Body composition reference values in Singaporean adults using dual-energy X-ray absorptiometry-The Yishun study.
<h4<Objectives</h4<This study establishes age- and sex-specific reference values for fat mass index (FMI), lean mass index (LMI), appendicular LMI (aLMI), and body fat distribution indices including Android/Gynoid % fat ratio and Trunk/Limb % fat ratio in multi-ethnic Singaporean adults....
Ausführliche Beschreibung
Autor*in: |
BaoLin Pauline Soh [verfasserIn] Shuen Yee Lee [verfasserIn] Wai Yin Wong [verfasserIn] Benedict Wei Jun Pang [verfasserIn] Lay Khoon Lau [verfasserIn] Khalid Abdul Jabbar [verfasserIn] Wei Ting Seah [verfasserIn] Kexun Kenneth Chen [verfasserIn] Sivasubramanian Srinivasan [verfasserIn] Tze Pin Ng [verfasserIn] Shiou-Liang Wee [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Übergeordnetes Werk: |
In: PLoS ONE - Public Library of Science (PLoS), 2007, 17(2022), 10, p e0276434 |
---|---|
Übergeordnetes Werk: |
volume:17 ; year:2022 ; number:10, p e0276434 |
Links: |
---|
DOI / URN: |
10.1371/journal.pone.0276434 |
---|
Katalog-ID: |
DOAJ083915311 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ083915311 | ||
003 | DE-627 | ||
005 | 20230311023208.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1371/journal.pone.0276434 |2 doi | |
035 | |a (DE-627)DOAJ083915311 | ||
035 | |a (DE-599)DOAJ026012ca787a4b1c848870d71f17c916 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a BaoLin Pauline Soh |e verfasserin |4 aut | |
245 | 1 | 0 | |a Body composition reference values in Singaporean adults using dual-energy X-ray absorptiometry-The Yishun study. |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a <h4<Objectives</h4<This study establishes age- and sex-specific reference values for fat mass index (FMI), lean mass index (LMI), appendicular LMI (aLMI), and body fat distribution indices including Android/Gynoid % fat ratio and Trunk/Limb % fat ratio in multi-ethnic Singaporean adults.<h4<Methods</h4<A population-based cross-sectional study using dual-energy X-ray absorptiometry (Hologic Discovery Wi) was carried out to measure whole body and regional fat and lean mass in community-dwelling adults. A total of 537 adults (57.5% women), aged from 21 to 90 years, were recruited from the large north-eastern residential town of Yishun. Age- and sex-specific percentile reference values were generated for FMI, LMI, aLMI, Android/Gynoid % fat ratio and Trunk/Limb % fat ratio using the Lambda-Mu-Sigma method. The relationship between the parameters and age were assessed through the Pearson's correlation coefficient.<h4<Results</h4<All parameters demonstrated significant correlation with age (p < 0.05) for both men and women, except for LMI in women, with the strength of r ranging from 0.12 (weak correlation) to 0.54 (strong correlation). LMI (r = -0.45) and appendicular LMI (r = -0.54) were negatively associated with age in men while none (r = -0.06) to weak correlation (r = -0.14) were shown in women for the same parameters respectively. The Android/Gynoid % fat ratio and Trunk/Limb % fat ratio were positively related to age for both men (r = 0.37 & 0.43, p < 0.001) and women (r = 0.52 & 0.48, p < 0.001).<h4<Conclusion</h4<We have established DXA-based body composition reference data for the Singapore adult population. These reference data will be particularly useful in geriatric, obesity and oncology clinics, enabling the prescription of appropriate therapy to individuals at risk of morbidity from unfavorable body composition phenotypes. It also adds on to the limited reference database on Southeast Asian body composition. | ||
653 | 0 | |a Medicine | |
653 | 0 | |a R | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Shuen Yee Lee |e verfasserin |4 aut | |
700 | 0 | |a Wai Yin Wong |e verfasserin |4 aut | |
700 | 0 | |a Benedict Wei Jun Pang |e verfasserin |4 aut | |
700 | 0 | |a Lay Khoon Lau |e verfasserin |4 aut | |
700 | 0 | |a Khalid Abdul Jabbar |e verfasserin |4 aut | |
700 | 0 | |a Wei Ting Seah |e verfasserin |4 aut | |
700 | 0 | |a Kexun Kenneth Chen |e verfasserin |4 aut | |
700 | 0 | |a Sivasubramanian Srinivasan |e verfasserin |4 aut | |
700 | 0 | |a Tze Pin Ng |e verfasserin |4 aut | |
700 | 0 | |a Shiou-Liang Wee |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t PLoS ONE |d Public Library of Science (PLoS), 2007 |g 17(2022), 10, p e0276434 |w (DE-627)523574592 |w (DE-600)2267670-3 |x 19326203 |7 nnns |
773 | 1 | 8 | |g volume:17 |g year:2022 |g number:10, p e0276434 |
856 | 4 | 0 | |u https://doi.org/10.1371/journal.pone.0276434 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/026012ca787a4b1c848870d71f17c916 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1371/journal.pone.0276434 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1932-6203 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_34 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_235 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 17 |j 2022 |e 10, p e0276434 |
author_variant |
b p s bps s y l syl w y w wyw b w j p bwjp l k l lkl k a j kaj w t s wts k k c kkc s s ss t p n tpn s l w slw |
---|---|
matchkey_str |
article:19326203:2022----::oyopstorfrneausnigpraautuigulnryrybo |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1371/journal.pone.0276434 doi (DE-627)DOAJ083915311 (DE-599)DOAJ026012ca787a4b1c848870d71f17c916 DE-627 ger DE-627 rakwb eng BaoLin Pauline Soh verfasserin aut Body composition reference values in Singaporean adults using dual-energy X-ray absorptiometry-The Yishun study. 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <h4<Objectives</h4<This study establishes age- and sex-specific reference values for fat mass index (FMI), lean mass index (LMI), appendicular LMI (aLMI), and body fat distribution indices including Android/Gynoid % fat ratio and Trunk/Limb % fat ratio in multi-ethnic Singaporean adults.<h4<Methods</h4<A population-based cross-sectional study using dual-energy X-ray absorptiometry (Hologic Discovery Wi) was carried out to measure whole body and regional fat and lean mass in community-dwelling adults. A total of 537 adults (57.5% women), aged from 21 to 90 years, were recruited from the large north-eastern residential town of Yishun. Age- and sex-specific percentile reference values were generated for FMI, LMI, aLMI, Android/Gynoid % fat ratio and Trunk/Limb % fat ratio using the Lambda-Mu-Sigma method. The relationship between the parameters and age were assessed through the Pearson's correlation coefficient.<h4<Results</h4<All parameters demonstrated significant correlation with age (p < 0.05) for both men and women, except for LMI in women, with the strength of r ranging from 0.12 (weak correlation) to 0.54 (strong correlation). LMI (r = -0.45) and appendicular LMI (r = -0.54) were negatively associated with age in men while none (r = -0.06) to weak correlation (r = -0.14) were shown in women for the same parameters respectively. The Android/Gynoid % fat ratio and Trunk/Limb % fat ratio were positively related to age for both men (r = 0.37 & 0.43, p < 0.001) and women (r = 0.52 & 0.48, p < 0.001).<h4<Conclusion</h4<We have established DXA-based body composition reference data for the Singapore adult population. These reference data will be particularly useful in geriatric, obesity and oncology clinics, enabling the prescription of appropriate therapy to individuals at risk of morbidity from unfavorable body composition phenotypes. It also adds on to the limited reference database on Southeast Asian body composition. Medicine R Science Q Shuen Yee Lee verfasserin aut Wai Yin Wong verfasserin aut Benedict Wei Jun Pang verfasserin aut Lay Khoon Lau verfasserin aut Khalid Abdul Jabbar verfasserin aut Wei Ting Seah verfasserin aut Kexun Kenneth Chen verfasserin aut Sivasubramanian Srinivasan verfasserin aut Tze Pin Ng verfasserin aut Shiou-Liang Wee verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 17(2022), 10, p e0276434 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:17 year:2022 number:10, p e0276434 https://doi.org/10.1371/journal.pone.0276434 kostenfrei https://doaj.org/article/026012ca787a4b1c848870d71f17c916 kostenfrei https://doi.org/10.1371/journal.pone.0276434 kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2022 10, p e0276434 |
spelling |
10.1371/journal.pone.0276434 doi (DE-627)DOAJ083915311 (DE-599)DOAJ026012ca787a4b1c848870d71f17c916 DE-627 ger DE-627 rakwb eng BaoLin Pauline Soh verfasserin aut Body composition reference values in Singaporean adults using dual-energy X-ray absorptiometry-The Yishun study. 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <h4<Objectives</h4<This study establishes age- and sex-specific reference values for fat mass index (FMI), lean mass index (LMI), appendicular LMI (aLMI), and body fat distribution indices including Android/Gynoid % fat ratio and Trunk/Limb % fat ratio in multi-ethnic Singaporean adults.<h4<Methods</h4<A population-based cross-sectional study using dual-energy X-ray absorptiometry (Hologic Discovery Wi) was carried out to measure whole body and regional fat and lean mass in community-dwelling adults. A total of 537 adults (57.5% women), aged from 21 to 90 years, were recruited from the large north-eastern residential town of Yishun. Age- and sex-specific percentile reference values were generated for FMI, LMI, aLMI, Android/Gynoid % fat ratio and Trunk/Limb % fat ratio using the Lambda-Mu-Sigma method. The relationship between the parameters and age were assessed through the Pearson's correlation coefficient.<h4<Results</h4<All parameters demonstrated significant correlation with age (p < 0.05) for both men and women, except for LMI in women, with the strength of r ranging from 0.12 (weak correlation) to 0.54 (strong correlation). LMI (r = -0.45) and appendicular LMI (r = -0.54) were negatively associated with age in men while none (r = -0.06) to weak correlation (r = -0.14) were shown in women for the same parameters respectively. The Android/Gynoid % fat ratio and Trunk/Limb % fat ratio were positively related to age for both men (r = 0.37 & 0.43, p < 0.001) and women (r = 0.52 & 0.48, p < 0.001).<h4<Conclusion</h4<We have established DXA-based body composition reference data for the Singapore adult population. These reference data will be particularly useful in geriatric, obesity and oncology clinics, enabling the prescription of appropriate therapy to individuals at risk of morbidity from unfavorable body composition phenotypes. It also adds on to the limited reference database on Southeast Asian body composition. Medicine R Science Q Shuen Yee Lee verfasserin aut Wai Yin Wong verfasserin aut Benedict Wei Jun Pang verfasserin aut Lay Khoon Lau verfasserin aut Khalid Abdul Jabbar verfasserin aut Wei Ting Seah verfasserin aut Kexun Kenneth Chen verfasserin aut Sivasubramanian Srinivasan verfasserin aut Tze Pin Ng verfasserin aut Shiou-Liang Wee verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 17(2022), 10, p e0276434 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:17 year:2022 number:10, p e0276434 https://doi.org/10.1371/journal.pone.0276434 kostenfrei https://doaj.org/article/026012ca787a4b1c848870d71f17c916 kostenfrei https://doi.org/10.1371/journal.pone.0276434 kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2022 10, p e0276434 |
allfields_unstemmed |
10.1371/journal.pone.0276434 doi (DE-627)DOAJ083915311 (DE-599)DOAJ026012ca787a4b1c848870d71f17c916 DE-627 ger DE-627 rakwb eng BaoLin Pauline Soh verfasserin aut Body composition reference values in Singaporean adults using dual-energy X-ray absorptiometry-The Yishun study. 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <h4<Objectives</h4<This study establishes age- and sex-specific reference values for fat mass index (FMI), lean mass index (LMI), appendicular LMI (aLMI), and body fat distribution indices including Android/Gynoid % fat ratio and Trunk/Limb % fat ratio in multi-ethnic Singaporean adults.<h4<Methods</h4<A population-based cross-sectional study using dual-energy X-ray absorptiometry (Hologic Discovery Wi) was carried out to measure whole body and regional fat and lean mass in community-dwelling adults. A total of 537 adults (57.5% women), aged from 21 to 90 years, were recruited from the large north-eastern residential town of Yishun. Age- and sex-specific percentile reference values were generated for FMI, LMI, aLMI, Android/Gynoid % fat ratio and Trunk/Limb % fat ratio using the Lambda-Mu-Sigma method. The relationship between the parameters and age were assessed through the Pearson's correlation coefficient.<h4<Results</h4<All parameters demonstrated significant correlation with age (p < 0.05) for both men and women, except for LMI in women, with the strength of r ranging from 0.12 (weak correlation) to 0.54 (strong correlation). LMI (r = -0.45) and appendicular LMI (r = -0.54) were negatively associated with age in men while none (r = -0.06) to weak correlation (r = -0.14) were shown in women for the same parameters respectively. The Android/Gynoid % fat ratio and Trunk/Limb % fat ratio were positively related to age for both men (r = 0.37 & 0.43, p < 0.001) and women (r = 0.52 & 0.48, p < 0.001).<h4<Conclusion</h4<We have established DXA-based body composition reference data for the Singapore adult population. These reference data will be particularly useful in geriatric, obesity and oncology clinics, enabling the prescription of appropriate therapy to individuals at risk of morbidity from unfavorable body composition phenotypes. It also adds on to the limited reference database on Southeast Asian body composition. Medicine R Science Q Shuen Yee Lee verfasserin aut Wai Yin Wong verfasserin aut Benedict Wei Jun Pang verfasserin aut Lay Khoon Lau verfasserin aut Khalid Abdul Jabbar verfasserin aut Wei Ting Seah verfasserin aut Kexun Kenneth Chen verfasserin aut Sivasubramanian Srinivasan verfasserin aut Tze Pin Ng verfasserin aut Shiou-Liang Wee verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 17(2022), 10, p e0276434 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:17 year:2022 number:10, p e0276434 https://doi.org/10.1371/journal.pone.0276434 kostenfrei https://doaj.org/article/026012ca787a4b1c848870d71f17c916 kostenfrei https://doi.org/10.1371/journal.pone.0276434 kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2022 10, p e0276434 |
allfieldsGer |
10.1371/journal.pone.0276434 doi (DE-627)DOAJ083915311 (DE-599)DOAJ026012ca787a4b1c848870d71f17c916 DE-627 ger DE-627 rakwb eng BaoLin Pauline Soh verfasserin aut Body composition reference values in Singaporean adults using dual-energy X-ray absorptiometry-The Yishun study. 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <h4<Objectives</h4<This study establishes age- and sex-specific reference values for fat mass index (FMI), lean mass index (LMI), appendicular LMI (aLMI), and body fat distribution indices including Android/Gynoid % fat ratio and Trunk/Limb % fat ratio in multi-ethnic Singaporean adults.<h4<Methods</h4<A population-based cross-sectional study using dual-energy X-ray absorptiometry (Hologic Discovery Wi) was carried out to measure whole body and regional fat and lean mass in community-dwelling adults. A total of 537 adults (57.5% women), aged from 21 to 90 years, were recruited from the large north-eastern residential town of Yishun. Age- and sex-specific percentile reference values were generated for FMI, LMI, aLMI, Android/Gynoid % fat ratio and Trunk/Limb % fat ratio using the Lambda-Mu-Sigma method. The relationship between the parameters and age were assessed through the Pearson's correlation coefficient.<h4<Results</h4<All parameters demonstrated significant correlation with age (p < 0.05) for both men and women, except for LMI in women, with the strength of r ranging from 0.12 (weak correlation) to 0.54 (strong correlation). LMI (r = -0.45) and appendicular LMI (r = -0.54) were negatively associated with age in men while none (r = -0.06) to weak correlation (r = -0.14) were shown in women for the same parameters respectively. The Android/Gynoid % fat ratio and Trunk/Limb % fat ratio were positively related to age for both men (r = 0.37 & 0.43, p < 0.001) and women (r = 0.52 & 0.48, p < 0.001).<h4<Conclusion</h4<We have established DXA-based body composition reference data for the Singapore adult population. These reference data will be particularly useful in geriatric, obesity and oncology clinics, enabling the prescription of appropriate therapy to individuals at risk of morbidity from unfavorable body composition phenotypes. It also adds on to the limited reference database on Southeast Asian body composition. Medicine R Science Q Shuen Yee Lee verfasserin aut Wai Yin Wong verfasserin aut Benedict Wei Jun Pang verfasserin aut Lay Khoon Lau verfasserin aut Khalid Abdul Jabbar verfasserin aut Wei Ting Seah verfasserin aut Kexun Kenneth Chen verfasserin aut Sivasubramanian Srinivasan verfasserin aut Tze Pin Ng verfasserin aut Shiou-Liang Wee verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 17(2022), 10, p e0276434 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:17 year:2022 number:10, p e0276434 https://doi.org/10.1371/journal.pone.0276434 kostenfrei https://doaj.org/article/026012ca787a4b1c848870d71f17c916 kostenfrei https://doi.org/10.1371/journal.pone.0276434 kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2022 10, p e0276434 |
allfieldsSound |
10.1371/journal.pone.0276434 doi (DE-627)DOAJ083915311 (DE-599)DOAJ026012ca787a4b1c848870d71f17c916 DE-627 ger DE-627 rakwb eng BaoLin Pauline Soh verfasserin aut Body composition reference values in Singaporean adults using dual-energy X-ray absorptiometry-The Yishun study. 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier <h4<Objectives</h4<This study establishes age- and sex-specific reference values for fat mass index (FMI), lean mass index (LMI), appendicular LMI (aLMI), and body fat distribution indices including Android/Gynoid % fat ratio and Trunk/Limb % fat ratio in multi-ethnic Singaporean adults.<h4<Methods</h4<A population-based cross-sectional study using dual-energy X-ray absorptiometry (Hologic Discovery Wi) was carried out to measure whole body and regional fat and lean mass in community-dwelling adults. A total of 537 adults (57.5% women), aged from 21 to 90 years, were recruited from the large north-eastern residential town of Yishun. Age- and sex-specific percentile reference values were generated for FMI, LMI, aLMI, Android/Gynoid % fat ratio and Trunk/Limb % fat ratio using the Lambda-Mu-Sigma method. The relationship between the parameters and age were assessed through the Pearson's correlation coefficient.<h4<Results</h4<All parameters demonstrated significant correlation with age (p < 0.05) for both men and women, except for LMI in women, with the strength of r ranging from 0.12 (weak correlation) to 0.54 (strong correlation). LMI (r = -0.45) and appendicular LMI (r = -0.54) were negatively associated with age in men while none (r = -0.06) to weak correlation (r = -0.14) were shown in women for the same parameters respectively. The Android/Gynoid % fat ratio and Trunk/Limb % fat ratio were positively related to age for both men (r = 0.37 & 0.43, p < 0.001) and women (r = 0.52 & 0.48, p < 0.001).<h4<Conclusion</h4<We have established DXA-based body composition reference data for the Singapore adult population. These reference data will be particularly useful in geriatric, obesity and oncology clinics, enabling the prescription of appropriate therapy to individuals at risk of morbidity from unfavorable body composition phenotypes. It also adds on to the limited reference database on Southeast Asian body composition. Medicine R Science Q Shuen Yee Lee verfasserin aut Wai Yin Wong verfasserin aut Benedict Wei Jun Pang verfasserin aut Lay Khoon Lau verfasserin aut Khalid Abdul Jabbar verfasserin aut Wei Ting Seah verfasserin aut Kexun Kenneth Chen verfasserin aut Sivasubramanian Srinivasan verfasserin aut Tze Pin Ng verfasserin aut Shiou-Liang Wee verfasserin aut In PLoS ONE Public Library of Science (PLoS), 2007 17(2022), 10, p e0276434 (DE-627)523574592 (DE-600)2267670-3 19326203 nnns volume:17 year:2022 number:10, p e0276434 https://doi.org/10.1371/journal.pone.0276434 kostenfrei https://doaj.org/article/026012ca787a4b1c848870d71f17c916 kostenfrei https://doi.org/10.1371/journal.pone.0276434 kostenfrei https://doaj.org/toc/1932-6203 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2022 10, p e0276434 |
language |
English |
source |
In PLoS ONE 17(2022), 10, p e0276434 volume:17 year:2022 number:10, p e0276434 |
sourceStr |
In PLoS ONE 17(2022), 10, p e0276434 volume:17 year:2022 number:10, p e0276434 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Medicine R Science Q |
isfreeaccess_bool |
true |
container_title |
PLoS ONE |
authorswithroles_txt_mv |
BaoLin Pauline Soh @@aut@@ Shuen Yee Lee @@aut@@ Wai Yin Wong @@aut@@ Benedict Wei Jun Pang @@aut@@ Lay Khoon Lau @@aut@@ Khalid Abdul Jabbar @@aut@@ Wei Ting Seah @@aut@@ Kexun Kenneth Chen @@aut@@ Sivasubramanian Srinivasan @@aut@@ Tze Pin Ng @@aut@@ Shiou-Liang Wee @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
523574592 |
id |
DOAJ083915311 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ083915311</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311023208.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1371/journal.pone.0276434</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ083915311</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ026012ca787a4b1c848870d71f17c916</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">BaoLin Pauline Soh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Body composition reference values in Singaporean adults using dual-energy X-ray absorptiometry-The Yishun study.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a"><h4<Objectives</h4<This study establishes age- and sex-specific reference values for fat mass index (FMI), lean mass index (LMI), appendicular LMI (aLMI), and body fat distribution indices including Android/Gynoid % fat ratio and Trunk/Limb % fat ratio in multi-ethnic Singaporean adults.<h4<Methods</h4<A population-based cross-sectional study using dual-energy X-ray absorptiometry (Hologic Discovery Wi) was carried out to measure whole body and regional fat and lean mass in community-dwelling adults. A total of 537 adults (57.5% women), aged from 21 to 90 years, were recruited from the large north-eastern residential town of Yishun. Age- and sex-specific percentile reference values were generated for FMI, LMI, aLMI, Android/Gynoid % fat ratio and Trunk/Limb % fat ratio using the Lambda-Mu-Sigma method. The relationship between the parameters and age were assessed through the Pearson's correlation coefficient.<h4<Results</h4<All parameters demonstrated significant correlation with age (p < 0.05) for both men and women, except for LMI in women, with the strength of r ranging from 0.12 (weak correlation) to 0.54 (strong correlation). LMI (r = -0.45) and appendicular LMI (r = -0.54) were negatively associated with age in men while none (r = -0.06) to weak correlation (r = -0.14) were shown in women for the same parameters respectively. The Android/Gynoid % fat ratio and Trunk/Limb % fat ratio were positively related to age for both men (r = 0.37 & 0.43, p < 0.001) and women (r = 0.52 & 0.48, p < 0.001).<h4<Conclusion</h4<We have established DXA-based body composition reference data for the Singapore adult population. These reference data will be particularly useful in geriatric, obesity and oncology clinics, enabling the prescription of appropriate therapy to individuals at risk of morbidity from unfavorable body composition phenotypes. It also adds on to the limited reference database on Southeast Asian body composition.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuen Yee Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wai Yin Wong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Benedict Wei Jun Pang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lay Khoon Lau</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Khalid Abdul Jabbar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Ting Seah</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kexun Kenneth Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sivasubramanian Srinivasan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tze Pin Ng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shiou-Liang Wee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">PLoS ONE</subfield><subfield code="d">Public Library of Science (PLoS), 2007</subfield><subfield code="g">17(2022), 10, p e0276434</subfield><subfield code="w">(DE-627)523574592</subfield><subfield code="w">(DE-600)2267670-3</subfield><subfield code="x">19326203</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:10, p e0276434</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1371/journal.pone.0276434</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/026012ca787a4b1c848870d71f17c916</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1371/journal.pone.0276434</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1932-6203</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_34</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_235</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2022</subfield><subfield code="e">10, p e0276434</subfield></datafield></record></collection>
|
author |
BaoLin Pauline Soh |
spellingShingle |
BaoLin Pauline Soh misc Medicine misc R misc Science misc Q Body composition reference values in Singaporean adults using dual-energy X-ray absorptiometry-The Yishun study. |
authorStr |
BaoLin Pauline Soh |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)523574592 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
19326203 |
topic_title |
Body composition reference values in Singaporean adults using dual-energy X-ray absorptiometry-The Yishun study |
topic |
misc Medicine misc R misc Science misc Q |
topic_unstemmed |
misc Medicine misc R misc Science misc Q |
topic_browse |
misc Medicine misc R misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
PLoS ONE |
hierarchy_parent_id |
523574592 |
hierarchy_top_title |
PLoS ONE |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)523574592 (DE-600)2267670-3 |
title |
Body composition reference values in Singaporean adults using dual-energy X-ray absorptiometry-The Yishun study. |
ctrlnum |
(DE-627)DOAJ083915311 (DE-599)DOAJ026012ca787a4b1c848870d71f17c916 |
title_full |
Body composition reference values in Singaporean adults using dual-energy X-ray absorptiometry-The Yishun study |
author_sort |
BaoLin Pauline Soh |
journal |
PLoS ONE |
journalStr |
PLoS ONE |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
BaoLin Pauline Soh Shuen Yee Lee Wai Yin Wong Benedict Wei Jun Pang Lay Khoon Lau Khalid Abdul Jabbar Wei Ting Seah Kexun Kenneth Chen Sivasubramanian Srinivasan Tze Pin Ng Shiou-Liang Wee |
container_volume |
17 |
format_se |
Elektronische Aufsätze |
author-letter |
BaoLin Pauline Soh |
doi_str_mv |
10.1371/journal.pone.0276434 |
author2-role |
verfasserin |
title_sort |
body composition reference values in singaporean adults using dual-energy x-ray absorptiometry-the yishun study |
title_auth |
Body composition reference values in Singaporean adults using dual-energy X-ray absorptiometry-The Yishun study. |
abstract |
<h4<Objectives</h4<This study establishes age- and sex-specific reference values for fat mass index (FMI), lean mass index (LMI), appendicular LMI (aLMI), and body fat distribution indices including Android/Gynoid % fat ratio and Trunk/Limb % fat ratio in multi-ethnic Singaporean adults.<h4<Methods</h4<A population-based cross-sectional study using dual-energy X-ray absorptiometry (Hologic Discovery Wi) was carried out to measure whole body and regional fat and lean mass in community-dwelling adults. A total of 537 adults (57.5% women), aged from 21 to 90 years, were recruited from the large north-eastern residential town of Yishun. Age- and sex-specific percentile reference values were generated for FMI, LMI, aLMI, Android/Gynoid % fat ratio and Trunk/Limb % fat ratio using the Lambda-Mu-Sigma method. The relationship between the parameters and age were assessed through the Pearson's correlation coefficient.<h4<Results</h4<All parameters demonstrated significant correlation with age (p < 0.05) for both men and women, except for LMI in women, with the strength of r ranging from 0.12 (weak correlation) to 0.54 (strong correlation). LMI (r = -0.45) and appendicular LMI (r = -0.54) were negatively associated with age in men while none (r = -0.06) to weak correlation (r = -0.14) were shown in women for the same parameters respectively. The Android/Gynoid % fat ratio and Trunk/Limb % fat ratio were positively related to age for both men (r = 0.37 & 0.43, p < 0.001) and women (r = 0.52 & 0.48, p < 0.001).<h4<Conclusion</h4<We have established DXA-based body composition reference data for the Singapore adult population. These reference data will be particularly useful in geriatric, obesity and oncology clinics, enabling the prescription of appropriate therapy to individuals at risk of morbidity from unfavorable body composition phenotypes. It also adds on to the limited reference database on Southeast Asian body composition. |
abstractGer |
<h4<Objectives</h4<This study establishes age- and sex-specific reference values for fat mass index (FMI), lean mass index (LMI), appendicular LMI (aLMI), and body fat distribution indices including Android/Gynoid % fat ratio and Trunk/Limb % fat ratio in multi-ethnic Singaporean adults.<h4<Methods</h4<A population-based cross-sectional study using dual-energy X-ray absorptiometry (Hologic Discovery Wi) was carried out to measure whole body and regional fat and lean mass in community-dwelling adults. A total of 537 adults (57.5% women), aged from 21 to 90 years, were recruited from the large north-eastern residential town of Yishun. Age- and sex-specific percentile reference values were generated for FMI, LMI, aLMI, Android/Gynoid % fat ratio and Trunk/Limb % fat ratio using the Lambda-Mu-Sigma method. The relationship between the parameters and age were assessed through the Pearson's correlation coefficient.<h4<Results</h4<All parameters demonstrated significant correlation with age (p < 0.05) for both men and women, except for LMI in women, with the strength of r ranging from 0.12 (weak correlation) to 0.54 (strong correlation). LMI (r = -0.45) and appendicular LMI (r = -0.54) were negatively associated with age in men while none (r = -0.06) to weak correlation (r = -0.14) were shown in women for the same parameters respectively. The Android/Gynoid % fat ratio and Trunk/Limb % fat ratio were positively related to age for both men (r = 0.37 & 0.43, p < 0.001) and women (r = 0.52 & 0.48, p < 0.001).<h4<Conclusion</h4<We have established DXA-based body composition reference data for the Singapore adult population. These reference data will be particularly useful in geriatric, obesity and oncology clinics, enabling the prescription of appropriate therapy to individuals at risk of morbidity from unfavorable body composition phenotypes. It also adds on to the limited reference database on Southeast Asian body composition. |
abstract_unstemmed |
<h4<Objectives</h4<This study establishes age- and sex-specific reference values for fat mass index (FMI), lean mass index (LMI), appendicular LMI (aLMI), and body fat distribution indices including Android/Gynoid % fat ratio and Trunk/Limb % fat ratio in multi-ethnic Singaporean adults.<h4<Methods</h4<A population-based cross-sectional study using dual-energy X-ray absorptiometry (Hologic Discovery Wi) was carried out to measure whole body and regional fat and lean mass in community-dwelling adults. A total of 537 adults (57.5% women), aged from 21 to 90 years, were recruited from the large north-eastern residential town of Yishun. Age- and sex-specific percentile reference values were generated for FMI, LMI, aLMI, Android/Gynoid % fat ratio and Trunk/Limb % fat ratio using the Lambda-Mu-Sigma method. The relationship between the parameters and age were assessed through the Pearson's correlation coefficient.<h4<Results</h4<All parameters demonstrated significant correlation with age (p < 0.05) for both men and women, except for LMI in women, with the strength of r ranging from 0.12 (weak correlation) to 0.54 (strong correlation). LMI (r = -0.45) and appendicular LMI (r = -0.54) were negatively associated with age in men while none (r = -0.06) to weak correlation (r = -0.14) were shown in women for the same parameters respectively. The Android/Gynoid % fat ratio and Trunk/Limb % fat ratio were positively related to age for both men (r = 0.37 & 0.43, p < 0.001) and women (r = 0.52 & 0.48, p < 0.001).<h4<Conclusion</h4<We have established DXA-based body composition reference data for the Singapore adult population. These reference data will be particularly useful in geriatric, obesity and oncology clinics, enabling the prescription of appropriate therapy to individuals at risk of morbidity from unfavorable body composition phenotypes. It also adds on to the limited reference database on Southeast Asian body composition. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_34 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_235 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
10, p e0276434 |
title_short |
Body composition reference values in Singaporean adults using dual-energy X-ray absorptiometry-The Yishun study. |
url |
https://doi.org/10.1371/journal.pone.0276434 https://doaj.org/article/026012ca787a4b1c848870d71f17c916 https://doaj.org/toc/1932-6203 |
remote_bool |
true |
author2 |
Shuen Yee Lee Wai Yin Wong Benedict Wei Jun Pang Lay Khoon Lau Khalid Abdul Jabbar Wei Ting Seah Kexun Kenneth Chen Sivasubramanian Srinivasan Tze Pin Ng Shiou-Liang Wee |
author2Str |
Shuen Yee Lee Wai Yin Wong Benedict Wei Jun Pang Lay Khoon Lau Khalid Abdul Jabbar Wei Ting Seah Kexun Kenneth Chen Sivasubramanian Srinivasan Tze Pin Ng Shiou-Liang Wee |
ppnlink |
523574592 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1371/journal.pone.0276434 |
up_date |
2024-07-03T20:08:42.488Z |
_version_ |
1803589855472517120 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ083915311</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311023208.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1371/journal.pone.0276434</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ083915311</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ026012ca787a4b1c848870d71f17c916</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">BaoLin Pauline Soh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Body composition reference values in Singaporean adults using dual-energy X-ray absorptiometry-The Yishun study.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a"><h4<Objectives</h4<This study establishes age- and sex-specific reference values for fat mass index (FMI), lean mass index (LMI), appendicular LMI (aLMI), and body fat distribution indices including Android/Gynoid % fat ratio and Trunk/Limb % fat ratio in multi-ethnic Singaporean adults.<h4<Methods</h4<A population-based cross-sectional study using dual-energy X-ray absorptiometry (Hologic Discovery Wi) was carried out to measure whole body and regional fat and lean mass in community-dwelling adults. A total of 537 adults (57.5% women), aged from 21 to 90 years, were recruited from the large north-eastern residential town of Yishun. Age- and sex-specific percentile reference values were generated for FMI, LMI, aLMI, Android/Gynoid % fat ratio and Trunk/Limb % fat ratio using the Lambda-Mu-Sigma method. The relationship between the parameters and age were assessed through the Pearson's correlation coefficient.<h4<Results</h4<All parameters demonstrated significant correlation with age (p < 0.05) for both men and women, except for LMI in women, with the strength of r ranging from 0.12 (weak correlation) to 0.54 (strong correlation). LMI (r = -0.45) and appendicular LMI (r = -0.54) were negatively associated with age in men while none (r = -0.06) to weak correlation (r = -0.14) were shown in women for the same parameters respectively. The Android/Gynoid % fat ratio and Trunk/Limb % fat ratio were positively related to age for both men (r = 0.37 & 0.43, p < 0.001) and women (r = 0.52 & 0.48, p < 0.001).<h4<Conclusion</h4<We have established DXA-based body composition reference data for the Singapore adult population. These reference data will be particularly useful in geriatric, obesity and oncology clinics, enabling the prescription of appropriate therapy to individuals at risk of morbidity from unfavorable body composition phenotypes. It also adds on to the limited reference database on Southeast Asian body composition.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medicine</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuen Yee Lee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wai Yin Wong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Benedict Wei Jun Pang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lay Khoon Lau</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Khalid Abdul Jabbar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wei Ting Seah</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kexun Kenneth Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sivasubramanian Srinivasan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tze Pin Ng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shiou-Liang Wee</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">PLoS ONE</subfield><subfield code="d">Public Library of Science (PLoS), 2007</subfield><subfield code="g">17(2022), 10, p e0276434</subfield><subfield code="w">(DE-627)523574592</subfield><subfield code="w">(DE-600)2267670-3</subfield><subfield code="x">19326203</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:10, p e0276434</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1371/journal.pone.0276434</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/026012ca787a4b1c848870d71f17c916</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1371/journal.pone.0276434</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1932-6203</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_34</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_235</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2022</subfield><subfield code="e">10, p e0276434</subfield></datafield></record></collection>
|
score |
7.40182 |