Reconstruction of a Soil Microbial Network Induced by Stress Temperature
ABSTRACT The microbial community is viewed as a network of diverse microorganisms connected by various interspecific interactions. While the stress gradient hypothesis (SGH) predicts that positive interactions are favored in more stressful environments, the prediction has been less explored in compl...
Ausführliche Beschreibung
Autor*in: |
Dailin Yang [verfasserIn] Hiromi Kato [verfasserIn] Kazutaka Kawatsu [verfasserIn] Yutaka Osada [verfasserIn] Toyohiro Azuma [verfasserIn] Yuji Nagata [verfasserIn] Michio Kondoh [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Microbiology Spectrum - American Society for Microbiology, 2022, 10(2022), 5 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2022 ; number:5 |
Links: |
---|
DOI / URN: |
10.1128/spectrum.02748-22 |
---|
Katalog-ID: |
DOAJ083937587 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ083937587 | ||
003 | DE-627 | ||
005 | 20230311023312.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1128/spectrum.02748-22 |2 doi | |
035 | |a (DE-627)DOAJ083937587 | ||
035 | |a (DE-599)DOAJ44707b0ab1a7496caa7e39b8b730d1f0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QR1-502 | |
100 | 0 | |a Dailin Yang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Reconstruction of a Soil Microbial Network Induced by Stress Temperature |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a ABSTRACT The microbial community is viewed as a network of diverse microorganisms connected by various interspecific interactions. While the stress gradient hypothesis (SGH) predicts that positive interactions are favored in more stressful environments, the prediction has been less explored in complex microbial communities due to the challenges of identifying interactions. Here, by applying a nonlinear time series analysis to the amplicon-based diversity time series data of the soil microbiota cultured under less stressful (30°C) or more stressful (37°C) temperature conditions, we show how the microbial network responds to temperature stress. While the genera that persisted only under the less stressful condition showed fewer positive effects, the genera that appeared only under the more stressful condition received more positive effects, in agreement with SGH. However, temperature difference also induced reconstruction of the community network, leading to an increased proportion of negative interactions at the whole-community level. The anti-SGH pattern can be explained by the stronger competition caused by increased metabolic rate and population densities. IMPORTANCE By combining amplicon-based diversity survey with recently developed nonlinear analytical tools, we successfully determined the interaction networks of more than 150 natural soil microbial genera under less or more temperature stress and explored the applicability of the stress gradient hypothesis to soil microbiota, shedding new light on the well-known hypothesis. | ||
650 | 4 | |a metabolic theory of ecology | |
650 | 4 | |a stress gradient hypothesis | |
650 | 4 | |a empirical dynamic modeling | |
650 | 4 | |a interaction network | |
650 | 4 | |a soil microbiota | |
650 | 4 | |a stability | |
653 | 0 | |a Microbiology | |
700 | 0 | |a Hiromi Kato |e verfasserin |4 aut | |
700 | 0 | |a Kazutaka Kawatsu |e verfasserin |4 aut | |
700 | 0 | |a Yutaka Osada |e verfasserin |4 aut | |
700 | 0 | |a Toyohiro Azuma |e verfasserin |4 aut | |
700 | 0 | |a Yuji Nagata |e verfasserin |4 aut | |
700 | 0 | |a Michio Kondoh |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Microbiology Spectrum |d American Society for Microbiology, 2022 |g 10(2022), 5 |w (DE-627)816693293 |w (DE-600)2807133-5 |x 21650497 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2022 |g number:5 |
856 | 4 | 0 | |u https://doi.org/10.1128/spectrum.02748-22 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/44707b0ab1a7496caa7e39b8b730d1f0 |z kostenfrei |
856 | 4 | 0 | |u https://journals.asm.org/doi/10.1128/spectrum.02748-22 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2165-0497 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_252 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2022 |e 5 |
author_variant |
d y dy h k hk k k kk y o yo t a ta y n yn m k mk |
---|---|
matchkey_str |
article:21650497:2022----::eosrcinfsimcoilewridcd |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QR |
publishDate |
2022 |
allfields |
10.1128/spectrum.02748-22 doi (DE-627)DOAJ083937587 (DE-599)DOAJ44707b0ab1a7496caa7e39b8b730d1f0 DE-627 ger DE-627 rakwb eng QR1-502 Dailin Yang verfasserin aut Reconstruction of a Soil Microbial Network Induced by Stress Temperature 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier ABSTRACT The microbial community is viewed as a network of diverse microorganisms connected by various interspecific interactions. While the stress gradient hypothesis (SGH) predicts that positive interactions are favored in more stressful environments, the prediction has been less explored in complex microbial communities due to the challenges of identifying interactions. Here, by applying a nonlinear time series analysis to the amplicon-based diversity time series data of the soil microbiota cultured under less stressful (30°C) or more stressful (37°C) temperature conditions, we show how the microbial network responds to temperature stress. While the genera that persisted only under the less stressful condition showed fewer positive effects, the genera that appeared only under the more stressful condition received more positive effects, in agreement with SGH. However, temperature difference also induced reconstruction of the community network, leading to an increased proportion of negative interactions at the whole-community level. The anti-SGH pattern can be explained by the stronger competition caused by increased metabolic rate and population densities. IMPORTANCE By combining amplicon-based diversity survey with recently developed nonlinear analytical tools, we successfully determined the interaction networks of more than 150 natural soil microbial genera under less or more temperature stress and explored the applicability of the stress gradient hypothesis to soil microbiota, shedding new light on the well-known hypothesis. metabolic theory of ecology stress gradient hypothesis empirical dynamic modeling interaction network soil microbiota stability Microbiology Hiromi Kato verfasserin aut Kazutaka Kawatsu verfasserin aut Yutaka Osada verfasserin aut Toyohiro Azuma verfasserin aut Yuji Nagata verfasserin aut Michio Kondoh verfasserin aut In Microbiology Spectrum American Society for Microbiology, 2022 10(2022), 5 (DE-627)816693293 (DE-600)2807133-5 21650497 nnns volume:10 year:2022 number:5 https://doi.org/10.1128/spectrum.02748-22 kostenfrei https://doaj.org/article/44707b0ab1a7496caa7e39b8b730d1f0 kostenfrei https://journals.asm.org/doi/10.1128/spectrum.02748-22 kostenfrei https://doaj.org/toc/2165-0497 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 5 |
spelling |
10.1128/spectrum.02748-22 doi (DE-627)DOAJ083937587 (DE-599)DOAJ44707b0ab1a7496caa7e39b8b730d1f0 DE-627 ger DE-627 rakwb eng QR1-502 Dailin Yang verfasserin aut Reconstruction of a Soil Microbial Network Induced by Stress Temperature 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier ABSTRACT The microbial community is viewed as a network of diverse microorganisms connected by various interspecific interactions. While the stress gradient hypothesis (SGH) predicts that positive interactions are favored in more stressful environments, the prediction has been less explored in complex microbial communities due to the challenges of identifying interactions. Here, by applying a nonlinear time series analysis to the amplicon-based diversity time series data of the soil microbiota cultured under less stressful (30°C) or more stressful (37°C) temperature conditions, we show how the microbial network responds to temperature stress. While the genera that persisted only under the less stressful condition showed fewer positive effects, the genera that appeared only under the more stressful condition received more positive effects, in agreement with SGH. However, temperature difference also induced reconstruction of the community network, leading to an increased proportion of negative interactions at the whole-community level. The anti-SGH pattern can be explained by the stronger competition caused by increased metabolic rate and population densities. IMPORTANCE By combining amplicon-based diversity survey with recently developed nonlinear analytical tools, we successfully determined the interaction networks of more than 150 natural soil microbial genera under less or more temperature stress and explored the applicability of the stress gradient hypothesis to soil microbiota, shedding new light on the well-known hypothesis. metabolic theory of ecology stress gradient hypothesis empirical dynamic modeling interaction network soil microbiota stability Microbiology Hiromi Kato verfasserin aut Kazutaka Kawatsu verfasserin aut Yutaka Osada verfasserin aut Toyohiro Azuma verfasserin aut Yuji Nagata verfasserin aut Michio Kondoh verfasserin aut In Microbiology Spectrum American Society for Microbiology, 2022 10(2022), 5 (DE-627)816693293 (DE-600)2807133-5 21650497 nnns volume:10 year:2022 number:5 https://doi.org/10.1128/spectrum.02748-22 kostenfrei https://doaj.org/article/44707b0ab1a7496caa7e39b8b730d1f0 kostenfrei https://journals.asm.org/doi/10.1128/spectrum.02748-22 kostenfrei https://doaj.org/toc/2165-0497 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 5 |
allfields_unstemmed |
10.1128/spectrum.02748-22 doi (DE-627)DOAJ083937587 (DE-599)DOAJ44707b0ab1a7496caa7e39b8b730d1f0 DE-627 ger DE-627 rakwb eng QR1-502 Dailin Yang verfasserin aut Reconstruction of a Soil Microbial Network Induced by Stress Temperature 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier ABSTRACT The microbial community is viewed as a network of diverse microorganisms connected by various interspecific interactions. While the stress gradient hypothesis (SGH) predicts that positive interactions are favored in more stressful environments, the prediction has been less explored in complex microbial communities due to the challenges of identifying interactions. Here, by applying a nonlinear time series analysis to the amplicon-based diversity time series data of the soil microbiota cultured under less stressful (30°C) or more stressful (37°C) temperature conditions, we show how the microbial network responds to temperature stress. While the genera that persisted only under the less stressful condition showed fewer positive effects, the genera that appeared only under the more stressful condition received more positive effects, in agreement with SGH. However, temperature difference also induced reconstruction of the community network, leading to an increased proportion of negative interactions at the whole-community level. The anti-SGH pattern can be explained by the stronger competition caused by increased metabolic rate and population densities. IMPORTANCE By combining amplicon-based diversity survey with recently developed nonlinear analytical tools, we successfully determined the interaction networks of more than 150 natural soil microbial genera under less or more temperature stress and explored the applicability of the stress gradient hypothesis to soil microbiota, shedding new light on the well-known hypothesis. metabolic theory of ecology stress gradient hypothesis empirical dynamic modeling interaction network soil microbiota stability Microbiology Hiromi Kato verfasserin aut Kazutaka Kawatsu verfasserin aut Yutaka Osada verfasserin aut Toyohiro Azuma verfasserin aut Yuji Nagata verfasserin aut Michio Kondoh verfasserin aut In Microbiology Spectrum American Society for Microbiology, 2022 10(2022), 5 (DE-627)816693293 (DE-600)2807133-5 21650497 nnns volume:10 year:2022 number:5 https://doi.org/10.1128/spectrum.02748-22 kostenfrei https://doaj.org/article/44707b0ab1a7496caa7e39b8b730d1f0 kostenfrei https://journals.asm.org/doi/10.1128/spectrum.02748-22 kostenfrei https://doaj.org/toc/2165-0497 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 5 |
allfieldsGer |
10.1128/spectrum.02748-22 doi (DE-627)DOAJ083937587 (DE-599)DOAJ44707b0ab1a7496caa7e39b8b730d1f0 DE-627 ger DE-627 rakwb eng QR1-502 Dailin Yang verfasserin aut Reconstruction of a Soil Microbial Network Induced by Stress Temperature 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier ABSTRACT The microbial community is viewed as a network of diverse microorganisms connected by various interspecific interactions. While the stress gradient hypothesis (SGH) predicts that positive interactions are favored in more stressful environments, the prediction has been less explored in complex microbial communities due to the challenges of identifying interactions. Here, by applying a nonlinear time series analysis to the amplicon-based diversity time series data of the soil microbiota cultured under less stressful (30°C) or more stressful (37°C) temperature conditions, we show how the microbial network responds to temperature stress. While the genera that persisted only under the less stressful condition showed fewer positive effects, the genera that appeared only under the more stressful condition received more positive effects, in agreement with SGH. However, temperature difference also induced reconstruction of the community network, leading to an increased proportion of negative interactions at the whole-community level. The anti-SGH pattern can be explained by the stronger competition caused by increased metabolic rate and population densities. IMPORTANCE By combining amplicon-based diversity survey with recently developed nonlinear analytical tools, we successfully determined the interaction networks of more than 150 natural soil microbial genera under less or more temperature stress and explored the applicability of the stress gradient hypothesis to soil microbiota, shedding new light on the well-known hypothesis. metabolic theory of ecology stress gradient hypothesis empirical dynamic modeling interaction network soil microbiota stability Microbiology Hiromi Kato verfasserin aut Kazutaka Kawatsu verfasserin aut Yutaka Osada verfasserin aut Toyohiro Azuma verfasserin aut Yuji Nagata verfasserin aut Michio Kondoh verfasserin aut In Microbiology Spectrum American Society for Microbiology, 2022 10(2022), 5 (DE-627)816693293 (DE-600)2807133-5 21650497 nnns volume:10 year:2022 number:5 https://doi.org/10.1128/spectrum.02748-22 kostenfrei https://doaj.org/article/44707b0ab1a7496caa7e39b8b730d1f0 kostenfrei https://journals.asm.org/doi/10.1128/spectrum.02748-22 kostenfrei https://doaj.org/toc/2165-0497 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 5 |
allfieldsSound |
10.1128/spectrum.02748-22 doi (DE-627)DOAJ083937587 (DE-599)DOAJ44707b0ab1a7496caa7e39b8b730d1f0 DE-627 ger DE-627 rakwb eng QR1-502 Dailin Yang verfasserin aut Reconstruction of a Soil Microbial Network Induced by Stress Temperature 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier ABSTRACT The microbial community is viewed as a network of diverse microorganisms connected by various interspecific interactions. While the stress gradient hypothesis (SGH) predicts that positive interactions are favored in more stressful environments, the prediction has been less explored in complex microbial communities due to the challenges of identifying interactions. Here, by applying a nonlinear time series analysis to the amplicon-based diversity time series data of the soil microbiota cultured under less stressful (30°C) or more stressful (37°C) temperature conditions, we show how the microbial network responds to temperature stress. While the genera that persisted only under the less stressful condition showed fewer positive effects, the genera that appeared only under the more stressful condition received more positive effects, in agreement with SGH. However, temperature difference also induced reconstruction of the community network, leading to an increased proportion of negative interactions at the whole-community level. The anti-SGH pattern can be explained by the stronger competition caused by increased metabolic rate and population densities. IMPORTANCE By combining amplicon-based diversity survey with recently developed nonlinear analytical tools, we successfully determined the interaction networks of more than 150 natural soil microbial genera under less or more temperature stress and explored the applicability of the stress gradient hypothesis to soil microbiota, shedding new light on the well-known hypothesis. metabolic theory of ecology stress gradient hypothesis empirical dynamic modeling interaction network soil microbiota stability Microbiology Hiromi Kato verfasserin aut Kazutaka Kawatsu verfasserin aut Yutaka Osada verfasserin aut Toyohiro Azuma verfasserin aut Yuji Nagata verfasserin aut Michio Kondoh verfasserin aut In Microbiology Spectrum American Society for Microbiology, 2022 10(2022), 5 (DE-627)816693293 (DE-600)2807133-5 21650497 nnns volume:10 year:2022 number:5 https://doi.org/10.1128/spectrum.02748-22 kostenfrei https://doaj.org/article/44707b0ab1a7496caa7e39b8b730d1f0 kostenfrei https://journals.asm.org/doi/10.1128/spectrum.02748-22 kostenfrei https://doaj.org/toc/2165-0497 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2022 5 |
language |
English |
source |
In Microbiology Spectrum 10(2022), 5 volume:10 year:2022 number:5 |
sourceStr |
In Microbiology Spectrum 10(2022), 5 volume:10 year:2022 number:5 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
metabolic theory of ecology stress gradient hypothesis empirical dynamic modeling interaction network soil microbiota stability Microbiology |
isfreeaccess_bool |
true |
container_title |
Microbiology Spectrum |
authorswithroles_txt_mv |
Dailin Yang @@aut@@ Hiromi Kato @@aut@@ Kazutaka Kawatsu @@aut@@ Yutaka Osada @@aut@@ Toyohiro Azuma @@aut@@ Yuji Nagata @@aut@@ Michio Kondoh @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
816693293 |
id |
DOAJ083937587 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ083937587</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311023312.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1128/spectrum.02748-22</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ083937587</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ44707b0ab1a7496caa7e39b8b730d1f0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR1-502</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Dailin Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reconstruction of a Soil Microbial Network Induced by Stress Temperature</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">ABSTRACT The microbial community is viewed as a network of diverse microorganisms connected by various interspecific interactions. While the stress gradient hypothesis (SGH) predicts that positive interactions are favored in more stressful environments, the prediction has been less explored in complex microbial communities due to the challenges of identifying interactions. Here, by applying a nonlinear time series analysis to the amplicon-based diversity time series data of the soil microbiota cultured under less stressful (30°C) or more stressful (37°C) temperature conditions, we show how the microbial network responds to temperature stress. While the genera that persisted only under the less stressful condition showed fewer positive effects, the genera that appeared only under the more stressful condition received more positive effects, in agreement with SGH. However, temperature difference also induced reconstruction of the community network, leading to an increased proportion of negative interactions at the whole-community level. The anti-SGH pattern can be explained by the stronger competition caused by increased metabolic rate and population densities. IMPORTANCE By combining amplicon-based diversity survey with recently developed nonlinear analytical tools, we successfully determined the interaction networks of more than 150 natural soil microbial genera under less or more temperature stress and explored the applicability of the stress gradient hypothesis to soil microbiota, shedding new light on the well-known hypothesis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metabolic theory of ecology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stress gradient hypothesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">empirical dynamic modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">interaction network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">soil microbiota</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stability</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microbiology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hiromi Kato</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kazutaka Kawatsu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yutaka Osada</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Toyohiro Azuma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuji Nagata</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Michio Kondoh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Microbiology Spectrum</subfield><subfield code="d">American Society for Microbiology, 2022</subfield><subfield code="g">10(2022), 5</subfield><subfield code="w">(DE-627)816693293</subfield><subfield code="w">(DE-600)2807133-5</subfield><subfield code="x">21650497</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1128/spectrum.02748-22</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/44707b0ab1a7496caa7e39b8b730d1f0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://journals.asm.org/doi/10.1128/spectrum.02748-22</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2165-0497</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">5</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Dailin Yang |
spellingShingle |
Dailin Yang misc QR1-502 misc metabolic theory of ecology misc stress gradient hypothesis misc empirical dynamic modeling misc interaction network misc soil microbiota misc stability misc Microbiology Reconstruction of a Soil Microbial Network Induced by Stress Temperature |
authorStr |
Dailin Yang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)816693293 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QR1-502 |
illustrated |
Not Illustrated |
issn |
21650497 |
topic_title |
QR1-502 Reconstruction of a Soil Microbial Network Induced by Stress Temperature metabolic theory of ecology stress gradient hypothesis empirical dynamic modeling interaction network soil microbiota stability |
topic |
misc QR1-502 misc metabolic theory of ecology misc stress gradient hypothesis misc empirical dynamic modeling misc interaction network misc soil microbiota misc stability misc Microbiology |
topic_unstemmed |
misc QR1-502 misc metabolic theory of ecology misc stress gradient hypothesis misc empirical dynamic modeling misc interaction network misc soil microbiota misc stability misc Microbiology |
topic_browse |
misc QR1-502 misc metabolic theory of ecology misc stress gradient hypothesis misc empirical dynamic modeling misc interaction network misc soil microbiota misc stability misc Microbiology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Microbiology Spectrum |
hierarchy_parent_id |
816693293 |
hierarchy_top_title |
Microbiology Spectrum |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)816693293 (DE-600)2807133-5 |
title |
Reconstruction of a Soil Microbial Network Induced by Stress Temperature |
ctrlnum |
(DE-627)DOAJ083937587 (DE-599)DOAJ44707b0ab1a7496caa7e39b8b730d1f0 |
title_full |
Reconstruction of a Soil Microbial Network Induced by Stress Temperature |
author_sort |
Dailin Yang |
journal |
Microbiology Spectrum |
journalStr |
Microbiology Spectrum |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Dailin Yang Hiromi Kato Kazutaka Kawatsu Yutaka Osada Toyohiro Azuma Yuji Nagata Michio Kondoh |
container_volume |
10 |
class |
QR1-502 |
format_se |
Elektronische Aufsätze |
author-letter |
Dailin Yang |
doi_str_mv |
10.1128/spectrum.02748-22 |
author2-role |
verfasserin |
title_sort |
reconstruction of a soil microbial network induced by stress temperature |
callnumber |
QR1-502 |
title_auth |
Reconstruction of a Soil Microbial Network Induced by Stress Temperature |
abstract |
ABSTRACT The microbial community is viewed as a network of diverse microorganisms connected by various interspecific interactions. While the stress gradient hypothesis (SGH) predicts that positive interactions are favored in more stressful environments, the prediction has been less explored in complex microbial communities due to the challenges of identifying interactions. Here, by applying a nonlinear time series analysis to the amplicon-based diversity time series data of the soil microbiota cultured under less stressful (30°C) or more stressful (37°C) temperature conditions, we show how the microbial network responds to temperature stress. While the genera that persisted only under the less stressful condition showed fewer positive effects, the genera that appeared only under the more stressful condition received more positive effects, in agreement with SGH. However, temperature difference also induced reconstruction of the community network, leading to an increased proportion of negative interactions at the whole-community level. The anti-SGH pattern can be explained by the stronger competition caused by increased metabolic rate and population densities. IMPORTANCE By combining amplicon-based diversity survey with recently developed nonlinear analytical tools, we successfully determined the interaction networks of more than 150 natural soil microbial genera under less or more temperature stress and explored the applicability of the stress gradient hypothesis to soil microbiota, shedding new light on the well-known hypothesis. |
abstractGer |
ABSTRACT The microbial community is viewed as a network of diverse microorganisms connected by various interspecific interactions. While the stress gradient hypothesis (SGH) predicts that positive interactions are favored in more stressful environments, the prediction has been less explored in complex microbial communities due to the challenges of identifying interactions. Here, by applying a nonlinear time series analysis to the amplicon-based diversity time series data of the soil microbiota cultured under less stressful (30°C) or more stressful (37°C) temperature conditions, we show how the microbial network responds to temperature stress. While the genera that persisted only under the less stressful condition showed fewer positive effects, the genera that appeared only under the more stressful condition received more positive effects, in agreement with SGH. However, temperature difference also induced reconstruction of the community network, leading to an increased proportion of negative interactions at the whole-community level. The anti-SGH pattern can be explained by the stronger competition caused by increased metabolic rate and population densities. IMPORTANCE By combining amplicon-based diversity survey with recently developed nonlinear analytical tools, we successfully determined the interaction networks of more than 150 natural soil microbial genera under less or more temperature stress and explored the applicability of the stress gradient hypothesis to soil microbiota, shedding new light on the well-known hypothesis. |
abstract_unstemmed |
ABSTRACT The microbial community is viewed as a network of diverse microorganisms connected by various interspecific interactions. While the stress gradient hypothesis (SGH) predicts that positive interactions are favored in more stressful environments, the prediction has been less explored in complex microbial communities due to the challenges of identifying interactions. Here, by applying a nonlinear time series analysis to the amplicon-based diversity time series data of the soil microbiota cultured under less stressful (30°C) or more stressful (37°C) temperature conditions, we show how the microbial network responds to temperature stress. While the genera that persisted only under the less stressful condition showed fewer positive effects, the genera that appeared only under the more stressful condition received more positive effects, in agreement with SGH. However, temperature difference also induced reconstruction of the community network, leading to an increased proportion of negative interactions at the whole-community level. The anti-SGH pattern can be explained by the stronger competition caused by increased metabolic rate and population densities. IMPORTANCE By combining amplicon-based diversity survey with recently developed nonlinear analytical tools, we successfully determined the interaction networks of more than 150 natural soil microbial genera under less or more temperature stress and explored the applicability of the stress gradient hypothesis to soil microbiota, shedding new light on the well-known hypothesis. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
5 |
title_short |
Reconstruction of a Soil Microbial Network Induced by Stress Temperature |
url |
https://doi.org/10.1128/spectrum.02748-22 https://doaj.org/article/44707b0ab1a7496caa7e39b8b730d1f0 https://journals.asm.org/doi/10.1128/spectrum.02748-22 https://doaj.org/toc/2165-0497 |
remote_bool |
true |
author2 |
Hiromi Kato Kazutaka Kawatsu Yutaka Osada Toyohiro Azuma Yuji Nagata Michio Kondoh |
author2Str |
Hiromi Kato Kazutaka Kawatsu Yutaka Osada Toyohiro Azuma Yuji Nagata Michio Kondoh |
ppnlink |
816693293 |
callnumber-subject |
QR - Microbiology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1128/spectrum.02748-22 |
callnumber-a |
QR1-502 |
up_date |
2024-07-03T20:16:19.669Z |
_version_ |
1803590334866784256 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ083937587</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311023312.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1128/spectrum.02748-22</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ083937587</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ44707b0ab1a7496caa7e39b8b730d1f0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR1-502</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Dailin Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reconstruction of a Soil Microbial Network Induced by Stress Temperature</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">ABSTRACT The microbial community is viewed as a network of diverse microorganisms connected by various interspecific interactions. While the stress gradient hypothesis (SGH) predicts that positive interactions are favored in more stressful environments, the prediction has been less explored in complex microbial communities due to the challenges of identifying interactions. Here, by applying a nonlinear time series analysis to the amplicon-based diversity time series data of the soil microbiota cultured under less stressful (30°C) or more stressful (37°C) temperature conditions, we show how the microbial network responds to temperature stress. While the genera that persisted only under the less stressful condition showed fewer positive effects, the genera that appeared only under the more stressful condition received more positive effects, in agreement with SGH. However, temperature difference also induced reconstruction of the community network, leading to an increased proportion of negative interactions at the whole-community level. The anti-SGH pattern can be explained by the stronger competition caused by increased metabolic rate and population densities. IMPORTANCE By combining amplicon-based diversity survey with recently developed nonlinear analytical tools, we successfully determined the interaction networks of more than 150 natural soil microbial genera under less or more temperature stress and explored the applicability of the stress gradient hypothesis to soil microbiota, shedding new light on the well-known hypothesis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">metabolic theory of ecology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stress gradient hypothesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">empirical dynamic modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">interaction network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">soil microbiota</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stability</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microbiology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hiromi Kato</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kazutaka Kawatsu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yutaka Osada</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Toyohiro Azuma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yuji Nagata</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Michio Kondoh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Microbiology Spectrum</subfield><subfield code="d">American Society for Microbiology, 2022</subfield><subfield code="g">10(2022), 5</subfield><subfield code="w">(DE-627)816693293</subfield><subfield code="w">(DE-600)2807133-5</subfield><subfield code="x">21650497</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1128/spectrum.02748-22</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/44707b0ab1a7496caa7e39b8b730d1f0</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://journals.asm.org/doi/10.1128/spectrum.02748-22</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2165-0497</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2022</subfield><subfield code="e">5</subfield></datafield></record></collection>
|
score |
7.402011 |