-NiO was synthesized. The synthesized n-NiO@g-C3N4 nanocomposite and its composite partners (n-NiO and g-C3N4) were structurally, morphologically, elementally characterized by X-ray diffraction, filed emission scanning electron microscope, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analyses. As a first anti-microbial application, n-NiO@g-C3N4 was used to evaluate the minimal inhibitory concentration and minimal bactericidal concentration against the gram-positive Staphylococcus aureus and gram-negative Pseudomonas aeruginosa bacteria. As a second anti-microbial application, the efficacy of n-NiO@g-C3N4 nanocomposite to retard S. aureus and P. aeruginosa biofilms’ growth was evaluated. It was found that for both applications, n-NiO@g-C3N4 nanocomposite exhibited an excellent anti-bacterial activity compared to pure g-C3N4. nanostructured material nanosecond pulsed laser characterizations antibacterial activity anti-biofilm activity. Technology T Chemical technology Physical and theoretical chemistry AbuMousa Rasha A. verfasserin aut Ansari Mohammad Azam verfasserin aut Gondal Muhammad A. verfasserin aut Dastageer Mohamed A. verfasserin aut In Nanotechnology Reviews De Gruyter, 2020 11(2022), 1, Seite 3053-3062 (DE-627)684126621 (DE-600)2646548-6 21919097 nnns volume:11 year:2022 number:1 pages:3053-3062 https://doi.org/10.1515/ntrev-2022-0492 kostenfrei https://doaj.org/article/757fc7645540474682d582bc17b12db8 kostenfrei https://doi.org/10.1515/ntrev-2022-0492 kostenfrei https://doaj.org/toc/2191-9097 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 1 3053-3062 |
allfieldsSound |
10.1515/ntrev-2022-0492 doi (DE-627)DOAJ08379459X (DE-599)DOAJ757fc7645540474682d582bc17b12db8 DE-627 ger DE-627 rakwb eng TP1-1185 QD450-801 Baig Umair verfasserin aut Pulsed laser-assisted synthesis of nano nickel(ii) oxide-anchored graphitic carbon nitride: Characterizations and their potential antibacterial/anti-biofilm applications 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Nickel(ii) oxide-graphitic carbon nitride (n-NiOg-C3N4) nanocomposite, in which nickel oxide nanoparticles (n-NiO) are anchored on the polymeric surface of graphitic carbon nitride (g-C3N4), was synthesized using the pulsed laser post processing (PLPP) in liquid medium. In the PLPP method, the precursors (NiO and g-C3N4) were simultaneously subjected to pulsed laser-induced fragmentation, and pulsed laser-induced defect engineering (anchoring of NiO on g-C3N4). To optimize the functionality of the material, n-NiO@g-C3N4 with four different mass contents of n-NiO was synthesized. The synthesized n-NiO@g-C3N4 nanocomposite and its composite partners (n-NiO and g-C3N4) were structurally, morphologically, elementally characterized by X-ray diffraction, filed emission scanning electron microscope, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analyses. As a first anti-microbial application, n-NiO@g-C3N4 was used to evaluate the minimal inhibitory concentration and minimal bactericidal concentration against the gram-positive Staphylococcus aureus and gram-negative Pseudomonas aeruginosa bacteria. As a second anti-microbial application, the efficacy of n-NiO@g-C3N4 nanocomposite to retard S. aureus and P. aeruginosa biofilms’ growth was evaluated. It was found that for both applications, n-NiO@g-C3N4 nanocomposite exhibited an excellent anti-bacterial activity compared to pure g-C3N4. nanostructured material nanosecond pulsed laser characterizations antibacterial activity anti-biofilm activity. Technology T Chemical technology Physical and theoretical chemistry AbuMousa Rasha A. verfasserin aut Ansari Mohammad Azam verfasserin aut Gondal Muhammad A. verfasserin aut Dastageer Mohamed A. verfasserin aut In Nanotechnology Reviews De Gruyter, 2020 11(2022), 1, Seite 3053-3062 (DE-627)684126621 (DE-600)2646548-6 21919097 nnns volume:11 year:2022 number:1 pages:3053-3062 https://doi.org/10.1515/ntrev-2022-0492 kostenfrei https://doaj.org/article/757fc7645540474682d582bc17b12db8 kostenfrei https://doi.org/10.1515/ntrev-2022-0492 kostenfrei https://doaj.org/toc/2191-9097 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2022 1 3053-3062 |
language |
English |
source |
In Nanotechnology Reviews 11(2022), 1, Seite 3053-3062 volume:11 year:2022 number:1 pages:3053-3062 |
sourceStr |
In Nanotechnology Reviews 11(2022), 1, Seite 3053-3062 volume:11 year:2022 number:1 pages:3053-3062 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
nanostructured material nanosecond pulsed laser characterizations antibacterial activity anti-biofilm activity. Technology T Chemical technology Physical and theoretical chemistry |
isfreeaccess_bool |
true |
container_title |
Nanotechnology Reviews |
authorswithroles_txt_mv |
Baig Umair @@aut@@ AbuMousa Rasha A. @@aut@@ Ansari Mohammad Azam @@aut@@ Gondal Muhammad A. @@aut@@ Dastageer Mohamed A. @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
684126621 |
id |
DOAJ08379459X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ08379459X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503072732.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/ntrev-2022-0492</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ08379459X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ757fc7645540474682d582bc17b12db8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD450-801</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Baig Umair</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pulsed laser-assisted synthesis of nano nickel(ii) oxide-anchored graphitic carbon nitride: Characterizations and their potential antibacterial/anti-biofilm applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Nickel(ii) oxide-graphitic carbon nitride (n-NiOg-C3N4) nanocomposite, in which nickel oxide nanoparticles (n-NiO) are anchored on the polymeric surface of graphitic carbon nitride (g-C3N4), was synthesized using the pulsed laser post processing (PLPP) in liquid medium. In the PLPP method, the precursors (NiO and g-C3N4) were simultaneously subjected to pulsed laser-induced fragmentation, and pulsed laser-induced defect engineering (anchoring of NiO on g-C3N4). To optimize the functionality of the material, n-NiO@g-C3N4 with four different mass contents of n-NiO was synthesized. The synthesized n-NiO@g-C3N4 nanocomposite and its composite partners (n-NiO and g-C3N4) were structurally, morphologically, elementally characterized by X-ray diffraction, filed emission scanning electron microscope, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analyses. As a first anti-microbial application, n-NiO@g-C3N4 was used to evaluate the minimal inhibitory concentration and minimal bactericidal concentration against the gram-positive Staphylococcus aureus and gram-negative Pseudomonas aeruginosa bacteria. As a second anti-microbial application, the efficacy of n-NiO@g-C3N4 nanocomposite to retard S. aureus and P. aeruginosa biofilms’ growth was evaluated. It was found that for both applications, n-NiO@g-C3N4 nanocomposite exhibited an excellent anti-bacterial activity compared to pure g-C3N4.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanostructured material</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanosecond pulsed laser</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">characterizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">antibacterial activity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">anti-biofilm activity.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physical and theoretical chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">AbuMousa Rasha A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ansari Mohammad Azam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gondal Muhammad A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dastageer Mohamed A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nanotechnology Reviews</subfield><subfield code="d">De Gruyter, 2020</subfield><subfield code="g">11(2022), 1, Seite 3053-3062</subfield><subfield code="w">(DE-627)684126621</subfield><subfield code="w">(DE-600)2646548-6</subfield><subfield code="x">21919097</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:3053-3062</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/ntrev-2022-0492</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/757fc7645540474682d582bc17b12db8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/ntrev-2022-0492</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2191-9097</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">3053-3062</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Baig Umair |
spellingShingle |
Baig Umair misc TP1-1185 misc QD450-801 misc nanostructured material misc nanosecond pulsed laser misc characterizations misc antibacterial activity misc anti-biofilm activity. misc Technology misc T misc Chemical technology misc Physical and theoretical chemistry Pulsed laser-assisted synthesis of nano nickel(ii) oxide-anchored graphitic carbon nitride: Characterizations and their potential antibacterial/anti-biofilm applications |
authorStr |
Baig Umair |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)684126621 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TP1-1185 |
illustrated |
Not Illustrated |
issn |
21919097 |
topic_title |
TP1-1185 QD450-801 Pulsed laser-assisted synthesis of nano nickel(ii) oxide-anchored graphitic carbon nitride: Characterizations and their potential antibacterial/anti-biofilm applications nanostructured material nanosecond pulsed laser characterizations antibacterial activity anti-biofilm activity |
topic |
misc TP1-1185 misc QD450-801 misc nanostructured material misc nanosecond pulsed laser misc characterizations misc antibacterial activity misc anti-biofilm activity. misc Technology misc T misc Chemical technology misc Physical and theoretical chemistry |
topic_unstemmed |
misc TP1-1185 misc QD450-801 misc nanostructured material misc nanosecond pulsed laser misc characterizations misc antibacterial activity misc anti-biofilm activity. misc Technology misc T misc Chemical technology misc Physical and theoretical chemistry |
topic_browse |
misc TP1-1185 misc QD450-801 misc nanostructured material misc nanosecond pulsed laser misc characterizations misc antibacterial activity misc anti-biofilm activity. misc Technology misc T misc Chemical technology misc Physical and theoretical chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nanotechnology Reviews |
hierarchy_parent_id |
684126621 |
hierarchy_top_title |
Nanotechnology Reviews |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)684126621 (DE-600)2646548-6 |
title |
Pulsed laser-assisted synthesis of nano nickel(ii) oxide-anchored graphitic carbon nitride: Characterizations and their potential antibacterial/anti-biofilm applications |
ctrlnum |
(DE-627)DOAJ08379459X (DE-599)DOAJ757fc7645540474682d582bc17b12db8 |
title_full |
Pulsed laser-assisted synthesis of nano nickel(ii) oxide-anchored graphitic carbon nitride: Characterizations and their potential antibacterial/anti-biofilm applications |
author_sort |
Baig Umair |
journal |
Nanotechnology Reviews |
journalStr |
Nanotechnology Reviews |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
3053 |
author_browse |
Baig Umair AbuMousa Rasha A. Ansari Mohammad Azam Gondal Muhammad A. Dastageer Mohamed A. |
container_volume |
11 |
class |
TP1-1185 QD450-801 |
format_se |
Elektronische Aufsätze |
author-letter |
Baig Umair |
doi_str_mv |
10.1515/ntrev-2022-0492 |
author2-role |
verfasserin |
title_sort |
pulsed laser-assisted synthesis of nano nickel(ii) oxide-anchored graphitic carbon nitride: characterizations and their potential antibacterial/anti-biofilm applications |
callnumber |
TP1-1185 |
title_auth |
Pulsed laser-assisted synthesis of nano nickel(ii) oxide-anchored graphitic carbon nitride: Characterizations and their potential antibacterial/anti-biofilm applications |
abstract |
Nickel(ii) oxide-graphitic carbon nitride (n-NiOg-C3N4) nanocomposite, in which nickel oxide nanoparticles (n-NiO) are anchored on the polymeric surface of graphitic carbon nitride (g-C3N4), was synthesized using the pulsed laser post processing (PLPP) in liquid medium. In the PLPP method, the precursors (NiO and g-C3N4) were simultaneously subjected to pulsed laser-induced fragmentation, and pulsed laser-induced defect engineering (anchoring of NiO on g-C3N4). To optimize the functionality of the material, n-NiO@g-C3N4 with four different mass contents of n-NiO was synthesized. The synthesized n-NiO@g-C3N4 nanocomposite and its composite partners (n-NiO and g-C3N4) were structurally, morphologically, elementally characterized by X-ray diffraction, filed emission scanning electron microscope, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analyses. As a first anti-microbial application, n-NiO@g-C3N4 was used to evaluate the minimal inhibitory concentration and minimal bactericidal concentration against the gram-positive Staphylococcus aureus and gram-negative Pseudomonas aeruginosa bacteria. As a second anti-microbial application, the efficacy of n-NiO@g-C3N4 nanocomposite to retard S. aureus and P. aeruginosa biofilms’ growth was evaluated. It was found that for both applications, n-NiO@g-C3N4 nanocomposite exhibited an excellent anti-bacterial activity compared to pure g-C3N4. |
abstractGer |
Nickel(ii) oxide-graphitic carbon nitride (n-NiOg-C3N4) nanocomposite, in which nickel oxide nanoparticles (n-NiO) are anchored on the polymeric surface of graphitic carbon nitride (g-C3N4), was synthesized using the pulsed laser post processing (PLPP) in liquid medium. In the PLPP method, the precursors (NiO and g-C3N4) were simultaneously subjected to pulsed laser-induced fragmentation, and pulsed laser-induced defect engineering (anchoring of NiO on g-C3N4). To optimize the functionality of the material, n-NiO@g-C3N4 with four different mass contents of n-NiO was synthesized. The synthesized n-NiO@g-C3N4 nanocomposite and its composite partners (n-NiO and g-C3N4) were structurally, morphologically, elementally characterized by X-ray diffraction, filed emission scanning electron microscope, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analyses. As a first anti-microbial application, n-NiO@g-C3N4 was used to evaluate the minimal inhibitory concentration and minimal bactericidal concentration against the gram-positive Staphylococcus aureus and gram-negative Pseudomonas aeruginosa bacteria. As a second anti-microbial application, the efficacy of n-NiO@g-C3N4 nanocomposite to retard S. aureus and P. aeruginosa biofilms’ growth was evaluated. It was found that for both applications, n-NiO@g-C3N4 nanocomposite exhibited an excellent anti-bacterial activity compared to pure g-C3N4. |
abstract_unstemmed |
Nickel(ii) oxide-graphitic carbon nitride (n-NiOg-C3N4) nanocomposite, in which nickel oxide nanoparticles (n-NiO) are anchored on the polymeric surface of graphitic carbon nitride (g-C3N4), was synthesized using the pulsed laser post processing (PLPP) in liquid medium. In the PLPP method, the precursors (NiO and g-C3N4) were simultaneously subjected to pulsed laser-induced fragmentation, and pulsed laser-induced defect engineering (anchoring of NiO on g-C3N4). To optimize the functionality of the material, n-NiO@g-C3N4 with four different mass contents of n-NiO was synthesized. The synthesized n-NiO@g-C3N4 nanocomposite and its composite partners (n-NiO and g-C3N4) were structurally, morphologically, elementally characterized by X-ray diffraction, filed emission scanning electron microscope, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analyses. As a first anti-microbial application, n-NiO@g-C3N4 was used to evaluate the minimal inhibitory concentration and minimal bactericidal concentration against the gram-positive Staphylococcus aureus and gram-negative Pseudomonas aeruginosa bacteria. As a second anti-microbial application, the efficacy of n-NiO@g-C3N4 nanocomposite to retard S. aureus and P. aeruginosa biofilms’ growth was evaluated. It was found that for both applications, n-NiO@g-C3N4 nanocomposite exhibited an excellent anti-bacterial activity compared to pure g-C3N4. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Pulsed laser-assisted synthesis of nano nickel(ii) oxide-anchored graphitic carbon nitride: Characterizations and their potential antibacterial/anti-biofilm applications |
url |
https://doi.org/10.1515/ntrev-2022-0492 https://doaj.org/article/757fc7645540474682d582bc17b12db8 https://doaj.org/toc/2191-9097 |
remote_bool |
true |
author2 |
AbuMousa Rasha A. Ansari Mohammad Azam Gondal Muhammad A. Dastageer Mohamed A. |
author2Str |
AbuMousa Rasha A. Ansari Mohammad Azam Gondal Muhammad A. Dastageer Mohamed A. |
ppnlink |
684126621 |
callnumber-subject |
TP - Chemical Technology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1515/ntrev-2022-0492 |
callnumber-a |
TP1-1185 |
up_date |
2024-07-03T19:28:57.570Z |
_version_ |
1803587354700546048 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ08379459X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230503072732.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/ntrev-2022-0492</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ08379459X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ757fc7645540474682d582bc17b12db8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1-1185</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD450-801</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Baig Umair</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pulsed laser-assisted synthesis of nano nickel(ii) oxide-anchored graphitic carbon nitride: Characterizations and their potential antibacterial/anti-biofilm applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Nickel(ii) oxide-graphitic carbon nitride (n-NiOg-C3N4) nanocomposite, in which nickel oxide nanoparticles (n-NiO) are anchored on the polymeric surface of graphitic carbon nitride (g-C3N4), was synthesized using the pulsed laser post processing (PLPP) in liquid medium. In the PLPP method, the precursors (NiO and g-C3N4) were simultaneously subjected to pulsed laser-induced fragmentation, and pulsed laser-induced defect engineering (anchoring of NiO on g-C3N4). To optimize the functionality of the material, n-NiO@g-C3N4 with four different mass contents of n-NiO was synthesized. The synthesized n-NiO@g-C3N4 nanocomposite and its composite partners (n-NiO and g-C3N4) were structurally, morphologically, elementally characterized by X-ray diffraction, filed emission scanning electron microscope, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analyses. As a first anti-microbial application, n-NiO@g-C3N4 was used to evaluate the minimal inhibitory concentration and minimal bactericidal concentration against the gram-positive Staphylococcus aureus and gram-negative Pseudomonas aeruginosa bacteria. As a second anti-microbial application, the efficacy of n-NiO@g-C3N4 nanocomposite to retard S. aureus and P. aeruginosa biofilms’ growth was evaluated. It was found that for both applications, n-NiO@g-C3N4 nanocomposite exhibited an excellent anti-bacterial activity compared to pure g-C3N4.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanostructured material</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanosecond pulsed laser</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">characterizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">antibacterial activity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">anti-biofilm activity.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemical technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physical and theoretical chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">AbuMousa Rasha A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ansari Mohammad Azam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gondal Muhammad A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dastageer Mohamed A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Nanotechnology Reviews</subfield><subfield code="d">De Gruyter, 2020</subfield><subfield code="g">11(2022), 1, Seite 3053-3062</subfield><subfield code="w">(DE-627)684126621</subfield><subfield code="w">(DE-600)2646548-6</subfield><subfield code="x">21919097</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:3053-3062</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/ntrev-2022-0492</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/757fc7645540474682d582bc17b12db8</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/ntrev-2022-0492</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2191-9097</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">3053-3062</subfield></datafield></record></collection>
|
score |
7.4011803 |