Synchrotron X-ray diffraction computed tomography to non-destructively study inorganic treatments for stone conservation
Summary: The characterization of consolidating products formed by conservation treatments within Cultural Heritage (CH) materials is a burning issue and an analytical challenge, as non-destructive approaches, phase analysis, and volume distribution analysis are simultaneously required. This paper pr...
Ausführliche Beschreibung
Autor*in: |
Elena Possenti [verfasserIn] Claudia Conti [verfasserIn] G. Diego Gatta [verfasserIn] Nicoletta Marinoni [verfasserIn] Marco Merlini [verfasserIn] Marco Realini [verfasserIn] Gavin B.M. Vaughan [verfasserIn] Chiara Colombo [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: iScience - Elsevier, 2019, 25(2022), 10, Seite 105112- |
---|---|
Übergeordnetes Werk: |
volume:25 ; year:2022 ; number:10 ; pages:105112- |
Links: |
---|
DOI / URN: |
10.1016/j.isci.2022.105112 |
---|
Katalog-ID: |
DOAJ08420432X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ08420432X | ||
003 | DE-627 | ||
005 | 20230502131748.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.isci.2022.105112 |2 doi | |
035 | |a (DE-627)DOAJ08420432X | ||
035 | |a (DE-599)DOAJf45516deaabc4cda979796fa56f2b8e3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 0 | |a Elena Possenti |e verfasserin |4 aut | |
245 | 1 | 0 | |a Synchrotron X-ray diffraction computed tomography to non-destructively study inorganic treatments for stone conservation |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Summary: The characterization of consolidating products formed by conservation treatments within Cultural Heritage (CH) materials is a burning issue and an analytical challenge, as non-destructive approaches, phase analysis, and volume distribution analysis are simultaneously required. This paper proposes the use of synchrotron X-ray diffraction computed tomography (XRDCT) to non-destructively study diammonium hydrogen phosphate (DAP) consolidating treatments for stone conservation. The mineralogical composition and localization of crystalline phases formed in a complex mixture have been explored and spatially resolved. The coexistence of hydroxyapatite and octacalcium phosphate has been finally demonstrated. The image analysis highlights the 3D distribution of calcium phosphates, their arrangement in a binding network down to the voxel scale, and their consolidating action. Above all, this study demonstrates the feasibility and high potential of XRDCT to investigate the interactions of conservation treatments with CH stone materials, and opens new analytical perspectives for XRDCT in conservation science and materials science. | ||
650 | 4 | |a Environmental science | |
650 | 4 | |a Inorganic chemistry | |
653 | 0 | |a Science | |
653 | 0 | |a Q | |
700 | 0 | |a Claudia Conti |e verfasserin |4 aut | |
700 | 0 | |a G. Diego Gatta |e verfasserin |4 aut | |
700 | 0 | |a Nicoletta Marinoni |e verfasserin |4 aut | |
700 | 0 | |a Marco Merlini |e verfasserin |4 aut | |
700 | 0 | |a Marco Realini |e verfasserin |4 aut | |
700 | 0 | |a Gavin B.M. Vaughan |e verfasserin |4 aut | |
700 | 0 | |a Chiara Colombo |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t iScience |d Elsevier, 2019 |g 25(2022), 10, Seite 105112- |w (DE-627)1019532106 |x 25890042 |7 nnns |
773 | 1 | 8 | |g volume:25 |g year:2022 |g number:10 |g pages:105112- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.isci.2022.105112 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/f45516deaabc4cda979796fa56f2b8e3 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S2589004222013840 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2589-0042 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 25 |j 2022 |e 10 |h 105112- |
author_variant |
e p ep c c cc g d g gdg n m nm m m mm m r mr g b v gbv c c cc |
---|---|
matchkey_str |
article:25890042:2022----::ycrtoxadfrcinoptdoorpyoodsrcieytdiogncr |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1016/j.isci.2022.105112 doi (DE-627)DOAJ08420432X (DE-599)DOAJf45516deaabc4cda979796fa56f2b8e3 DE-627 ger DE-627 rakwb eng Elena Possenti verfasserin aut Synchrotron X-ray diffraction computed tomography to non-destructively study inorganic treatments for stone conservation 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Summary: The characterization of consolidating products formed by conservation treatments within Cultural Heritage (CH) materials is a burning issue and an analytical challenge, as non-destructive approaches, phase analysis, and volume distribution analysis are simultaneously required. This paper proposes the use of synchrotron X-ray diffraction computed tomography (XRDCT) to non-destructively study diammonium hydrogen phosphate (DAP) consolidating treatments for stone conservation. The mineralogical composition and localization of crystalline phases formed in a complex mixture have been explored and spatially resolved. The coexistence of hydroxyapatite and octacalcium phosphate has been finally demonstrated. The image analysis highlights the 3D distribution of calcium phosphates, their arrangement in a binding network down to the voxel scale, and their consolidating action. Above all, this study demonstrates the feasibility and high potential of XRDCT to investigate the interactions of conservation treatments with CH stone materials, and opens new analytical perspectives for XRDCT in conservation science and materials science. Environmental science Inorganic chemistry Science Q Claudia Conti verfasserin aut G. Diego Gatta verfasserin aut Nicoletta Marinoni verfasserin aut Marco Merlini verfasserin aut Marco Realini verfasserin aut Gavin B.M. Vaughan verfasserin aut Chiara Colombo verfasserin aut In iScience Elsevier, 2019 25(2022), 10, Seite 105112- (DE-627)1019532106 25890042 nnns volume:25 year:2022 number:10 pages:105112- https://doi.org/10.1016/j.isci.2022.105112 kostenfrei https://doaj.org/article/f45516deaabc4cda979796fa56f2b8e3 kostenfrei http://www.sciencedirect.com/science/article/pii/S2589004222013840 kostenfrei https://doaj.org/toc/2589-0042 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 25 2022 10 105112- |
spelling |
10.1016/j.isci.2022.105112 doi (DE-627)DOAJ08420432X (DE-599)DOAJf45516deaabc4cda979796fa56f2b8e3 DE-627 ger DE-627 rakwb eng Elena Possenti verfasserin aut Synchrotron X-ray diffraction computed tomography to non-destructively study inorganic treatments for stone conservation 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Summary: The characterization of consolidating products formed by conservation treatments within Cultural Heritage (CH) materials is a burning issue and an analytical challenge, as non-destructive approaches, phase analysis, and volume distribution analysis are simultaneously required. This paper proposes the use of synchrotron X-ray diffraction computed tomography (XRDCT) to non-destructively study diammonium hydrogen phosphate (DAP) consolidating treatments for stone conservation. The mineralogical composition and localization of crystalline phases formed in a complex mixture have been explored and spatially resolved. The coexistence of hydroxyapatite and octacalcium phosphate has been finally demonstrated. The image analysis highlights the 3D distribution of calcium phosphates, their arrangement in a binding network down to the voxel scale, and their consolidating action. Above all, this study demonstrates the feasibility and high potential of XRDCT to investigate the interactions of conservation treatments with CH stone materials, and opens new analytical perspectives for XRDCT in conservation science and materials science. Environmental science Inorganic chemistry Science Q Claudia Conti verfasserin aut G. Diego Gatta verfasserin aut Nicoletta Marinoni verfasserin aut Marco Merlini verfasserin aut Marco Realini verfasserin aut Gavin B.M. Vaughan verfasserin aut Chiara Colombo verfasserin aut In iScience Elsevier, 2019 25(2022), 10, Seite 105112- (DE-627)1019532106 25890042 nnns volume:25 year:2022 number:10 pages:105112- https://doi.org/10.1016/j.isci.2022.105112 kostenfrei https://doaj.org/article/f45516deaabc4cda979796fa56f2b8e3 kostenfrei http://www.sciencedirect.com/science/article/pii/S2589004222013840 kostenfrei https://doaj.org/toc/2589-0042 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 25 2022 10 105112- |
allfields_unstemmed |
10.1016/j.isci.2022.105112 doi (DE-627)DOAJ08420432X (DE-599)DOAJf45516deaabc4cda979796fa56f2b8e3 DE-627 ger DE-627 rakwb eng Elena Possenti verfasserin aut Synchrotron X-ray diffraction computed tomography to non-destructively study inorganic treatments for stone conservation 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Summary: The characterization of consolidating products formed by conservation treatments within Cultural Heritage (CH) materials is a burning issue and an analytical challenge, as non-destructive approaches, phase analysis, and volume distribution analysis are simultaneously required. This paper proposes the use of synchrotron X-ray diffraction computed tomography (XRDCT) to non-destructively study diammonium hydrogen phosphate (DAP) consolidating treatments for stone conservation. The mineralogical composition and localization of crystalline phases formed in a complex mixture have been explored and spatially resolved. The coexistence of hydroxyapatite and octacalcium phosphate has been finally demonstrated. The image analysis highlights the 3D distribution of calcium phosphates, their arrangement in a binding network down to the voxel scale, and their consolidating action. Above all, this study demonstrates the feasibility and high potential of XRDCT to investigate the interactions of conservation treatments with CH stone materials, and opens new analytical perspectives for XRDCT in conservation science and materials science. Environmental science Inorganic chemistry Science Q Claudia Conti verfasserin aut G. Diego Gatta verfasserin aut Nicoletta Marinoni verfasserin aut Marco Merlini verfasserin aut Marco Realini verfasserin aut Gavin B.M. Vaughan verfasserin aut Chiara Colombo verfasserin aut In iScience Elsevier, 2019 25(2022), 10, Seite 105112- (DE-627)1019532106 25890042 nnns volume:25 year:2022 number:10 pages:105112- https://doi.org/10.1016/j.isci.2022.105112 kostenfrei https://doaj.org/article/f45516deaabc4cda979796fa56f2b8e3 kostenfrei http://www.sciencedirect.com/science/article/pii/S2589004222013840 kostenfrei https://doaj.org/toc/2589-0042 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 25 2022 10 105112- |
allfieldsGer |
10.1016/j.isci.2022.105112 doi (DE-627)DOAJ08420432X (DE-599)DOAJf45516deaabc4cda979796fa56f2b8e3 DE-627 ger DE-627 rakwb eng Elena Possenti verfasserin aut Synchrotron X-ray diffraction computed tomography to non-destructively study inorganic treatments for stone conservation 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Summary: The characterization of consolidating products formed by conservation treatments within Cultural Heritage (CH) materials is a burning issue and an analytical challenge, as non-destructive approaches, phase analysis, and volume distribution analysis are simultaneously required. This paper proposes the use of synchrotron X-ray diffraction computed tomography (XRDCT) to non-destructively study diammonium hydrogen phosphate (DAP) consolidating treatments for stone conservation. The mineralogical composition and localization of crystalline phases formed in a complex mixture have been explored and spatially resolved. The coexistence of hydroxyapatite and octacalcium phosphate has been finally demonstrated. The image analysis highlights the 3D distribution of calcium phosphates, their arrangement in a binding network down to the voxel scale, and their consolidating action. Above all, this study demonstrates the feasibility and high potential of XRDCT to investigate the interactions of conservation treatments with CH stone materials, and opens new analytical perspectives for XRDCT in conservation science and materials science. Environmental science Inorganic chemistry Science Q Claudia Conti verfasserin aut G. Diego Gatta verfasserin aut Nicoletta Marinoni verfasserin aut Marco Merlini verfasserin aut Marco Realini verfasserin aut Gavin B.M. Vaughan verfasserin aut Chiara Colombo verfasserin aut In iScience Elsevier, 2019 25(2022), 10, Seite 105112- (DE-627)1019532106 25890042 nnns volume:25 year:2022 number:10 pages:105112- https://doi.org/10.1016/j.isci.2022.105112 kostenfrei https://doaj.org/article/f45516deaabc4cda979796fa56f2b8e3 kostenfrei http://www.sciencedirect.com/science/article/pii/S2589004222013840 kostenfrei https://doaj.org/toc/2589-0042 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 25 2022 10 105112- |
allfieldsSound |
10.1016/j.isci.2022.105112 doi (DE-627)DOAJ08420432X (DE-599)DOAJf45516deaabc4cda979796fa56f2b8e3 DE-627 ger DE-627 rakwb eng Elena Possenti verfasserin aut Synchrotron X-ray diffraction computed tomography to non-destructively study inorganic treatments for stone conservation 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Summary: The characterization of consolidating products formed by conservation treatments within Cultural Heritage (CH) materials is a burning issue and an analytical challenge, as non-destructive approaches, phase analysis, and volume distribution analysis are simultaneously required. This paper proposes the use of synchrotron X-ray diffraction computed tomography (XRDCT) to non-destructively study diammonium hydrogen phosphate (DAP) consolidating treatments for stone conservation. The mineralogical composition and localization of crystalline phases formed in a complex mixture have been explored and spatially resolved. The coexistence of hydroxyapatite and octacalcium phosphate has been finally demonstrated. The image analysis highlights the 3D distribution of calcium phosphates, their arrangement in a binding network down to the voxel scale, and their consolidating action. Above all, this study demonstrates the feasibility and high potential of XRDCT to investigate the interactions of conservation treatments with CH stone materials, and opens new analytical perspectives for XRDCT in conservation science and materials science. Environmental science Inorganic chemistry Science Q Claudia Conti verfasserin aut G. Diego Gatta verfasserin aut Nicoletta Marinoni verfasserin aut Marco Merlini verfasserin aut Marco Realini verfasserin aut Gavin B.M. Vaughan verfasserin aut Chiara Colombo verfasserin aut In iScience Elsevier, 2019 25(2022), 10, Seite 105112- (DE-627)1019532106 25890042 nnns volume:25 year:2022 number:10 pages:105112- https://doi.org/10.1016/j.isci.2022.105112 kostenfrei https://doaj.org/article/f45516deaabc4cda979796fa56f2b8e3 kostenfrei http://www.sciencedirect.com/science/article/pii/S2589004222013840 kostenfrei https://doaj.org/toc/2589-0042 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 25 2022 10 105112- |
language |
English |
source |
In iScience 25(2022), 10, Seite 105112- volume:25 year:2022 number:10 pages:105112- |
sourceStr |
In iScience 25(2022), 10, Seite 105112- volume:25 year:2022 number:10 pages:105112- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Environmental science Inorganic chemistry Science Q |
isfreeaccess_bool |
true |
container_title |
iScience |
authorswithroles_txt_mv |
Elena Possenti @@aut@@ Claudia Conti @@aut@@ G. Diego Gatta @@aut@@ Nicoletta Marinoni @@aut@@ Marco Merlini @@aut@@ Marco Realini @@aut@@ Gavin B.M. Vaughan @@aut@@ Chiara Colombo @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
1019532106 |
id |
DOAJ08420432X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ08420432X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502131748.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.isci.2022.105112</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ08420432X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf45516deaabc4cda979796fa56f2b8e3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Elena Possenti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Synchrotron X-ray diffraction computed tomography to non-destructively study inorganic treatments for stone conservation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary: The characterization of consolidating products formed by conservation treatments within Cultural Heritage (CH) materials is a burning issue and an analytical challenge, as non-destructive approaches, phase analysis, and volume distribution analysis are simultaneously required. This paper proposes the use of synchrotron X-ray diffraction computed tomography (XRDCT) to non-destructively study diammonium hydrogen phosphate (DAP) consolidating treatments for stone conservation. The mineralogical composition and localization of crystalline phases formed in a complex mixture have been explored and spatially resolved. The coexistence of hydroxyapatite and octacalcium phosphate has been finally demonstrated. The image analysis highlights the 3D distribution of calcium phosphates, their arrangement in a binding network down to the voxel scale, and their consolidating action. Above all, this study demonstrates the feasibility and high potential of XRDCT to investigate the interactions of conservation treatments with CH stone materials, and opens new analytical perspectives for XRDCT in conservation science and materials science.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Environmental science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inorganic chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claudia Conti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">G. Diego Gatta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nicoletta Marinoni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marco Merlini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marco Realini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gavin B.M. Vaughan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chiara Colombo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">iScience</subfield><subfield code="d">Elsevier, 2019</subfield><subfield code="g">25(2022), 10, Seite 105112-</subfield><subfield code="w">(DE-627)1019532106</subfield><subfield code="x">25890042</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:10</subfield><subfield code="g">pages:105112-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.isci.2022.105112</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f45516deaabc4cda979796fa56f2b8e3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2589004222013840</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2589-0042</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2022</subfield><subfield code="e">10</subfield><subfield code="h">105112-</subfield></datafield></record></collection>
|
author |
Elena Possenti |
spellingShingle |
Elena Possenti misc Environmental science misc Inorganic chemistry misc Science misc Q Synchrotron X-ray diffraction computed tomography to non-destructively study inorganic treatments for stone conservation |
authorStr |
Elena Possenti |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1019532106 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
25890042 |
topic_title |
Synchrotron X-ray diffraction computed tomography to non-destructively study inorganic treatments for stone conservation Environmental science Inorganic chemistry |
topic |
misc Environmental science misc Inorganic chemistry misc Science misc Q |
topic_unstemmed |
misc Environmental science misc Inorganic chemistry misc Science misc Q |
topic_browse |
misc Environmental science misc Inorganic chemistry misc Science misc Q |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
iScience |
hierarchy_parent_id |
1019532106 |
hierarchy_top_title |
iScience |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1019532106 |
title |
Synchrotron X-ray diffraction computed tomography to non-destructively study inorganic treatments for stone conservation |
ctrlnum |
(DE-627)DOAJ08420432X (DE-599)DOAJf45516deaabc4cda979796fa56f2b8e3 |
title_full |
Synchrotron X-ray diffraction computed tomography to non-destructively study inorganic treatments for stone conservation |
author_sort |
Elena Possenti |
journal |
iScience |
journalStr |
iScience |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
105112 |
author_browse |
Elena Possenti Claudia Conti G. Diego Gatta Nicoletta Marinoni Marco Merlini Marco Realini Gavin B.M. Vaughan Chiara Colombo |
container_volume |
25 |
format_se |
Elektronische Aufsätze |
author-letter |
Elena Possenti |
doi_str_mv |
10.1016/j.isci.2022.105112 |
author2-role |
verfasserin |
title_sort |
synchrotron x-ray diffraction computed tomography to non-destructively study inorganic treatments for stone conservation |
title_auth |
Synchrotron X-ray diffraction computed tomography to non-destructively study inorganic treatments for stone conservation |
abstract |
Summary: The characterization of consolidating products formed by conservation treatments within Cultural Heritage (CH) materials is a burning issue and an analytical challenge, as non-destructive approaches, phase analysis, and volume distribution analysis are simultaneously required. This paper proposes the use of synchrotron X-ray diffraction computed tomography (XRDCT) to non-destructively study diammonium hydrogen phosphate (DAP) consolidating treatments for stone conservation. The mineralogical composition and localization of crystalline phases formed in a complex mixture have been explored and spatially resolved. The coexistence of hydroxyapatite and octacalcium phosphate has been finally demonstrated. The image analysis highlights the 3D distribution of calcium phosphates, their arrangement in a binding network down to the voxel scale, and their consolidating action. Above all, this study demonstrates the feasibility and high potential of XRDCT to investigate the interactions of conservation treatments with CH stone materials, and opens new analytical perspectives for XRDCT in conservation science and materials science. |
abstractGer |
Summary: The characterization of consolidating products formed by conservation treatments within Cultural Heritage (CH) materials is a burning issue and an analytical challenge, as non-destructive approaches, phase analysis, and volume distribution analysis are simultaneously required. This paper proposes the use of synchrotron X-ray diffraction computed tomography (XRDCT) to non-destructively study diammonium hydrogen phosphate (DAP) consolidating treatments for stone conservation. The mineralogical composition and localization of crystalline phases formed in a complex mixture have been explored and spatially resolved. The coexistence of hydroxyapatite and octacalcium phosphate has been finally demonstrated. The image analysis highlights the 3D distribution of calcium phosphates, their arrangement in a binding network down to the voxel scale, and their consolidating action. Above all, this study demonstrates the feasibility and high potential of XRDCT to investigate the interactions of conservation treatments with CH stone materials, and opens new analytical perspectives for XRDCT in conservation science and materials science. |
abstract_unstemmed |
Summary: The characterization of consolidating products formed by conservation treatments within Cultural Heritage (CH) materials is a burning issue and an analytical challenge, as non-destructive approaches, phase analysis, and volume distribution analysis are simultaneously required. This paper proposes the use of synchrotron X-ray diffraction computed tomography (XRDCT) to non-destructively study diammonium hydrogen phosphate (DAP) consolidating treatments for stone conservation. The mineralogical composition and localization of crystalline phases formed in a complex mixture have been explored and spatially resolved. The coexistence of hydroxyapatite and octacalcium phosphate has been finally demonstrated. The image analysis highlights the 3D distribution of calcium phosphates, their arrangement in a binding network down to the voxel scale, and their consolidating action. Above all, this study demonstrates the feasibility and high potential of XRDCT to investigate the interactions of conservation treatments with CH stone materials, and opens new analytical perspectives for XRDCT in conservation science and materials science. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_171 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2110 GBV_ILN_2112 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
10 |
title_short |
Synchrotron X-ray diffraction computed tomography to non-destructively study inorganic treatments for stone conservation |
url |
https://doi.org/10.1016/j.isci.2022.105112 https://doaj.org/article/f45516deaabc4cda979796fa56f2b8e3 http://www.sciencedirect.com/science/article/pii/S2589004222013840 https://doaj.org/toc/2589-0042 |
remote_bool |
true |
author2 |
Claudia Conti G. Diego Gatta Nicoletta Marinoni Marco Merlini Marco Realini Gavin B.M. Vaughan Chiara Colombo |
author2Str |
Claudia Conti G. Diego Gatta Nicoletta Marinoni Marco Merlini Marco Realini Gavin B.M. Vaughan Chiara Colombo |
ppnlink |
1019532106 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.isci.2022.105112 |
up_date |
2024-07-03T21:44:17.110Z |
_version_ |
1803595868665806848 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ08420432X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230502131748.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.isci.2022.105112</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ08420432X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJf45516deaabc4cda979796fa56f2b8e3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Elena Possenti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Synchrotron X-ray diffraction computed tomography to non-destructively study inorganic treatments for stone conservation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Summary: The characterization of consolidating products formed by conservation treatments within Cultural Heritage (CH) materials is a burning issue and an analytical challenge, as non-destructive approaches, phase analysis, and volume distribution analysis are simultaneously required. This paper proposes the use of synchrotron X-ray diffraction computed tomography (XRDCT) to non-destructively study diammonium hydrogen phosphate (DAP) consolidating treatments for stone conservation. The mineralogical composition and localization of crystalline phases formed in a complex mixture have been explored and spatially resolved. The coexistence of hydroxyapatite and octacalcium phosphate has been finally demonstrated. The image analysis highlights the 3D distribution of calcium phosphates, their arrangement in a binding network down to the voxel scale, and their consolidating action. Above all, this study demonstrates the feasibility and high potential of XRDCT to investigate the interactions of conservation treatments with CH stone materials, and opens new analytical perspectives for XRDCT in conservation science and materials science.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Environmental science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inorganic chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Q</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Claudia Conti</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">G. Diego Gatta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nicoletta Marinoni</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marco Merlini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Marco Realini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gavin B.M. Vaughan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chiara Colombo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">iScience</subfield><subfield code="d">Elsevier, 2019</subfield><subfield code="g">25(2022), 10, Seite 105112-</subfield><subfield code="w">(DE-627)1019532106</subfield><subfield code="x">25890042</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:10</subfield><subfield code="g">pages:105112-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.isci.2022.105112</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/f45516deaabc4cda979796fa56f2b8e3</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S2589004222013840</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2589-0042</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2022</subfield><subfield code="e">10</subfield><subfield code="h">105112-</subfield></datafield></record></collection>
|
score |
7.3990107 |