Study on Precipitation and Dissolution Mechanisms of Graphite in Hot Metal of Blast Furnace
Graphite precipitation in the hot metal of a blast furnace (BF) has a significant effect on the low permeability zone of the deadman. In this work, the precipitation mechanisms of graphite in the hot metal of BF were investigated and discussed. Furthermore, the theoretical flame temperature of tuyer...
Ausführliche Beschreibung
Autor*in: |
Meng Xie [verfasserIn] Hongtao Wang [verfasserIn] Mingrong Huang [verfasserIn] Ping Wang [verfasserIn] Yang Song [verfasserIn] Zhanxia Di [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Metals - MDPI AG, 2012, 12(2022), 10, p 1608 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2022 ; number:10, p 1608 |
Links: |
---|
DOI / URN: |
10.3390/met12101608 |
---|
Katalog-ID: |
DOAJ084101407 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ084101407 | ||
003 | DE-627 | ||
005 | 20240414174730.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/met12101608 |2 doi | |
035 | |a (DE-627)DOAJ084101407 | ||
035 | |a (DE-599)DOAJd1e65ac9d5434bdca47b5edc13ea0683 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TN1-997 | |
100 | 0 | |a Meng Xie |e verfasserin |4 aut | |
245 | 1 | 0 | |a Study on Precipitation and Dissolution Mechanisms of Graphite in Hot Metal of Blast Furnace |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Graphite precipitation in the hot metal of a blast furnace (BF) has a significant effect on the low permeability zone of the deadman. In this work, the precipitation mechanisms of graphite in the hot metal of BF were investigated and discussed. Furthermore, the theoretical flame temperature of tuyere raceway, the center temperature of the deadman, and the critical temperature of graphite precipitated from the hot metal, were calculated and the graphitic carbon cycle and graphite enrichment mechanisms in the void of the deadman were analyzed. The results showed that the theoretical flame temperatures of the two BFs used in this study varied from 2100 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mrow<</mrow<<mo<∘</mo<</msup<</semantics<</math<</inline-formula<C to 2200 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mrow<</mrow<<mo<∘</mo<</msup<</semantics<</math<</inline-formula<C and the average center temperatures of the deadman in 4350 m<sup<3</sup< and 1280 m<sup<3</sup< BFs were 1329.08 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mrow<</mrow<<mo<∘</mo<</msup<</semantics<</math<</inline-formula<C and 1386.74, respectively. Moreover, graphite can precipitate from the hot metal and be enriched in the void of the deadman under certain conditions. It was assumed in this work that graphite is precipitated in the form of a 2 mm sphere and the precipitation rate of graphite in hot metal is approximately 1.01 × 10<sup<−8</sup< kg/s. With variation in BF conditions, the precipitation–enrichment–dissolution process of graphite occurs continuously in the deadman of the BF. | ||
650 | 4 | |a low permeability zone | |
650 | 4 | |a graphite | |
650 | 4 | |a precipitation and dissolution | |
650 | 4 | |a hot metal | |
650 | 4 | |a blast furnace | |
653 | 0 | |a Mining engineering. Metallurgy | |
700 | 0 | |a Hongtao Wang |e verfasserin |4 aut | |
700 | 0 | |a Mingrong Huang |e verfasserin |4 aut | |
700 | 0 | |a Ping Wang |e verfasserin |4 aut | |
700 | 0 | |a Yang Song |e verfasserin |4 aut | |
700 | 0 | |a Zhanxia Di |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Metals |d MDPI AG, 2012 |g 12(2022), 10, p 1608 |w (DE-627)718627172 |w (DE-600)2662252-X |x 20754701 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2022 |g number:10, p 1608 |
856 | 4 | 0 | |u https://doi.org/10.3390/met12101608 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/d1e65ac9d5434bdca47b5edc13ea0683 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/2075-4701/12/10/1608 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2075-4701 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2022 |e 10, p 1608 |
author_variant |
m x mx h w hw m h mh p w pw y s ys z d zd |
---|---|
matchkey_str |
article:20754701:2022----::tdopeiiainndsouinehnssfrpien |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TN |
publishDate |
2022 |
allfields |
10.3390/met12101608 doi (DE-627)DOAJ084101407 (DE-599)DOAJd1e65ac9d5434bdca47b5edc13ea0683 DE-627 ger DE-627 rakwb eng TN1-997 Meng Xie verfasserin aut Study on Precipitation and Dissolution Mechanisms of Graphite in Hot Metal of Blast Furnace 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Graphite precipitation in the hot metal of a blast furnace (BF) has a significant effect on the low permeability zone of the deadman. In this work, the precipitation mechanisms of graphite in the hot metal of BF were investigated and discussed. Furthermore, the theoretical flame temperature of tuyere raceway, the center temperature of the deadman, and the critical temperature of graphite precipitated from the hot metal, were calculated and the graphitic carbon cycle and graphite enrichment mechanisms in the void of the deadman were analyzed. The results showed that the theoretical flame temperatures of the two BFs used in this study varied from 2100 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mrow<</mrow<<mo<∘</mo<</msup<</semantics<</math<</inline-formula<C to 2200 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mrow<</mrow<<mo<∘</mo<</msup<</semantics<</math<</inline-formula<C and the average center temperatures of the deadman in 4350 m<sup<3</sup< and 1280 m<sup<3</sup< BFs were 1329.08 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mrow<</mrow<<mo<∘</mo<</msup<</semantics<</math<</inline-formula<C and 1386.74, respectively. Moreover, graphite can precipitate from the hot metal and be enriched in the void of the deadman under certain conditions. It was assumed in this work that graphite is precipitated in the form of a 2 mm sphere and the precipitation rate of graphite in hot metal is approximately 1.01 × 10<sup<−8</sup< kg/s. With variation in BF conditions, the precipitation–enrichment–dissolution process of graphite occurs continuously in the deadman of the BF. low permeability zone graphite precipitation and dissolution hot metal blast furnace Mining engineering. Metallurgy Hongtao Wang verfasserin aut Mingrong Huang verfasserin aut Ping Wang verfasserin aut Yang Song verfasserin aut Zhanxia Di verfasserin aut In Metals MDPI AG, 2012 12(2022), 10, p 1608 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:12 year:2022 number:10, p 1608 https://doi.org/10.3390/met12101608 kostenfrei https://doaj.org/article/d1e65ac9d5434bdca47b5edc13ea0683 kostenfrei https://www.mdpi.com/2075-4701/12/10/1608 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 10, p 1608 |
spelling |
10.3390/met12101608 doi (DE-627)DOAJ084101407 (DE-599)DOAJd1e65ac9d5434bdca47b5edc13ea0683 DE-627 ger DE-627 rakwb eng TN1-997 Meng Xie verfasserin aut Study on Precipitation and Dissolution Mechanisms of Graphite in Hot Metal of Blast Furnace 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Graphite precipitation in the hot metal of a blast furnace (BF) has a significant effect on the low permeability zone of the deadman. In this work, the precipitation mechanisms of graphite in the hot metal of BF were investigated and discussed. Furthermore, the theoretical flame temperature of tuyere raceway, the center temperature of the deadman, and the critical temperature of graphite precipitated from the hot metal, were calculated and the graphitic carbon cycle and graphite enrichment mechanisms in the void of the deadman were analyzed. The results showed that the theoretical flame temperatures of the two BFs used in this study varied from 2100 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mrow<</mrow<<mo<∘</mo<</msup<</semantics<</math<</inline-formula<C to 2200 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mrow<</mrow<<mo<∘</mo<</msup<</semantics<</math<</inline-formula<C and the average center temperatures of the deadman in 4350 m<sup<3</sup< and 1280 m<sup<3</sup< BFs were 1329.08 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mrow<</mrow<<mo<∘</mo<</msup<</semantics<</math<</inline-formula<C and 1386.74, respectively. Moreover, graphite can precipitate from the hot metal and be enriched in the void of the deadman under certain conditions. It was assumed in this work that graphite is precipitated in the form of a 2 mm sphere and the precipitation rate of graphite in hot metal is approximately 1.01 × 10<sup<−8</sup< kg/s. With variation in BF conditions, the precipitation–enrichment–dissolution process of graphite occurs continuously in the deadman of the BF. low permeability zone graphite precipitation and dissolution hot metal blast furnace Mining engineering. Metallurgy Hongtao Wang verfasserin aut Mingrong Huang verfasserin aut Ping Wang verfasserin aut Yang Song verfasserin aut Zhanxia Di verfasserin aut In Metals MDPI AG, 2012 12(2022), 10, p 1608 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:12 year:2022 number:10, p 1608 https://doi.org/10.3390/met12101608 kostenfrei https://doaj.org/article/d1e65ac9d5434bdca47b5edc13ea0683 kostenfrei https://www.mdpi.com/2075-4701/12/10/1608 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 10, p 1608 |
allfields_unstemmed |
10.3390/met12101608 doi (DE-627)DOAJ084101407 (DE-599)DOAJd1e65ac9d5434bdca47b5edc13ea0683 DE-627 ger DE-627 rakwb eng TN1-997 Meng Xie verfasserin aut Study on Precipitation and Dissolution Mechanisms of Graphite in Hot Metal of Blast Furnace 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Graphite precipitation in the hot metal of a blast furnace (BF) has a significant effect on the low permeability zone of the deadman. In this work, the precipitation mechanisms of graphite in the hot metal of BF were investigated and discussed. Furthermore, the theoretical flame temperature of tuyere raceway, the center temperature of the deadman, and the critical temperature of graphite precipitated from the hot metal, were calculated and the graphitic carbon cycle and graphite enrichment mechanisms in the void of the deadman were analyzed. The results showed that the theoretical flame temperatures of the two BFs used in this study varied from 2100 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mrow<</mrow<<mo<∘</mo<</msup<</semantics<</math<</inline-formula<C to 2200 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mrow<</mrow<<mo<∘</mo<</msup<</semantics<</math<</inline-formula<C and the average center temperatures of the deadman in 4350 m<sup<3</sup< and 1280 m<sup<3</sup< BFs were 1329.08 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mrow<</mrow<<mo<∘</mo<</msup<</semantics<</math<</inline-formula<C and 1386.74, respectively. Moreover, graphite can precipitate from the hot metal and be enriched in the void of the deadman under certain conditions. It was assumed in this work that graphite is precipitated in the form of a 2 mm sphere and the precipitation rate of graphite in hot metal is approximately 1.01 × 10<sup<−8</sup< kg/s. With variation in BF conditions, the precipitation–enrichment–dissolution process of graphite occurs continuously in the deadman of the BF. low permeability zone graphite precipitation and dissolution hot metal blast furnace Mining engineering. Metallurgy Hongtao Wang verfasserin aut Mingrong Huang verfasserin aut Ping Wang verfasserin aut Yang Song verfasserin aut Zhanxia Di verfasserin aut In Metals MDPI AG, 2012 12(2022), 10, p 1608 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:12 year:2022 number:10, p 1608 https://doi.org/10.3390/met12101608 kostenfrei https://doaj.org/article/d1e65ac9d5434bdca47b5edc13ea0683 kostenfrei https://www.mdpi.com/2075-4701/12/10/1608 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 10, p 1608 |
allfieldsGer |
10.3390/met12101608 doi (DE-627)DOAJ084101407 (DE-599)DOAJd1e65ac9d5434bdca47b5edc13ea0683 DE-627 ger DE-627 rakwb eng TN1-997 Meng Xie verfasserin aut Study on Precipitation and Dissolution Mechanisms of Graphite in Hot Metal of Blast Furnace 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Graphite precipitation in the hot metal of a blast furnace (BF) has a significant effect on the low permeability zone of the deadman. In this work, the precipitation mechanisms of graphite in the hot metal of BF were investigated and discussed. Furthermore, the theoretical flame temperature of tuyere raceway, the center temperature of the deadman, and the critical temperature of graphite precipitated from the hot metal, were calculated and the graphitic carbon cycle and graphite enrichment mechanisms in the void of the deadman were analyzed. The results showed that the theoretical flame temperatures of the two BFs used in this study varied from 2100 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mrow<</mrow<<mo<∘</mo<</msup<</semantics<</math<</inline-formula<C to 2200 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mrow<</mrow<<mo<∘</mo<</msup<</semantics<</math<</inline-formula<C and the average center temperatures of the deadman in 4350 m<sup<3</sup< and 1280 m<sup<3</sup< BFs were 1329.08 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mrow<</mrow<<mo<∘</mo<</msup<</semantics<</math<</inline-formula<C and 1386.74, respectively. Moreover, graphite can precipitate from the hot metal and be enriched in the void of the deadman under certain conditions. It was assumed in this work that graphite is precipitated in the form of a 2 mm sphere and the precipitation rate of graphite in hot metal is approximately 1.01 × 10<sup<−8</sup< kg/s. With variation in BF conditions, the precipitation–enrichment–dissolution process of graphite occurs continuously in the deadman of the BF. low permeability zone graphite precipitation and dissolution hot metal blast furnace Mining engineering. Metallurgy Hongtao Wang verfasserin aut Mingrong Huang verfasserin aut Ping Wang verfasserin aut Yang Song verfasserin aut Zhanxia Di verfasserin aut In Metals MDPI AG, 2012 12(2022), 10, p 1608 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:12 year:2022 number:10, p 1608 https://doi.org/10.3390/met12101608 kostenfrei https://doaj.org/article/d1e65ac9d5434bdca47b5edc13ea0683 kostenfrei https://www.mdpi.com/2075-4701/12/10/1608 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 10, p 1608 |
allfieldsSound |
10.3390/met12101608 doi (DE-627)DOAJ084101407 (DE-599)DOAJd1e65ac9d5434bdca47b5edc13ea0683 DE-627 ger DE-627 rakwb eng TN1-997 Meng Xie verfasserin aut Study on Precipitation and Dissolution Mechanisms of Graphite in Hot Metal of Blast Furnace 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Graphite precipitation in the hot metal of a blast furnace (BF) has a significant effect on the low permeability zone of the deadman. In this work, the precipitation mechanisms of graphite in the hot metal of BF were investigated and discussed. Furthermore, the theoretical flame temperature of tuyere raceway, the center temperature of the deadman, and the critical temperature of graphite precipitated from the hot metal, were calculated and the graphitic carbon cycle and graphite enrichment mechanisms in the void of the deadman were analyzed. The results showed that the theoretical flame temperatures of the two BFs used in this study varied from 2100 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mrow<</mrow<<mo<∘</mo<</msup<</semantics<</math<</inline-formula<C to 2200 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mrow<</mrow<<mo<∘</mo<</msup<</semantics<</math<</inline-formula<C and the average center temperatures of the deadman in 4350 m<sup<3</sup< and 1280 m<sup<3</sup< BFs were 1329.08 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mrow<</mrow<<mo<∘</mo<</msup<</semantics<</math<</inline-formula<C and 1386.74, respectively. Moreover, graphite can precipitate from the hot metal and be enriched in the void of the deadman under certain conditions. It was assumed in this work that graphite is precipitated in the form of a 2 mm sphere and the precipitation rate of graphite in hot metal is approximately 1.01 × 10<sup<−8</sup< kg/s. With variation in BF conditions, the precipitation–enrichment–dissolution process of graphite occurs continuously in the deadman of the BF. low permeability zone graphite precipitation and dissolution hot metal blast furnace Mining engineering. Metallurgy Hongtao Wang verfasserin aut Mingrong Huang verfasserin aut Ping Wang verfasserin aut Yang Song verfasserin aut Zhanxia Di verfasserin aut In Metals MDPI AG, 2012 12(2022), 10, p 1608 (DE-627)718627172 (DE-600)2662252-X 20754701 nnns volume:12 year:2022 number:10, p 1608 https://doi.org/10.3390/met12101608 kostenfrei https://doaj.org/article/d1e65ac9d5434bdca47b5edc13ea0683 kostenfrei https://www.mdpi.com/2075-4701/12/10/1608 kostenfrei https://doaj.org/toc/2075-4701 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2022 10, p 1608 |
language |
English |
source |
In Metals 12(2022), 10, p 1608 volume:12 year:2022 number:10, p 1608 |
sourceStr |
In Metals 12(2022), 10, p 1608 volume:12 year:2022 number:10, p 1608 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
low permeability zone graphite precipitation and dissolution hot metal blast furnace Mining engineering. Metallurgy |
isfreeaccess_bool |
true |
container_title |
Metals |
authorswithroles_txt_mv |
Meng Xie @@aut@@ Hongtao Wang @@aut@@ Mingrong Huang @@aut@@ Ping Wang @@aut@@ Yang Song @@aut@@ Zhanxia Di @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
718627172 |
id |
DOAJ084101407 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ084101407</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414174730.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/met12101608</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ084101407</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd1e65ac9d5434bdca47b5edc13ea0683</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TN1-997</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Meng Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study on Precipitation and Dissolution Mechanisms of Graphite in Hot Metal of Blast Furnace</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Graphite precipitation in the hot metal of a blast furnace (BF) has a significant effect on the low permeability zone of the deadman. In this work, the precipitation mechanisms of graphite in the hot metal of BF were investigated and discussed. Furthermore, the theoretical flame temperature of tuyere raceway, the center temperature of the deadman, and the critical temperature of graphite precipitated from the hot metal, were calculated and the graphitic carbon cycle and graphite enrichment mechanisms in the void of the deadman were analyzed. The results showed that the theoretical flame temperatures of the two BFs used in this study varied from 2100 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mrow<</mrow<<mo<∘</mo<</msup<</semantics<</math<</inline-formula<C to 2200 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mrow<</mrow<<mo<∘</mo<</msup<</semantics<</math<</inline-formula<C and the average center temperatures of the deadman in 4350 m<sup<3</sup< and 1280 m<sup<3</sup< BFs were 1329.08 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mrow<</mrow<<mo<∘</mo<</msup<</semantics<</math<</inline-formula<C and 1386.74, respectively. Moreover, graphite can precipitate from the hot metal and be enriched in the void of the deadman under certain conditions. It was assumed in this work that graphite is precipitated in the form of a 2 mm sphere and the precipitation rate of graphite in hot metal is approximately 1.01 × 10<sup<−8</sup< kg/s. With variation in BF conditions, the precipitation–enrichment–dissolution process of graphite occurs continuously in the deadman of the BF.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">low permeability zone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">graphite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">precipitation and dissolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hot metal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">blast furnace</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mining engineering. Metallurgy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongtao Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mingrong Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ping Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yang Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhanxia Di</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Metals</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 10, p 1608</subfield><subfield code="w">(DE-627)718627172</subfield><subfield code="w">(DE-600)2662252-X</subfield><subfield code="x">20754701</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:10, p 1608</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/met12101608</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d1e65ac9d5434bdca47b5edc13ea0683</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-4701/12/10/1608</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-4701</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">10, p 1608</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Meng Xie |
spellingShingle |
Meng Xie misc TN1-997 misc low permeability zone misc graphite misc precipitation and dissolution misc hot metal misc blast furnace misc Mining engineering. Metallurgy Study on Precipitation and Dissolution Mechanisms of Graphite in Hot Metal of Blast Furnace |
authorStr |
Meng Xie |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718627172 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TN1-997 |
illustrated |
Not Illustrated |
issn |
20754701 |
topic_title |
TN1-997 Study on Precipitation and Dissolution Mechanisms of Graphite in Hot Metal of Blast Furnace low permeability zone graphite precipitation and dissolution hot metal blast furnace |
topic |
misc TN1-997 misc low permeability zone misc graphite misc precipitation and dissolution misc hot metal misc blast furnace misc Mining engineering. Metallurgy |
topic_unstemmed |
misc TN1-997 misc low permeability zone misc graphite misc precipitation and dissolution misc hot metal misc blast furnace misc Mining engineering. Metallurgy |
topic_browse |
misc TN1-997 misc low permeability zone misc graphite misc precipitation and dissolution misc hot metal misc blast furnace misc Mining engineering. Metallurgy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Metals |
hierarchy_parent_id |
718627172 |
hierarchy_top_title |
Metals |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718627172 (DE-600)2662252-X |
title |
Study on Precipitation and Dissolution Mechanisms of Graphite in Hot Metal of Blast Furnace |
ctrlnum |
(DE-627)DOAJ084101407 (DE-599)DOAJd1e65ac9d5434bdca47b5edc13ea0683 |
title_full |
Study on Precipitation and Dissolution Mechanisms of Graphite in Hot Metal of Blast Furnace |
author_sort |
Meng Xie |
journal |
Metals |
journalStr |
Metals |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Meng Xie Hongtao Wang Mingrong Huang Ping Wang Yang Song Zhanxia Di |
container_volume |
12 |
class |
TN1-997 |
format_se |
Elektronische Aufsätze |
author-letter |
Meng Xie |
doi_str_mv |
10.3390/met12101608 |
author2-role |
verfasserin |
title_sort |
study on precipitation and dissolution mechanisms of graphite in hot metal of blast furnace |
callnumber |
TN1-997 |
title_auth |
Study on Precipitation and Dissolution Mechanisms of Graphite in Hot Metal of Blast Furnace |
abstract |
Graphite precipitation in the hot metal of a blast furnace (BF) has a significant effect on the low permeability zone of the deadman. In this work, the precipitation mechanisms of graphite in the hot metal of BF were investigated and discussed. Furthermore, the theoretical flame temperature of tuyere raceway, the center temperature of the deadman, and the critical temperature of graphite precipitated from the hot metal, were calculated and the graphitic carbon cycle and graphite enrichment mechanisms in the void of the deadman were analyzed. The results showed that the theoretical flame temperatures of the two BFs used in this study varied from 2100 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mrow<</mrow<<mo<∘</mo<</msup<</semantics<</math<</inline-formula<C to 2200 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mrow<</mrow<<mo<∘</mo<</msup<</semantics<</math<</inline-formula<C and the average center temperatures of the deadman in 4350 m<sup<3</sup< and 1280 m<sup<3</sup< BFs were 1329.08 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mrow<</mrow<<mo<∘</mo<</msup<</semantics<</math<</inline-formula<C and 1386.74, respectively. Moreover, graphite can precipitate from the hot metal and be enriched in the void of the deadman under certain conditions. It was assumed in this work that graphite is precipitated in the form of a 2 mm sphere and the precipitation rate of graphite in hot metal is approximately 1.01 × 10<sup<−8</sup< kg/s. With variation in BF conditions, the precipitation–enrichment–dissolution process of graphite occurs continuously in the deadman of the BF. |
abstractGer |
Graphite precipitation in the hot metal of a blast furnace (BF) has a significant effect on the low permeability zone of the deadman. In this work, the precipitation mechanisms of graphite in the hot metal of BF were investigated and discussed. Furthermore, the theoretical flame temperature of tuyere raceway, the center temperature of the deadman, and the critical temperature of graphite precipitated from the hot metal, were calculated and the graphitic carbon cycle and graphite enrichment mechanisms in the void of the deadman were analyzed. The results showed that the theoretical flame temperatures of the two BFs used in this study varied from 2100 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mrow<</mrow<<mo<∘</mo<</msup<</semantics<</math<</inline-formula<C to 2200 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mrow<</mrow<<mo<∘</mo<</msup<</semantics<</math<</inline-formula<C and the average center temperatures of the deadman in 4350 m<sup<3</sup< and 1280 m<sup<3</sup< BFs were 1329.08 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mrow<</mrow<<mo<∘</mo<</msup<</semantics<</math<</inline-formula<C and 1386.74, respectively. Moreover, graphite can precipitate from the hot metal and be enriched in the void of the deadman under certain conditions. It was assumed in this work that graphite is precipitated in the form of a 2 mm sphere and the precipitation rate of graphite in hot metal is approximately 1.01 × 10<sup<−8</sup< kg/s. With variation in BF conditions, the precipitation–enrichment–dissolution process of graphite occurs continuously in the deadman of the BF. |
abstract_unstemmed |
Graphite precipitation in the hot metal of a blast furnace (BF) has a significant effect on the low permeability zone of the deadman. In this work, the precipitation mechanisms of graphite in the hot metal of BF were investigated and discussed. Furthermore, the theoretical flame temperature of tuyere raceway, the center temperature of the deadman, and the critical temperature of graphite precipitated from the hot metal, were calculated and the graphitic carbon cycle and graphite enrichment mechanisms in the void of the deadman were analyzed. The results showed that the theoretical flame temperatures of the two BFs used in this study varied from 2100 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mrow<</mrow<<mo<∘</mo<</msup<</semantics<</math<</inline-formula<C to 2200 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mrow<</mrow<<mo<∘</mo<</msup<</semantics<</math<</inline-formula<C and the average center temperatures of the deadman in 4350 m<sup<3</sup< and 1280 m<sup<3</sup< BFs were 1329.08 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mrow<</mrow<<mo<∘</mo<</msup<</semantics<</math<</inline-formula<C and 1386.74, respectively. Moreover, graphite can precipitate from the hot metal and be enriched in the void of the deadman under certain conditions. It was assumed in this work that graphite is precipitated in the form of a 2 mm sphere and the precipitation rate of graphite in hot metal is approximately 1.01 × 10<sup<−8</sup< kg/s. With variation in BF conditions, the precipitation–enrichment–dissolution process of graphite occurs continuously in the deadman of the BF. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
10, p 1608 |
title_short |
Study on Precipitation and Dissolution Mechanisms of Graphite in Hot Metal of Blast Furnace |
url |
https://doi.org/10.3390/met12101608 https://doaj.org/article/d1e65ac9d5434bdca47b5edc13ea0683 https://www.mdpi.com/2075-4701/12/10/1608 https://doaj.org/toc/2075-4701 |
remote_bool |
true |
author2 |
Hongtao Wang Mingrong Huang Ping Wang Yang Song Zhanxia Di |
author2Str |
Hongtao Wang Mingrong Huang Ping Wang Yang Song Zhanxia Di |
ppnlink |
718627172 |
callnumber-subject |
TN - Mining Engineering and Metallurgy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/met12101608 |
callnumber-a |
TN1-997 |
up_date |
2024-07-03T21:10:14.199Z |
_version_ |
1803593726505779200 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ084101407</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414174730.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/met12101608</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ084101407</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJd1e65ac9d5434bdca47b5edc13ea0683</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TN1-997</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Meng Xie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study on Precipitation and Dissolution Mechanisms of Graphite in Hot Metal of Blast Furnace</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Graphite precipitation in the hot metal of a blast furnace (BF) has a significant effect on the low permeability zone of the deadman. In this work, the precipitation mechanisms of graphite in the hot metal of BF were investigated and discussed. Furthermore, the theoretical flame temperature of tuyere raceway, the center temperature of the deadman, and the critical temperature of graphite precipitated from the hot metal, were calculated and the graphitic carbon cycle and graphite enrichment mechanisms in the void of the deadman were analyzed. The results showed that the theoretical flame temperatures of the two BFs used in this study varied from 2100 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mrow<</mrow<<mo<∘</mo<</msup<</semantics<</math<</inline-formula<C to 2200 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mrow<</mrow<<mo<∘</mo<</msup<</semantics<</math<</inline-formula<C and the average center temperatures of the deadman in 4350 m<sup<3</sup< and 1280 m<sup<3</sup< BFs were 1329.08 <inline-formula<<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"<<semantics<<msup<<mrow<</mrow<<mo<∘</mo<</msup<</semantics<</math<</inline-formula<C and 1386.74, respectively. Moreover, graphite can precipitate from the hot metal and be enriched in the void of the deadman under certain conditions. It was assumed in this work that graphite is precipitated in the form of a 2 mm sphere and the precipitation rate of graphite in hot metal is approximately 1.01 × 10<sup<−8</sup< kg/s. With variation in BF conditions, the precipitation–enrichment–dissolution process of graphite occurs continuously in the deadman of the BF.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">low permeability zone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">graphite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">precipitation and dissolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hot metal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">blast furnace</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mining engineering. Metallurgy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hongtao Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mingrong Huang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ping Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yang Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhanxia Di</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Metals</subfield><subfield code="d">MDPI AG, 2012</subfield><subfield code="g">12(2022), 10, p 1608</subfield><subfield code="w">(DE-627)718627172</subfield><subfield code="w">(DE-600)2662252-X</subfield><subfield code="x">20754701</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:10, p 1608</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/met12101608</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/d1e65ac9d5434bdca47b5edc13ea0683</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/2075-4701/12/10/1608</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2075-4701</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2022</subfield><subfield code="e">10, p 1608</subfield></datafield></record></collection>
|
score |
7.4025593 |