Impact of big data resources on clinicians’ activation of prior medical knowledge
Background: Activating prior medical knowledge in diagnosis and treatment is an important basis for clinicians to improve their care ability. However, it has not been systematically explained whether and how various big data resources affect the activation of prior knowledge in the big data environm...
Ausführliche Beschreibung
Autor*in: |
Sufen Wang [verfasserIn] Junyi Yuan [verfasserIn] Changqing Pan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Heliyon - Elsevier, 2016, 8(2022), 9, Seite e10312- |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2022 ; number:9 ; pages:e10312- |
Links: |
---|
DOI / URN: |
10.1016/j.heliyon.2022.e10312 |
---|
Katalog-ID: |
DOAJ08420351X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ08420351X | ||
003 | DE-627 | ||
005 | 20230502131746.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.heliyon.2022.e10312 |2 doi | |
035 | |a (DE-627)DOAJ08420351X | ||
035 | |a (DE-599)DOAJ5d20bad0f5cc4d4c825cf748cb948da4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a Q1-390 | |
050 | 0 | |a H1-99 | |
100 | 0 | |a Sufen Wang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Impact of big data resources on clinicians’ activation of prior medical knowledge |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Background: Activating prior medical knowledge in diagnosis and treatment is an important basis for clinicians to improve their care ability. However, it has not been systematically explained whether and how various big data resources affect the activation of prior knowledge in the big data environment faced by clinicians. Objective: The aim of this study is to contribute to a better understanding on how the activation of prior knowledge of clinicians is affected by a wide range of shared and private big data resources, to reveal the impact of big data resources on clinical competence and professional development of clinicians. Method: Through the comprehensive analysis of extant research results, big data resources are classified as big data itself, big data technology and big data services at the public and institutional levels. A survey was conducted on clinicians and IT personnel in Chinese hospitals. A total of 616 surveys are completed, involving 308 medical institutions. Each medical institution includes a clinician and an IT personnel. SmartPLS version 2.0 software package was used to test the direct impact of big data resources on the activation of prior knowledge. We further analyze their indirect impact of those big data resources without direct impact. Results: (1) Big data quality environment at the institutional level and the big data sharing environment at the public level directly affect activation of prior medical knowledge; (2) Big data service environment at the institutional level directly affects activation of prior medical knowledge; (3) Big data deployment environment at the institutional level and big data service environment at the public level have no direct impact on activation of prior knowledge of clinicians, but they have an indirect impact through big data quality environment and service environment at the institutional level and the big data sharing environment at the public level. Conclusions: Big data technology, big data itself and big data service at the public level and institutional level interact and influence each other to activate prior medical knowledge. This study highlights the implications of big data resources on improvement of clinicians’ diagnosis and treatment ability. | ||
650 | 4 | |a Big data resources | |
650 | 4 | |a Activation of prior medical knowledge | |
650 | 4 | |a Shared big data resources | |
650 | 4 | |a Private big data resources | |
653 | 0 | |a Science (General) | |
653 | 0 | |a Social sciences (General) | |
700 | 0 | |a Junyi Yuan |e verfasserin |4 aut | |
700 | 0 | |a Changqing Pan |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Heliyon |d Elsevier, 2016 |g 8(2022), 9, Seite e10312- |w (DE-627)835893197 |w (DE-600)2835763-2 |x 24058440 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2022 |g number:9 |g pages:e10312- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.heliyon.2022.e10312 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/5d20bad0f5cc4d4c825cf748cb948da4 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2405844022016000 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2405-8440 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2022 |e 9 |h e10312- |
author_variant |
s w sw j y jy c p cp |
---|---|
matchkey_str |
article:24058440:2022----::matfidtrsucsnlncasciainfr |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
Q |
publishDate |
2022 |
allfields |
10.1016/j.heliyon.2022.e10312 doi (DE-627)DOAJ08420351X (DE-599)DOAJ5d20bad0f5cc4d4c825cf748cb948da4 DE-627 ger DE-627 rakwb eng Q1-390 H1-99 Sufen Wang verfasserin aut Impact of big data resources on clinicians’ activation of prior medical knowledge 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Activating prior medical knowledge in diagnosis and treatment is an important basis for clinicians to improve their care ability. However, it has not been systematically explained whether and how various big data resources affect the activation of prior knowledge in the big data environment faced by clinicians. Objective: The aim of this study is to contribute to a better understanding on how the activation of prior knowledge of clinicians is affected by a wide range of shared and private big data resources, to reveal the impact of big data resources on clinical competence and professional development of clinicians. Method: Through the comprehensive analysis of extant research results, big data resources are classified as big data itself, big data technology and big data services at the public and institutional levels. A survey was conducted on clinicians and IT personnel in Chinese hospitals. A total of 616 surveys are completed, involving 308 medical institutions. Each medical institution includes a clinician and an IT personnel. SmartPLS version 2.0 software package was used to test the direct impact of big data resources on the activation of prior knowledge. We further analyze their indirect impact of those big data resources without direct impact. Results: (1) Big data quality environment at the institutional level and the big data sharing environment at the public level directly affect activation of prior medical knowledge; (2) Big data service environment at the institutional level directly affects activation of prior medical knowledge; (3) Big data deployment environment at the institutional level and big data service environment at the public level have no direct impact on activation of prior knowledge of clinicians, but they have an indirect impact through big data quality environment and service environment at the institutional level and the big data sharing environment at the public level. Conclusions: Big data technology, big data itself and big data service at the public level and institutional level interact and influence each other to activate prior medical knowledge. This study highlights the implications of big data resources on improvement of clinicians’ diagnosis and treatment ability. Big data resources Activation of prior medical knowledge Shared big data resources Private big data resources Science (General) Social sciences (General) Junyi Yuan verfasserin aut Changqing Pan verfasserin aut In Heliyon Elsevier, 2016 8(2022), 9, Seite e10312- (DE-627)835893197 (DE-600)2835763-2 24058440 nnns volume:8 year:2022 number:9 pages:e10312- https://doi.org/10.1016/j.heliyon.2022.e10312 kostenfrei https://doaj.org/article/5d20bad0f5cc4d4c825cf748cb948da4 kostenfrei http://www.sciencedirect.com/science/article/pii/S2405844022016000 kostenfrei https://doaj.org/toc/2405-8440 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 8 2022 9 e10312- |
spelling |
10.1016/j.heliyon.2022.e10312 doi (DE-627)DOAJ08420351X (DE-599)DOAJ5d20bad0f5cc4d4c825cf748cb948da4 DE-627 ger DE-627 rakwb eng Q1-390 H1-99 Sufen Wang verfasserin aut Impact of big data resources on clinicians’ activation of prior medical knowledge 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Activating prior medical knowledge in diagnosis and treatment is an important basis for clinicians to improve their care ability. However, it has not been systematically explained whether and how various big data resources affect the activation of prior knowledge in the big data environment faced by clinicians. Objective: The aim of this study is to contribute to a better understanding on how the activation of prior knowledge of clinicians is affected by a wide range of shared and private big data resources, to reveal the impact of big data resources on clinical competence and professional development of clinicians. Method: Through the comprehensive analysis of extant research results, big data resources are classified as big data itself, big data technology and big data services at the public and institutional levels. A survey was conducted on clinicians and IT personnel in Chinese hospitals. A total of 616 surveys are completed, involving 308 medical institutions. Each medical institution includes a clinician and an IT personnel. SmartPLS version 2.0 software package was used to test the direct impact of big data resources on the activation of prior knowledge. We further analyze their indirect impact of those big data resources without direct impact. Results: (1) Big data quality environment at the institutional level and the big data sharing environment at the public level directly affect activation of prior medical knowledge; (2) Big data service environment at the institutional level directly affects activation of prior medical knowledge; (3) Big data deployment environment at the institutional level and big data service environment at the public level have no direct impact on activation of prior knowledge of clinicians, but they have an indirect impact through big data quality environment and service environment at the institutional level and the big data sharing environment at the public level. Conclusions: Big data technology, big data itself and big data service at the public level and institutional level interact and influence each other to activate prior medical knowledge. This study highlights the implications of big data resources on improvement of clinicians’ diagnosis and treatment ability. Big data resources Activation of prior medical knowledge Shared big data resources Private big data resources Science (General) Social sciences (General) Junyi Yuan verfasserin aut Changqing Pan verfasserin aut In Heliyon Elsevier, 2016 8(2022), 9, Seite e10312- (DE-627)835893197 (DE-600)2835763-2 24058440 nnns volume:8 year:2022 number:9 pages:e10312- https://doi.org/10.1016/j.heliyon.2022.e10312 kostenfrei https://doaj.org/article/5d20bad0f5cc4d4c825cf748cb948da4 kostenfrei http://www.sciencedirect.com/science/article/pii/S2405844022016000 kostenfrei https://doaj.org/toc/2405-8440 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 8 2022 9 e10312- |
allfields_unstemmed |
10.1016/j.heliyon.2022.e10312 doi (DE-627)DOAJ08420351X (DE-599)DOAJ5d20bad0f5cc4d4c825cf748cb948da4 DE-627 ger DE-627 rakwb eng Q1-390 H1-99 Sufen Wang verfasserin aut Impact of big data resources on clinicians’ activation of prior medical knowledge 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Activating prior medical knowledge in diagnosis and treatment is an important basis for clinicians to improve their care ability. However, it has not been systematically explained whether and how various big data resources affect the activation of prior knowledge in the big data environment faced by clinicians. Objective: The aim of this study is to contribute to a better understanding on how the activation of prior knowledge of clinicians is affected by a wide range of shared and private big data resources, to reveal the impact of big data resources on clinical competence and professional development of clinicians. Method: Through the comprehensive analysis of extant research results, big data resources are classified as big data itself, big data technology and big data services at the public and institutional levels. A survey was conducted on clinicians and IT personnel in Chinese hospitals. A total of 616 surveys are completed, involving 308 medical institutions. Each medical institution includes a clinician and an IT personnel. SmartPLS version 2.0 software package was used to test the direct impact of big data resources on the activation of prior knowledge. We further analyze their indirect impact of those big data resources without direct impact. Results: (1) Big data quality environment at the institutional level and the big data sharing environment at the public level directly affect activation of prior medical knowledge; (2) Big data service environment at the institutional level directly affects activation of prior medical knowledge; (3) Big data deployment environment at the institutional level and big data service environment at the public level have no direct impact on activation of prior knowledge of clinicians, but they have an indirect impact through big data quality environment and service environment at the institutional level and the big data sharing environment at the public level. Conclusions: Big data technology, big data itself and big data service at the public level and institutional level interact and influence each other to activate prior medical knowledge. This study highlights the implications of big data resources on improvement of clinicians’ diagnosis and treatment ability. Big data resources Activation of prior medical knowledge Shared big data resources Private big data resources Science (General) Social sciences (General) Junyi Yuan verfasserin aut Changqing Pan verfasserin aut In Heliyon Elsevier, 2016 8(2022), 9, Seite e10312- (DE-627)835893197 (DE-600)2835763-2 24058440 nnns volume:8 year:2022 number:9 pages:e10312- https://doi.org/10.1016/j.heliyon.2022.e10312 kostenfrei https://doaj.org/article/5d20bad0f5cc4d4c825cf748cb948da4 kostenfrei http://www.sciencedirect.com/science/article/pii/S2405844022016000 kostenfrei https://doaj.org/toc/2405-8440 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 8 2022 9 e10312- |
allfieldsGer |
10.1016/j.heliyon.2022.e10312 doi (DE-627)DOAJ08420351X (DE-599)DOAJ5d20bad0f5cc4d4c825cf748cb948da4 DE-627 ger DE-627 rakwb eng Q1-390 H1-99 Sufen Wang verfasserin aut Impact of big data resources on clinicians’ activation of prior medical knowledge 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Activating prior medical knowledge in diagnosis and treatment is an important basis for clinicians to improve their care ability. However, it has not been systematically explained whether and how various big data resources affect the activation of prior knowledge in the big data environment faced by clinicians. Objective: The aim of this study is to contribute to a better understanding on how the activation of prior knowledge of clinicians is affected by a wide range of shared and private big data resources, to reveal the impact of big data resources on clinical competence and professional development of clinicians. Method: Through the comprehensive analysis of extant research results, big data resources are classified as big data itself, big data technology and big data services at the public and institutional levels. A survey was conducted on clinicians and IT personnel in Chinese hospitals. A total of 616 surveys are completed, involving 308 medical institutions. Each medical institution includes a clinician and an IT personnel. SmartPLS version 2.0 software package was used to test the direct impact of big data resources on the activation of prior knowledge. We further analyze their indirect impact of those big data resources without direct impact. Results: (1) Big data quality environment at the institutional level and the big data sharing environment at the public level directly affect activation of prior medical knowledge; (2) Big data service environment at the institutional level directly affects activation of prior medical knowledge; (3) Big data deployment environment at the institutional level and big data service environment at the public level have no direct impact on activation of prior knowledge of clinicians, but they have an indirect impact through big data quality environment and service environment at the institutional level and the big data sharing environment at the public level. Conclusions: Big data technology, big data itself and big data service at the public level and institutional level interact and influence each other to activate prior medical knowledge. This study highlights the implications of big data resources on improvement of clinicians’ diagnosis and treatment ability. Big data resources Activation of prior medical knowledge Shared big data resources Private big data resources Science (General) Social sciences (General) Junyi Yuan verfasserin aut Changqing Pan verfasserin aut In Heliyon Elsevier, 2016 8(2022), 9, Seite e10312- (DE-627)835893197 (DE-600)2835763-2 24058440 nnns volume:8 year:2022 number:9 pages:e10312- https://doi.org/10.1016/j.heliyon.2022.e10312 kostenfrei https://doaj.org/article/5d20bad0f5cc4d4c825cf748cb948da4 kostenfrei http://www.sciencedirect.com/science/article/pii/S2405844022016000 kostenfrei https://doaj.org/toc/2405-8440 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 8 2022 9 e10312- |
allfieldsSound |
10.1016/j.heliyon.2022.e10312 doi (DE-627)DOAJ08420351X (DE-599)DOAJ5d20bad0f5cc4d4c825cf748cb948da4 DE-627 ger DE-627 rakwb eng Q1-390 H1-99 Sufen Wang verfasserin aut Impact of big data resources on clinicians’ activation of prior medical knowledge 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: Activating prior medical knowledge in diagnosis and treatment is an important basis for clinicians to improve their care ability. However, it has not been systematically explained whether and how various big data resources affect the activation of prior knowledge in the big data environment faced by clinicians. Objective: The aim of this study is to contribute to a better understanding on how the activation of prior knowledge of clinicians is affected by a wide range of shared and private big data resources, to reveal the impact of big data resources on clinical competence and professional development of clinicians. Method: Through the comprehensive analysis of extant research results, big data resources are classified as big data itself, big data technology and big data services at the public and institutional levels. A survey was conducted on clinicians and IT personnel in Chinese hospitals. A total of 616 surveys are completed, involving 308 medical institutions. Each medical institution includes a clinician and an IT personnel. SmartPLS version 2.0 software package was used to test the direct impact of big data resources on the activation of prior knowledge. We further analyze their indirect impact of those big data resources without direct impact. Results: (1) Big data quality environment at the institutional level and the big data sharing environment at the public level directly affect activation of prior medical knowledge; (2) Big data service environment at the institutional level directly affects activation of prior medical knowledge; (3) Big data deployment environment at the institutional level and big data service environment at the public level have no direct impact on activation of prior knowledge of clinicians, but they have an indirect impact through big data quality environment and service environment at the institutional level and the big data sharing environment at the public level. Conclusions: Big data technology, big data itself and big data service at the public level and institutional level interact and influence each other to activate prior medical knowledge. This study highlights the implications of big data resources on improvement of clinicians’ diagnosis and treatment ability. Big data resources Activation of prior medical knowledge Shared big data resources Private big data resources Science (General) Social sciences (General) Junyi Yuan verfasserin aut Changqing Pan verfasserin aut In Heliyon Elsevier, 2016 8(2022), 9, Seite e10312- (DE-627)835893197 (DE-600)2835763-2 24058440 nnns volume:8 year:2022 number:9 pages:e10312- https://doi.org/10.1016/j.heliyon.2022.e10312 kostenfrei https://doaj.org/article/5d20bad0f5cc4d4c825cf748cb948da4 kostenfrei http://www.sciencedirect.com/science/article/pii/S2405844022016000 kostenfrei https://doaj.org/toc/2405-8440 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 8 2022 9 e10312- |
language |
English |
source |
In Heliyon 8(2022), 9, Seite e10312- volume:8 year:2022 number:9 pages:e10312- |
sourceStr |
In Heliyon 8(2022), 9, Seite e10312- volume:8 year:2022 number:9 pages:e10312- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Big data resources Activation of prior medical knowledge Shared big data resources Private big data resources Science (General) Social sciences (General) |
isfreeaccess_bool |
true |
container_title |
Heliyon |
authorswithroles_txt_mv |
Sufen Wang @@aut@@ Junyi Yuan @@aut@@ Changqing Pan @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
835893197 |
id |
DOAJ08420351X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ08420351X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502131746.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.heliyon.2022.e10312</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ08420351X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5d20bad0f5cc4d4c825cf748cb948da4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">Q1-390</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">H1-99</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sufen Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Impact of big data resources on clinicians’ activation of prior medical knowledge</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background: Activating prior medical knowledge in diagnosis and treatment is an important basis for clinicians to improve their care ability. However, it has not been systematically explained whether and how various big data resources affect the activation of prior knowledge in the big data environment faced by clinicians. Objective: The aim of this study is to contribute to a better understanding on how the activation of prior knowledge of clinicians is affected by a wide range of shared and private big data resources, to reveal the impact of big data resources on clinical competence and professional development of clinicians. Method: Through the comprehensive analysis of extant research results, big data resources are classified as big data itself, big data technology and big data services at the public and institutional levels. A survey was conducted on clinicians and IT personnel in Chinese hospitals. A total of 616 surveys are completed, involving 308 medical institutions. Each medical institution includes a clinician and an IT personnel. SmartPLS version 2.0 software package was used to test the direct impact of big data resources on the activation of prior knowledge. We further analyze their indirect impact of those big data resources without direct impact. Results: (1) Big data quality environment at the institutional level and the big data sharing environment at the public level directly affect activation of prior medical knowledge; (2) Big data service environment at the institutional level directly affects activation of prior medical knowledge; (3) Big data deployment environment at the institutional level and big data service environment at the public level have no direct impact on activation of prior knowledge of clinicians, but they have an indirect impact through big data quality environment and service environment at the institutional level and the big data sharing environment at the public level. Conclusions: Big data technology, big data itself and big data service at the public level and institutional level interact and influence each other to activate prior medical knowledge. This study highlights the implications of big data resources on improvement of clinicians’ diagnosis and treatment ability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data resources</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Activation of prior medical knowledge</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shared big data resources</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Private big data resources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Social sciences (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junyi Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Changqing Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Heliyon</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">8(2022), 9, Seite e10312-</subfield><subfield code="w">(DE-627)835893197</subfield><subfield code="w">(DE-600)2835763-2</subfield><subfield code="x">24058440</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:9</subfield><subfield code="g">pages:e10312-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.heliyon.2022.e10312</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5d20bad0f5cc4d4c825cf748cb948da4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2405844022016000</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2405-8440</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2022</subfield><subfield code="e">9</subfield><subfield code="h">e10312-</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Sufen Wang |
spellingShingle |
Sufen Wang misc Q1-390 misc H1-99 misc Big data resources misc Activation of prior medical knowledge misc Shared big data resources misc Private big data resources misc Science (General) misc Social sciences (General) Impact of big data resources on clinicians’ activation of prior medical knowledge |
authorStr |
Sufen Wang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)835893197 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
Q1-390 |
illustrated |
Not Illustrated |
issn |
24058440 |
topic_title |
Q1-390 H1-99 Impact of big data resources on clinicians’ activation of prior medical knowledge Big data resources Activation of prior medical knowledge Shared big data resources Private big data resources |
topic |
misc Q1-390 misc H1-99 misc Big data resources misc Activation of prior medical knowledge misc Shared big data resources misc Private big data resources misc Science (General) misc Social sciences (General) |
topic_unstemmed |
misc Q1-390 misc H1-99 misc Big data resources misc Activation of prior medical knowledge misc Shared big data resources misc Private big data resources misc Science (General) misc Social sciences (General) |
topic_browse |
misc Q1-390 misc H1-99 misc Big data resources misc Activation of prior medical knowledge misc Shared big data resources misc Private big data resources misc Science (General) misc Social sciences (General) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Heliyon |
hierarchy_parent_id |
835893197 |
hierarchy_top_title |
Heliyon |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)835893197 (DE-600)2835763-2 |
title |
Impact of big data resources on clinicians’ activation of prior medical knowledge |
ctrlnum |
(DE-627)DOAJ08420351X (DE-599)DOAJ5d20bad0f5cc4d4c825cf748cb948da4 |
title_full |
Impact of big data resources on clinicians’ activation of prior medical knowledge |
author_sort |
Sufen Wang |
journal |
Heliyon |
journalStr |
Heliyon |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Sufen Wang Junyi Yuan Changqing Pan |
container_volume |
8 |
class |
Q1-390 H1-99 |
format_se |
Elektronische Aufsätze |
author-letter |
Sufen Wang |
doi_str_mv |
10.1016/j.heliyon.2022.e10312 |
author2-role |
verfasserin |
title_sort |
impact of big data resources on clinicians’ activation of prior medical knowledge |
callnumber |
Q1-390 |
title_auth |
Impact of big data resources on clinicians’ activation of prior medical knowledge |
abstract |
Background: Activating prior medical knowledge in diagnosis and treatment is an important basis for clinicians to improve their care ability. However, it has not been systematically explained whether and how various big data resources affect the activation of prior knowledge in the big data environment faced by clinicians. Objective: The aim of this study is to contribute to a better understanding on how the activation of prior knowledge of clinicians is affected by a wide range of shared and private big data resources, to reveal the impact of big data resources on clinical competence and professional development of clinicians. Method: Through the comprehensive analysis of extant research results, big data resources are classified as big data itself, big data technology and big data services at the public and institutional levels. A survey was conducted on clinicians and IT personnel in Chinese hospitals. A total of 616 surveys are completed, involving 308 medical institutions. Each medical institution includes a clinician and an IT personnel. SmartPLS version 2.0 software package was used to test the direct impact of big data resources on the activation of prior knowledge. We further analyze their indirect impact of those big data resources without direct impact. Results: (1) Big data quality environment at the institutional level and the big data sharing environment at the public level directly affect activation of prior medical knowledge; (2) Big data service environment at the institutional level directly affects activation of prior medical knowledge; (3) Big data deployment environment at the institutional level and big data service environment at the public level have no direct impact on activation of prior knowledge of clinicians, but they have an indirect impact through big data quality environment and service environment at the institutional level and the big data sharing environment at the public level. Conclusions: Big data technology, big data itself and big data service at the public level and institutional level interact and influence each other to activate prior medical knowledge. This study highlights the implications of big data resources on improvement of clinicians’ diagnosis and treatment ability. |
abstractGer |
Background: Activating prior medical knowledge in diagnosis and treatment is an important basis for clinicians to improve their care ability. However, it has not been systematically explained whether and how various big data resources affect the activation of prior knowledge in the big data environment faced by clinicians. Objective: The aim of this study is to contribute to a better understanding on how the activation of prior knowledge of clinicians is affected by a wide range of shared and private big data resources, to reveal the impact of big data resources on clinical competence and professional development of clinicians. Method: Through the comprehensive analysis of extant research results, big data resources are classified as big data itself, big data technology and big data services at the public and institutional levels. A survey was conducted on clinicians and IT personnel in Chinese hospitals. A total of 616 surveys are completed, involving 308 medical institutions. Each medical institution includes a clinician and an IT personnel. SmartPLS version 2.0 software package was used to test the direct impact of big data resources on the activation of prior knowledge. We further analyze their indirect impact of those big data resources without direct impact. Results: (1) Big data quality environment at the institutional level and the big data sharing environment at the public level directly affect activation of prior medical knowledge; (2) Big data service environment at the institutional level directly affects activation of prior medical knowledge; (3) Big data deployment environment at the institutional level and big data service environment at the public level have no direct impact on activation of prior knowledge of clinicians, but they have an indirect impact through big data quality environment and service environment at the institutional level and the big data sharing environment at the public level. Conclusions: Big data technology, big data itself and big data service at the public level and institutional level interact and influence each other to activate prior medical knowledge. This study highlights the implications of big data resources on improvement of clinicians’ diagnosis and treatment ability. |
abstract_unstemmed |
Background: Activating prior medical knowledge in diagnosis and treatment is an important basis for clinicians to improve their care ability. However, it has not been systematically explained whether and how various big data resources affect the activation of prior knowledge in the big data environment faced by clinicians. Objective: The aim of this study is to contribute to a better understanding on how the activation of prior knowledge of clinicians is affected by a wide range of shared and private big data resources, to reveal the impact of big data resources on clinical competence and professional development of clinicians. Method: Through the comprehensive analysis of extant research results, big data resources are classified as big data itself, big data technology and big data services at the public and institutional levels. A survey was conducted on clinicians and IT personnel in Chinese hospitals. A total of 616 surveys are completed, involving 308 medical institutions. Each medical institution includes a clinician and an IT personnel. SmartPLS version 2.0 software package was used to test the direct impact of big data resources on the activation of prior knowledge. We further analyze their indirect impact of those big data resources without direct impact. Results: (1) Big data quality environment at the institutional level and the big data sharing environment at the public level directly affect activation of prior medical knowledge; (2) Big data service environment at the institutional level directly affects activation of prior medical knowledge; (3) Big data deployment environment at the institutional level and big data service environment at the public level have no direct impact on activation of prior knowledge of clinicians, but they have an indirect impact through big data quality environment and service environment at the institutional level and the big data sharing environment at the public level. Conclusions: Big data technology, big data itself and big data service at the public level and institutional level interact and influence each other to activate prior medical knowledge. This study highlights the implications of big data resources on improvement of clinicians’ diagnosis and treatment ability. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
9 |
title_short |
Impact of big data resources on clinicians’ activation of prior medical knowledge |
url |
https://doi.org/10.1016/j.heliyon.2022.e10312 https://doaj.org/article/5d20bad0f5cc4d4c825cf748cb948da4 http://www.sciencedirect.com/science/article/pii/S2405844022016000 https://doaj.org/toc/2405-8440 |
remote_bool |
true |
author2 |
Junyi Yuan Changqing Pan |
author2Str |
Junyi Yuan Changqing Pan |
ppnlink |
835893197 |
callnumber-subject |
Q - General Science |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.heliyon.2022.e10312 |
callnumber-a |
Q1-390 |
up_date |
2024-07-03T21:44:00.502Z |
_version_ |
1803595851244765184 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ08420351X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502131746.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.heliyon.2022.e10312</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ08420351X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ5d20bad0f5cc4d4c825cf748cb948da4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">Q1-390</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">H1-99</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Sufen Wang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Impact of big data resources on clinicians’ activation of prior medical knowledge</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background: Activating prior medical knowledge in diagnosis and treatment is an important basis for clinicians to improve their care ability. However, it has not been systematically explained whether and how various big data resources affect the activation of prior knowledge in the big data environment faced by clinicians. Objective: The aim of this study is to contribute to a better understanding on how the activation of prior knowledge of clinicians is affected by a wide range of shared and private big data resources, to reveal the impact of big data resources on clinical competence and professional development of clinicians. Method: Through the comprehensive analysis of extant research results, big data resources are classified as big data itself, big data technology and big data services at the public and institutional levels. A survey was conducted on clinicians and IT personnel in Chinese hospitals. A total of 616 surveys are completed, involving 308 medical institutions. Each medical institution includes a clinician and an IT personnel. SmartPLS version 2.0 software package was used to test the direct impact of big data resources on the activation of prior knowledge. We further analyze their indirect impact of those big data resources without direct impact. Results: (1) Big data quality environment at the institutional level and the big data sharing environment at the public level directly affect activation of prior medical knowledge; (2) Big data service environment at the institutional level directly affects activation of prior medical knowledge; (3) Big data deployment environment at the institutional level and big data service environment at the public level have no direct impact on activation of prior knowledge of clinicians, but they have an indirect impact through big data quality environment and service environment at the institutional level and the big data sharing environment at the public level. Conclusions: Big data technology, big data itself and big data service at the public level and institutional level interact and influence each other to activate prior medical knowledge. This study highlights the implications of big data resources on improvement of clinicians’ diagnosis and treatment ability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data resources</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Activation of prior medical knowledge</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shared big data resources</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Private big data resources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Social sciences (General)</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Junyi Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Changqing Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Heliyon</subfield><subfield code="d">Elsevier, 2016</subfield><subfield code="g">8(2022), 9, Seite e10312-</subfield><subfield code="w">(DE-627)835893197</subfield><subfield code="w">(DE-600)2835763-2</subfield><subfield code="x">24058440</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:9</subfield><subfield code="g">pages:e10312-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.heliyon.2022.e10312</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/5d20bad0f5cc4d4c825cf748cb948da4</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2405844022016000</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2405-8440</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2022</subfield><subfield code="e">9</subfield><subfield code="h">e10312-</subfield></datafield></record></collection>
|
score |
7.401924 |