Atomic Scale Optimization Strategy of Al-Based Layered Double Hydroxide for Alkali Stability and Supercapacitors
The pseudocapacitor material is easily decomposed when immersed in alkaline solution for a long time. Hence, it is necessary to find a strategy to improve the alkali stability of pseudocapacitor materials. In addition, the relationship between alkali stability and electrochemical performance is stil...
Ausführliche Beschreibung
Autor*in: |
Chuan Jing [verfasserIn] Kai Shu [verfasserIn] Qing Sun [verfasserIn] Jiayu Zheng [verfasserIn] Shuijie Zhang [verfasserIn] Xin Liu [verfasserIn] Kexin Yao [verfasserIn] Xianju Zhou [verfasserIn] Xiaoying Liu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: International Journal of Molecular Sciences - MDPI AG, 2003, 23(2022), 19, p 11645 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2022 ; number:19, p 11645 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.3390/ijms231911645 |
---|
Katalog-ID: |
DOAJ084016221 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ084016221 | ||
003 | DE-627 | ||
005 | 20240414184730.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/ijms231911645 |2 doi | |
035 | |a (DE-627)DOAJ084016221 | ||
035 | |a (DE-599)DOAJb375fc9b6edd4b1b8166780bafad1754 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QH301-705.5 | |
050 | 0 | |a QD1-999 | |
100 | 0 | |a Chuan Jing |e verfasserin |4 aut | |
245 | 1 | 0 | |a Atomic Scale Optimization Strategy of Al-Based Layered Double Hydroxide for Alkali Stability and Supercapacitors |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The pseudocapacitor material is easily decomposed when immersed in alkaline solution for a long time. Hence, it is necessary to find a strategy to improve the alkali stability of pseudocapacitor materials. In addition, the relationship between alkali stability and electrochemical performance is still unclear. In this work, a series of Al-based LDH (Layered double hydroxide) and derived Ni/Co-based sulfides are prepared, and corresponding alkali stability and electrochemical performance are analyzed. The alkali stability of CoAl LDH is so poor and can be improved effectively by doping of Ni. Ni<sub<1</sub<Co<sub<2</sub<S<sub<4</sub< and Ni<sub<2</sub<Co<sub<1</sub<Al LDH exhibit an outstanding alkali stability, and Ni<sub<2</sub<Co<sub<1</sub<S<sub<4</sub< exhibits an extremely poor alkali stability. The variable valence state of Co element and the solubility of Al in alkali solution are the fundamental reasons for the poor alkali stability of CoAl LDH and Ni<sub<2</sub<Co<sub<1</sub<S<sub<4</sub<. Ni<sub<2</sub<Co<sub<1</sub<S<sub<4</sub< showed an outstanding electrochemical performance in a three-electrode system, which is better than that of Ni<sub<1</sub<Co<sub<2</sub<S<sub<4</sub<, indicating that there is no direct correlation between alkali stability and electrochemical properties. Sulfidation improved the electrical conductivity and electrochemical activity of electrode materials, whereas alkali etching suppressed the occurrence of the electrochemical reaction. Overall, this work provides a clear perspective to understand the relationship between alkali stability and electrochemical properties. | ||
650 | 4 | |a layered double hydroxide | |
650 | 4 | |a alkali etching | |
650 | 4 | |a alkali stability | |
650 | 4 | |a electrochemical performance | |
650 | 4 | |a supercapacitor | |
653 | 0 | |a Biology (General) | |
653 | 0 | |a Chemistry | |
700 | 0 | |a Kai Shu |e verfasserin |4 aut | |
700 | 0 | |a Qing Sun |e verfasserin |4 aut | |
700 | 0 | |a Jiayu Zheng |e verfasserin |4 aut | |
700 | 0 | |a Shuijie Zhang |e verfasserin |4 aut | |
700 | 0 | |a Xin Liu |e verfasserin |4 aut | |
700 | 0 | |a Kexin Yao |e verfasserin |4 aut | |
700 | 0 | |a Xianju Zhou |e verfasserin |4 aut | |
700 | 0 | |a Xiaoying Liu |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t International Journal of Molecular Sciences |d MDPI AG, 2003 |g 23(2022), 19, p 11645 |w (DE-627)316340715 |w (DE-600)2019364-6 |x 14220067 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2022 |g number:19, p 11645 |
856 | 4 | 0 | |u https://doi.org/10.3390/ijms231911645 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/b375fc9b6edd4b1b8166780bafad1754 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1422-0067/23/19/11645 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1661-6596 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1422-0067 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 23 |j 2022 |e 19, p 11645 |
author_variant |
c j cj k s ks q s qs j z jz s z sz x l xl k y ky x z xz x l xl |
---|---|
matchkey_str |
article:14220067:2022----::tmcclotmztosrtgoabsdaeedulhdoieoakls |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
QH |
publishDate |
2022 |
allfields |
10.3390/ijms231911645 doi (DE-627)DOAJ084016221 (DE-599)DOAJb375fc9b6edd4b1b8166780bafad1754 DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Chuan Jing verfasserin aut Atomic Scale Optimization Strategy of Al-Based Layered Double Hydroxide for Alkali Stability and Supercapacitors 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The pseudocapacitor material is easily decomposed when immersed in alkaline solution for a long time. Hence, it is necessary to find a strategy to improve the alkali stability of pseudocapacitor materials. In addition, the relationship between alkali stability and electrochemical performance is still unclear. In this work, a series of Al-based LDH (Layered double hydroxide) and derived Ni/Co-based sulfides are prepared, and corresponding alkali stability and electrochemical performance are analyzed. The alkali stability of CoAl LDH is so poor and can be improved effectively by doping of Ni. Ni<sub<1</sub<Co<sub<2</sub<S<sub<4</sub< and Ni<sub<2</sub<Co<sub<1</sub<Al LDH exhibit an outstanding alkali stability, and Ni<sub<2</sub<Co<sub<1</sub<S<sub<4</sub< exhibits an extremely poor alkali stability. The variable valence state of Co element and the solubility of Al in alkali solution are the fundamental reasons for the poor alkali stability of CoAl LDH and Ni<sub<2</sub<Co<sub<1</sub<S<sub<4</sub<. Ni<sub<2</sub<Co<sub<1</sub<S<sub<4</sub< showed an outstanding electrochemical performance in a three-electrode system, which is better than that of Ni<sub<1</sub<Co<sub<2</sub<S<sub<4</sub<, indicating that there is no direct correlation between alkali stability and electrochemical properties. Sulfidation improved the electrical conductivity and electrochemical activity of electrode materials, whereas alkali etching suppressed the occurrence of the electrochemical reaction. Overall, this work provides a clear perspective to understand the relationship between alkali stability and electrochemical properties. layered double hydroxide alkali etching alkali stability electrochemical performance supercapacitor Biology (General) Chemistry Kai Shu verfasserin aut Qing Sun verfasserin aut Jiayu Zheng verfasserin aut Shuijie Zhang verfasserin aut Xin Liu verfasserin aut Kexin Yao verfasserin aut Xianju Zhou verfasserin aut Xiaoying Liu verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 23(2022), 19, p 11645 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:23 year:2022 number:19, p 11645 https://doi.org/10.3390/ijms231911645 kostenfrei https://doaj.org/article/b375fc9b6edd4b1b8166780bafad1754 kostenfrei https://www.mdpi.com/1422-0067/23/19/11645 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2022 19, p 11645 |
spelling |
10.3390/ijms231911645 doi (DE-627)DOAJ084016221 (DE-599)DOAJb375fc9b6edd4b1b8166780bafad1754 DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Chuan Jing verfasserin aut Atomic Scale Optimization Strategy of Al-Based Layered Double Hydroxide for Alkali Stability and Supercapacitors 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The pseudocapacitor material is easily decomposed when immersed in alkaline solution for a long time. Hence, it is necessary to find a strategy to improve the alkali stability of pseudocapacitor materials. In addition, the relationship between alkali stability and electrochemical performance is still unclear. In this work, a series of Al-based LDH (Layered double hydroxide) and derived Ni/Co-based sulfides are prepared, and corresponding alkali stability and electrochemical performance are analyzed. The alkali stability of CoAl LDH is so poor and can be improved effectively by doping of Ni. Ni<sub<1</sub<Co<sub<2</sub<S<sub<4</sub< and Ni<sub<2</sub<Co<sub<1</sub<Al LDH exhibit an outstanding alkali stability, and Ni<sub<2</sub<Co<sub<1</sub<S<sub<4</sub< exhibits an extremely poor alkali stability. The variable valence state of Co element and the solubility of Al in alkali solution are the fundamental reasons for the poor alkali stability of CoAl LDH and Ni<sub<2</sub<Co<sub<1</sub<S<sub<4</sub<. Ni<sub<2</sub<Co<sub<1</sub<S<sub<4</sub< showed an outstanding electrochemical performance in a three-electrode system, which is better than that of Ni<sub<1</sub<Co<sub<2</sub<S<sub<4</sub<, indicating that there is no direct correlation between alkali stability and electrochemical properties. Sulfidation improved the electrical conductivity and electrochemical activity of electrode materials, whereas alkali etching suppressed the occurrence of the electrochemical reaction. Overall, this work provides a clear perspective to understand the relationship between alkali stability and electrochemical properties. layered double hydroxide alkali etching alkali stability electrochemical performance supercapacitor Biology (General) Chemistry Kai Shu verfasserin aut Qing Sun verfasserin aut Jiayu Zheng verfasserin aut Shuijie Zhang verfasserin aut Xin Liu verfasserin aut Kexin Yao verfasserin aut Xianju Zhou verfasserin aut Xiaoying Liu verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 23(2022), 19, p 11645 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:23 year:2022 number:19, p 11645 https://doi.org/10.3390/ijms231911645 kostenfrei https://doaj.org/article/b375fc9b6edd4b1b8166780bafad1754 kostenfrei https://www.mdpi.com/1422-0067/23/19/11645 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2022 19, p 11645 |
allfields_unstemmed |
10.3390/ijms231911645 doi (DE-627)DOAJ084016221 (DE-599)DOAJb375fc9b6edd4b1b8166780bafad1754 DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Chuan Jing verfasserin aut Atomic Scale Optimization Strategy of Al-Based Layered Double Hydroxide for Alkali Stability and Supercapacitors 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The pseudocapacitor material is easily decomposed when immersed in alkaline solution for a long time. Hence, it is necessary to find a strategy to improve the alkali stability of pseudocapacitor materials. In addition, the relationship between alkali stability and electrochemical performance is still unclear. In this work, a series of Al-based LDH (Layered double hydroxide) and derived Ni/Co-based sulfides are prepared, and corresponding alkali stability and electrochemical performance are analyzed. The alkali stability of CoAl LDH is so poor and can be improved effectively by doping of Ni. Ni<sub<1</sub<Co<sub<2</sub<S<sub<4</sub< and Ni<sub<2</sub<Co<sub<1</sub<Al LDH exhibit an outstanding alkali stability, and Ni<sub<2</sub<Co<sub<1</sub<S<sub<4</sub< exhibits an extremely poor alkali stability. The variable valence state of Co element and the solubility of Al in alkali solution are the fundamental reasons for the poor alkali stability of CoAl LDH and Ni<sub<2</sub<Co<sub<1</sub<S<sub<4</sub<. Ni<sub<2</sub<Co<sub<1</sub<S<sub<4</sub< showed an outstanding electrochemical performance in a three-electrode system, which is better than that of Ni<sub<1</sub<Co<sub<2</sub<S<sub<4</sub<, indicating that there is no direct correlation between alkali stability and electrochemical properties. Sulfidation improved the electrical conductivity and electrochemical activity of electrode materials, whereas alkali etching suppressed the occurrence of the electrochemical reaction. Overall, this work provides a clear perspective to understand the relationship between alkali stability and electrochemical properties. layered double hydroxide alkali etching alkali stability electrochemical performance supercapacitor Biology (General) Chemistry Kai Shu verfasserin aut Qing Sun verfasserin aut Jiayu Zheng verfasserin aut Shuijie Zhang verfasserin aut Xin Liu verfasserin aut Kexin Yao verfasserin aut Xianju Zhou verfasserin aut Xiaoying Liu verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 23(2022), 19, p 11645 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:23 year:2022 number:19, p 11645 https://doi.org/10.3390/ijms231911645 kostenfrei https://doaj.org/article/b375fc9b6edd4b1b8166780bafad1754 kostenfrei https://www.mdpi.com/1422-0067/23/19/11645 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2022 19, p 11645 |
allfieldsGer |
10.3390/ijms231911645 doi (DE-627)DOAJ084016221 (DE-599)DOAJb375fc9b6edd4b1b8166780bafad1754 DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Chuan Jing verfasserin aut Atomic Scale Optimization Strategy of Al-Based Layered Double Hydroxide for Alkali Stability and Supercapacitors 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The pseudocapacitor material is easily decomposed when immersed in alkaline solution for a long time. Hence, it is necessary to find a strategy to improve the alkali stability of pseudocapacitor materials. In addition, the relationship between alkali stability and electrochemical performance is still unclear. In this work, a series of Al-based LDH (Layered double hydroxide) and derived Ni/Co-based sulfides are prepared, and corresponding alkali stability and electrochemical performance are analyzed. The alkali stability of CoAl LDH is so poor and can be improved effectively by doping of Ni. Ni<sub<1</sub<Co<sub<2</sub<S<sub<4</sub< and Ni<sub<2</sub<Co<sub<1</sub<Al LDH exhibit an outstanding alkali stability, and Ni<sub<2</sub<Co<sub<1</sub<S<sub<4</sub< exhibits an extremely poor alkali stability. The variable valence state of Co element and the solubility of Al in alkali solution are the fundamental reasons for the poor alkali stability of CoAl LDH and Ni<sub<2</sub<Co<sub<1</sub<S<sub<4</sub<. Ni<sub<2</sub<Co<sub<1</sub<S<sub<4</sub< showed an outstanding electrochemical performance in a three-electrode system, which is better than that of Ni<sub<1</sub<Co<sub<2</sub<S<sub<4</sub<, indicating that there is no direct correlation between alkali stability and electrochemical properties. Sulfidation improved the electrical conductivity and electrochemical activity of electrode materials, whereas alkali etching suppressed the occurrence of the electrochemical reaction. Overall, this work provides a clear perspective to understand the relationship between alkali stability and electrochemical properties. layered double hydroxide alkali etching alkali stability electrochemical performance supercapacitor Biology (General) Chemistry Kai Shu verfasserin aut Qing Sun verfasserin aut Jiayu Zheng verfasserin aut Shuijie Zhang verfasserin aut Xin Liu verfasserin aut Kexin Yao verfasserin aut Xianju Zhou verfasserin aut Xiaoying Liu verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 23(2022), 19, p 11645 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:23 year:2022 number:19, p 11645 https://doi.org/10.3390/ijms231911645 kostenfrei https://doaj.org/article/b375fc9b6edd4b1b8166780bafad1754 kostenfrei https://www.mdpi.com/1422-0067/23/19/11645 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2022 19, p 11645 |
allfieldsSound |
10.3390/ijms231911645 doi (DE-627)DOAJ084016221 (DE-599)DOAJb375fc9b6edd4b1b8166780bafad1754 DE-627 ger DE-627 rakwb eng QH301-705.5 QD1-999 Chuan Jing verfasserin aut Atomic Scale Optimization Strategy of Al-Based Layered Double Hydroxide for Alkali Stability and Supercapacitors 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The pseudocapacitor material is easily decomposed when immersed in alkaline solution for a long time. Hence, it is necessary to find a strategy to improve the alkali stability of pseudocapacitor materials. In addition, the relationship between alkali stability and electrochemical performance is still unclear. In this work, a series of Al-based LDH (Layered double hydroxide) and derived Ni/Co-based sulfides are prepared, and corresponding alkali stability and electrochemical performance are analyzed. The alkali stability of CoAl LDH is so poor and can be improved effectively by doping of Ni. Ni<sub<1</sub<Co<sub<2</sub<S<sub<4</sub< and Ni<sub<2</sub<Co<sub<1</sub<Al LDH exhibit an outstanding alkali stability, and Ni<sub<2</sub<Co<sub<1</sub<S<sub<4</sub< exhibits an extremely poor alkali stability. The variable valence state of Co element and the solubility of Al in alkali solution are the fundamental reasons for the poor alkali stability of CoAl LDH and Ni<sub<2</sub<Co<sub<1</sub<S<sub<4</sub<. Ni<sub<2</sub<Co<sub<1</sub<S<sub<4</sub< showed an outstanding electrochemical performance in a three-electrode system, which is better than that of Ni<sub<1</sub<Co<sub<2</sub<S<sub<4</sub<, indicating that there is no direct correlation between alkali stability and electrochemical properties. Sulfidation improved the electrical conductivity and electrochemical activity of electrode materials, whereas alkali etching suppressed the occurrence of the electrochemical reaction. Overall, this work provides a clear perspective to understand the relationship between alkali stability and electrochemical properties. layered double hydroxide alkali etching alkali stability electrochemical performance supercapacitor Biology (General) Chemistry Kai Shu verfasserin aut Qing Sun verfasserin aut Jiayu Zheng verfasserin aut Shuijie Zhang verfasserin aut Xin Liu verfasserin aut Kexin Yao verfasserin aut Xianju Zhou verfasserin aut Xiaoying Liu verfasserin aut In International Journal of Molecular Sciences MDPI AG, 2003 23(2022), 19, p 11645 (DE-627)316340715 (DE-600)2019364-6 14220067 nnns volume:23 year:2022 number:19, p 11645 https://doi.org/10.3390/ijms231911645 kostenfrei https://doaj.org/article/b375fc9b6edd4b1b8166780bafad1754 kostenfrei https://www.mdpi.com/1422-0067/23/19/11645 kostenfrei https://doaj.org/toc/1661-6596 Journal toc kostenfrei https://doaj.org/toc/1422-0067 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2022 19, p 11645 |
language |
English |
source |
In International Journal of Molecular Sciences 23(2022), 19, p 11645 volume:23 year:2022 number:19, p 11645 |
sourceStr |
In International Journal of Molecular Sciences 23(2022), 19, p 11645 volume:23 year:2022 number:19, p 11645 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
layered double hydroxide alkali etching alkali stability electrochemical performance supercapacitor Biology (General) Chemistry |
isfreeaccess_bool |
true |
container_title |
International Journal of Molecular Sciences |
authorswithroles_txt_mv |
Chuan Jing @@aut@@ Kai Shu @@aut@@ Qing Sun @@aut@@ Jiayu Zheng @@aut@@ Shuijie Zhang @@aut@@ Xin Liu @@aut@@ Kexin Yao @@aut@@ Xianju Zhou @@aut@@ Xiaoying Liu @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
316340715 |
id |
DOAJ084016221 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ084016221</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414184730.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijms231911645</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ084016221</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb375fc9b6edd4b1b8166780bafad1754</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chuan Jing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Atomic Scale Optimization Strategy of Al-Based Layered Double Hydroxide for Alkali Stability and Supercapacitors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The pseudocapacitor material is easily decomposed when immersed in alkaline solution for a long time. Hence, it is necessary to find a strategy to improve the alkali stability of pseudocapacitor materials. In addition, the relationship between alkali stability and electrochemical performance is still unclear. In this work, a series of Al-based LDH (Layered double hydroxide) and derived Ni/Co-based sulfides are prepared, and corresponding alkali stability and electrochemical performance are analyzed. The alkali stability of CoAl LDH is so poor and can be improved effectively by doping of Ni. Ni<sub<1</sub<Co<sub<2</sub<S<sub<4</sub< and Ni<sub<2</sub<Co<sub<1</sub<Al LDH exhibit an outstanding alkali stability, and Ni<sub<2</sub<Co<sub<1</sub<S<sub<4</sub< exhibits an extremely poor alkali stability. The variable valence state of Co element and the solubility of Al in alkali solution are the fundamental reasons for the poor alkali stability of CoAl LDH and Ni<sub<2</sub<Co<sub<1</sub<S<sub<4</sub<. Ni<sub<2</sub<Co<sub<1</sub<S<sub<4</sub< showed an outstanding electrochemical performance in a three-electrode system, which is better than that of Ni<sub<1</sub<Co<sub<2</sub<S<sub<4</sub<, indicating that there is no direct correlation between alkali stability and electrochemical properties. Sulfidation improved the electrical conductivity and electrochemical activity of electrode materials, whereas alkali etching suppressed the occurrence of the electrochemical reaction. Overall, this work provides a clear perspective to understand the relationship between alkali stability and electrochemical properties.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">layered double hydroxide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">alkali etching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">alkali stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electrochemical performance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">supercapacitor</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kai Shu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qing Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiayu Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuijie Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xin Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kexin Yao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xianju Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoying Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Molecular Sciences</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">23(2022), 19, p 11645</subfield><subfield code="w">(DE-627)316340715</subfield><subfield code="w">(DE-600)2019364-6</subfield><subfield code="x">14220067</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:19, p 11645</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijms231911645</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b375fc9b6edd4b1b8166780bafad1754</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1422-0067/23/19/11645</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1661-6596</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1422-0067</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2022</subfield><subfield code="e">19, p 11645</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Chuan Jing |
spellingShingle |
Chuan Jing misc QH301-705.5 misc QD1-999 misc layered double hydroxide misc alkali etching misc alkali stability misc electrochemical performance misc supercapacitor misc Biology (General) misc Chemistry Atomic Scale Optimization Strategy of Al-Based Layered Double Hydroxide for Alkali Stability and Supercapacitors |
authorStr |
Chuan Jing |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)316340715 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QH301-705 |
illustrated |
Not Illustrated |
issn |
14220067 |
topic_title |
QH301-705.5 QD1-999 Atomic Scale Optimization Strategy of Al-Based Layered Double Hydroxide for Alkali Stability and Supercapacitors layered double hydroxide alkali etching alkali stability electrochemical performance supercapacitor |
topic |
misc QH301-705.5 misc QD1-999 misc layered double hydroxide misc alkali etching misc alkali stability misc electrochemical performance misc supercapacitor misc Biology (General) misc Chemistry |
topic_unstemmed |
misc QH301-705.5 misc QD1-999 misc layered double hydroxide misc alkali etching misc alkali stability misc electrochemical performance misc supercapacitor misc Biology (General) misc Chemistry |
topic_browse |
misc QH301-705.5 misc QD1-999 misc layered double hydroxide misc alkali etching misc alkali stability misc electrochemical performance misc supercapacitor misc Biology (General) misc Chemistry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International Journal of Molecular Sciences |
hierarchy_parent_id |
316340715 |
hierarchy_top_title |
International Journal of Molecular Sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)316340715 (DE-600)2019364-6 |
title |
Atomic Scale Optimization Strategy of Al-Based Layered Double Hydroxide for Alkali Stability and Supercapacitors |
ctrlnum |
(DE-627)DOAJ084016221 (DE-599)DOAJb375fc9b6edd4b1b8166780bafad1754 |
title_full |
Atomic Scale Optimization Strategy of Al-Based Layered Double Hydroxide for Alkali Stability and Supercapacitors |
author_sort |
Chuan Jing |
journal |
International Journal of Molecular Sciences |
journalStr |
International Journal of Molecular Sciences |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Chuan Jing Kai Shu Qing Sun Jiayu Zheng Shuijie Zhang Xin Liu Kexin Yao Xianju Zhou Xiaoying Liu |
container_volume |
23 |
class |
QH301-705.5 QD1-999 |
format_se |
Elektronische Aufsätze |
author-letter |
Chuan Jing |
doi_str_mv |
10.3390/ijms231911645 |
author2-role |
verfasserin |
title_sort |
atomic scale optimization strategy of al-based layered double hydroxide for alkali stability and supercapacitors |
callnumber |
QH301-705.5 |
title_auth |
Atomic Scale Optimization Strategy of Al-Based Layered Double Hydroxide for Alkali Stability and Supercapacitors |
abstract |
The pseudocapacitor material is easily decomposed when immersed in alkaline solution for a long time. Hence, it is necessary to find a strategy to improve the alkali stability of pseudocapacitor materials. In addition, the relationship between alkali stability and electrochemical performance is still unclear. In this work, a series of Al-based LDH (Layered double hydroxide) and derived Ni/Co-based sulfides are prepared, and corresponding alkali stability and electrochemical performance are analyzed. The alkali stability of CoAl LDH is so poor and can be improved effectively by doping of Ni. Ni<sub<1</sub<Co<sub<2</sub<S<sub<4</sub< and Ni<sub<2</sub<Co<sub<1</sub<Al LDH exhibit an outstanding alkali stability, and Ni<sub<2</sub<Co<sub<1</sub<S<sub<4</sub< exhibits an extremely poor alkali stability. The variable valence state of Co element and the solubility of Al in alkali solution are the fundamental reasons for the poor alkali stability of CoAl LDH and Ni<sub<2</sub<Co<sub<1</sub<S<sub<4</sub<. Ni<sub<2</sub<Co<sub<1</sub<S<sub<4</sub< showed an outstanding electrochemical performance in a three-electrode system, which is better than that of Ni<sub<1</sub<Co<sub<2</sub<S<sub<4</sub<, indicating that there is no direct correlation between alkali stability and electrochemical properties. Sulfidation improved the electrical conductivity and electrochemical activity of electrode materials, whereas alkali etching suppressed the occurrence of the electrochemical reaction. Overall, this work provides a clear perspective to understand the relationship between alkali stability and electrochemical properties. |
abstractGer |
The pseudocapacitor material is easily decomposed when immersed in alkaline solution for a long time. Hence, it is necessary to find a strategy to improve the alkali stability of pseudocapacitor materials. In addition, the relationship between alkali stability and electrochemical performance is still unclear. In this work, a series of Al-based LDH (Layered double hydroxide) and derived Ni/Co-based sulfides are prepared, and corresponding alkali stability and electrochemical performance are analyzed. The alkali stability of CoAl LDH is so poor and can be improved effectively by doping of Ni. Ni<sub<1</sub<Co<sub<2</sub<S<sub<4</sub< and Ni<sub<2</sub<Co<sub<1</sub<Al LDH exhibit an outstanding alkali stability, and Ni<sub<2</sub<Co<sub<1</sub<S<sub<4</sub< exhibits an extremely poor alkali stability. The variable valence state of Co element and the solubility of Al in alkali solution are the fundamental reasons for the poor alkali stability of CoAl LDH and Ni<sub<2</sub<Co<sub<1</sub<S<sub<4</sub<. Ni<sub<2</sub<Co<sub<1</sub<S<sub<4</sub< showed an outstanding electrochemical performance in a three-electrode system, which is better than that of Ni<sub<1</sub<Co<sub<2</sub<S<sub<4</sub<, indicating that there is no direct correlation between alkali stability and electrochemical properties. Sulfidation improved the electrical conductivity and electrochemical activity of electrode materials, whereas alkali etching suppressed the occurrence of the electrochemical reaction. Overall, this work provides a clear perspective to understand the relationship between alkali stability and electrochemical properties. |
abstract_unstemmed |
The pseudocapacitor material is easily decomposed when immersed in alkaline solution for a long time. Hence, it is necessary to find a strategy to improve the alkali stability of pseudocapacitor materials. In addition, the relationship between alkali stability and electrochemical performance is still unclear. In this work, a series of Al-based LDH (Layered double hydroxide) and derived Ni/Co-based sulfides are prepared, and corresponding alkali stability and electrochemical performance are analyzed. The alkali stability of CoAl LDH is so poor and can be improved effectively by doping of Ni. Ni<sub<1</sub<Co<sub<2</sub<S<sub<4</sub< and Ni<sub<2</sub<Co<sub<1</sub<Al LDH exhibit an outstanding alkali stability, and Ni<sub<2</sub<Co<sub<1</sub<S<sub<4</sub< exhibits an extremely poor alkali stability. The variable valence state of Co element and the solubility of Al in alkali solution are the fundamental reasons for the poor alkali stability of CoAl LDH and Ni<sub<2</sub<Co<sub<1</sub<S<sub<4</sub<. Ni<sub<2</sub<Co<sub<1</sub<S<sub<4</sub< showed an outstanding electrochemical performance in a three-electrode system, which is better than that of Ni<sub<1</sub<Co<sub<2</sub<S<sub<4</sub<, indicating that there is no direct correlation between alkali stability and electrochemical properties. Sulfidation improved the electrical conductivity and electrochemical activity of electrode materials, whereas alkali etching suppressed the occurrence of the electrochemical reaction. Overall, this work provides a clear perspective to understand the relationship between alkali stability and electrochemical properties. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
19, p 11645 |
title_short |
Atomic Scale Optimization Strategy of Al-Based Layered Double Hydroxide for Alkali Stability and Supercapacitors |
url |
https://doi.org/10.3390/ijms231911645 https://doaj.org/article/b375fc9b6edd4b1b8166780bafad1754 https://www.mdpi.com/1422-0067/23/19/11645 https://doaj.org/toc/1661-6596 https://doaj.org/toc/1422-0067 |
remote_bool |
true |
author2 |
Kai Shu Qing Sun Jiayu Zheng Shuijie Zhang Xin Liu Kexin Yao Xianju Zhou Xiaoying Liu |
author2Str |
Kai Shu Qing Sun Jiayu Zheng Shuijie Zhang Xin Liu Kexin Yao Xianju Zhou Xiaoying Liu |
ppnlink |
316340715 |
callnumber-subject |
QH - Natural History and Biology |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/ijms231911645 |
callnumber-a |
QH301-705.5 |
up_date |
2024-07-03T20:41:21.220Z |
_version_ |
1803591909347688448 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ084016221</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414184730.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ijms231911645</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ084016221</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJb375fc9b6edd4b1b8166780bafad1754</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH301-705.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD1-999</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Chuan Jing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Atomic Scale Optimization Strategy of Al-Based Layered Double Hydroxide for Alkali Stability and Supercapacitors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The pseudocapacitor material is easily decomposed when immersed in alkaline solution for a long time. Hence, it is necessary to find a strategy to improve the alkali stability of pseudocapacitor materials. In addition, the relationship between alkali stability and electrochemical performance is still unclear. In this work, a series of Al-based LDH (Layered double hydroxide) and derived Ni/Co-based sulfides are prepared, and corresponding alkali stability and electrochemical performance are analyzed. The alkali stability of CoAl LDH is so poor and can be improved effectively by doping of Ni. Ni<sub<1</sub<Co<sub<2</sub<S<sub<4</sub< and Ni<sub<2</sub<Co<sub<1</sub<Al LDH exhibit an outstanding alkali stability, and Ni<sub<2</sub<Co<sub<1</sub<S<sub<4</sub< exhibits an extremely poor alkali stability. The variable valence state of Co element and the solubility of Al in alkali solution are the fundamental reasons for the poor alkali stability of CoAl LDH and Ni<sub<2</sub<Co<sub<1</sub<S<sub<4</sub<. Ni<sub<2</sub<Co<sub<1</sub<S<sub<4</sub< showed an outstanding electrochemical performance in a three-electrode system, which is better than that of Ni<sub<1</sub<Co<sub<2</sub<S<sub<4</sub<, indicating that there is no direct correlation between alkali stability and electrochemical properties. Sulfidation improved the electrical conductivity and electrochemical activity of electrode materials, whereas alkali etching suppressed the occurrence of the electrochemical reaction. Overall, this work provides a clear perspective to understand the relationship between alkali stability and electrochemical properties.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">layered double hydroxide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">alkali etching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">alkali stability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electrochemical performance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">supercapacitor</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Biology (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Chemistry</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kai Shu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Qing Sun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiayu Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shuijie Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xin Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kexin Yao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xianju Zhou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoying Liu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Molecular Sciences</subfield><subfield code="d">MDPI AG, 2003</subfield><subfield code="g">23(2022), 19, p 11645</subfield><subfield code="w">(DE-627)316340715</subfield><subfield code="w">(DE-600)2019364-6</subfield><subfield code="x">14220067</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:19, p 11645</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ijms231911645</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/b375fc9b6edd4b1b8166780bafad1754</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1422-0067/23/19/11645</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1661-6596</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1422-0067</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2022</subfield><subfield code="e">19, p 11645</subfield></datafield></record></collection>
|
score |
7.4032135 |