Cloud detection of GF‐7 satellite laser footprint image
Abstract In November 2019, the GaoFen‐7(GF‐7) satellite was equipped with China's first laser altimeter with full waveform recording capability, which obtains high‐precision long‐range three‐dimensional coordinates. The influence of clouds is noticeable for laser transmission, and a footprint c...
Ausführliche Beschreibung
Autor*in: |
Jiaqi Yao [verfasserIn] Xinming Tang [verfasserIn] Guoyuan Li [verfasserIn] Jinquan Guo [verfasserIn] Jiyi Chen [verfasserIn] Xiongdan Yang [verfasserIn] Bo Ai [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Übergeordnetes Werk: |
In: IET Image Processing - Wiley, 2021, 15(2021), 10, Seite 2127-2134 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2021 ; number:10 ; pages:2127-2134 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1049/ipr2.12141 |
---|
Katalog-ID: |
DOAJ084421401 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ084421401 | ||
003 | DE-627 | ||
005 | 20230311025939.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1049/ipr2.12141 |2 doi | |
035 | |a (DE-627)DOAJ084421401 | ||
035 | |a (DE-599)DOAJ9aad73434ded4d1ab187d1e1bb0077a1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TR1-1050 | |
050 | 0 | |a QA76.75-76.765 | |
100 | 0 | |a Jiaqi Yao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Cloud detection of GF‐7 satellite laser footprint image |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract In November 2019, the GaoFen‐7(GF‐7) satellite was equipped with China's first laser altimeter with full waveform recording capability, which obtains high‐precision long‐range three‐dimensional coordinates. The influence of clouds is noticeable for laser transmission, and a footprint camera is used to determine laser pointing and to image the ground. However, the cloud inevitably appears in the laser footprint image. In this study, the authors propose a cloud detection scheme for footprint images based on deep learning. First, an adaptive pooling model is proposed according to the characteristics of the cloud region. Next, model fusion was performed based on the SegNet and U‐Net training results. Finally, test time augmentation was used to enhance the data and to improve cloud detection accuracy. The experimental results show that the fusion result of the model was approximately 5% better than that of the traditional cloud detection algorithm, which improved the shortcomings of the traditional algorithm, such as poor detection effect for thin clouds and complex underlying cloud surfaces. The related conclusions have certain reference significance for GF‐7 data processing and related research on footprint images. | ||
650 | 4 | |a Cloud physics | |
650 | 4 | |a Data and information; acquisition, processing, storage and dissemination in geophysics | |
650 | 4 | |a Instrumentation and techniques for geophysical, hydrospheric and lower atmosphere research | |
650 | 4 | |a Optical, image and video signal processing | |
650 | 4 | |a Atmospheric, ionospheric and magnetospheric techniques and equipment | |
650 | 4 | |a Computer vision and image processing techniques | |
653 | 0 | |a Photography | |
653 | 0 | |a Computer software | |
700 | 0 | |a Xinming Tang |e verfasserin |4 aut | |
700 | 0 | |a Guoyuan Li |e verfasserin |4 aut | |
700 | 0 | |a Jinquan Guo |e verfasserin |4 aut | |
700 | 0 | |a Jiyi Chen |e verfasserin |4 aut | |
700 | 0 | |a Xiongdan Yang |e verfasserin |4 aut | |
700 | 0 | |a Bo Ai |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t IET Image Processing |d Wiley, 2021 |g 15(2021), 10, Seite 2127-2134 |w (DE-627)527265993 |w (DE-600)2278776-8 |x 17519667 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2021 |g number:10 |g pages:2127-2134 |
856 | 4 | 0 | |u https://doi.org/10.1049/ipr2.12141 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/9aad73434ded4d1ab187d1e1bb0077a1 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1049/ipr2.12141 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1751-9659 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1751-9667 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_647 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2021 |e 10 |h 2127-2134 |
author_variant |
j y jy x t xt g l gl j g jg j c jc x y xy b a ba |
---|---|
matchkey_str |
article:17519667:2021----::ludtcinffstlieae |
hierarchy_sort_str |
2021 |
callnumber-subject-code |
TR |
publishDate |
2021 |
allfields |
10.1049/ipr2.12141 doi (DE-627)DOAJ084421401 (DE-599)DOAJ9aad73434ded4d1ab187d1e1bb0077a1 DE-627 ger DE-627 rakwb eng TR1-1050 QA76.75-76.765 Jiaqi Yao verfasserin aut Cloud detection of GF‐7 satellite laser footprint image 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In November 2019, the GaoFen‐7(GF‐7) satellite was equipped with China's first laser altimeter with full waveform recording capability, which obtains high‐precision long‐range three‐dimensional coordinates. The influence of clouds is noticeable for laser transmission, and a footprint camera is used to determine laser pointing and to image the ground. However, the cloud inevitably appears in the laser footprint image. In this study, the authors propose a cloud detection scheme for footprint images based on deep learning. First, an adaptive pooling model is proposed according to the characteristics of the cloud region. Next, model fusion was performed based on the SegNet and U‐Net training results. Finally, test time augmentation was used to enhance the data and to improve cloud detection accuracy. The experimental results show that the fusion result of the model was approximately 5% better than that of the traditional cloud detection algorithm, which improved the shortcomings of the traditional algorithm, such as poor detection effect for thin clouds and complex underlying cloud surfaces. The related conclusions have certain reference significance for GF‐7 data processing and related research on footprint images. Cloud physics Data and information; acquisition, processing, storage and dissemination in geophysics Instrumentation and techniques for geophysical, hydrospheric and lower atmosphere research Optical, image and video signal processing Atmospheric, ionospheric and magnetospheric techniques and equipment Computer vision and image processing techniques Photography Computer software Xinming Tang verfasserin aut Guoyuan Li verfasserin aut Jinquan Guo verfasserin aut Jiyi Chen verfasserin aut Xiongdan Yang verfasserin aut Bo Ai verfasserin aut In IET Image Processing Wiley, 2021 15(2021), 10, Seite 2127-2134 (DE-627)527265993 (DE-600)2278776-8 17519667 nnns volume:15 year:2021 number:10 pages:2127-2134 https://doi.org/10.1049/ipr2.12141 kostenfrei https://doaj.org/article/9aad73434ded4d1ab187d1e1bb0077a1 kostenfrei https://doi.org/10.1049/ipr2.12141 kostenfrei https://doaj.org/toc/1751-9659 Journal toc kostenfrei https://doaj.org/toc/1751-9667 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 15 2021 10 2127-2134 |
spelling |
10.1049/ipr2.12141 doi (DE-627)DOAJ084421401 (DE-599)DOAJ9aad73434ded4d1ab187d1e1bb0077a1 DE-627 ger DE-627 rakwb eng TR1-1050 QA76.75-76.765 Jiaqi Yao verfasserin aut Cloud detection of GF‐7 satellite laser footprint image 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In November 2019, the GaoFen‐7(GF‐7) satellite was equipped with China's first laser altimeter with full waveform recording capability, which obtains high‐precision long‐range three‐dimensional coordinates. The influence of clouds is noticeable for laser transmission, and a footprint camera is used to determine laser pointing and to image the ground. However, the cloud inevitably appears in the laser footprint image. In this study, the authors propose a cloud detection scheme for footprint images based on deep learning. First, an adaptive pooling model is proposed according to the characteristics of the cloud region. Next, model fusion was performed based on the SegNet and U‐Net training results. Finally, test time augmentation was used to enhance the data and to improve cloud detection accuracy. The experimental results show that the fusion result of the model was approximately 5% better than that of the traditional cloud detection algorithm, which improved the shortcomings of the traditional algorithm, such as poor detection effect for thin clouds and complex underlying cloud surfaces. The related conclusions have certain reference significance for GF‐7 data processing and related research on footprint images. Cloud physics Data and information; acquisition, processing, storage and dissemination in geophysics Instrumentation and techniques for geophysical, hydrospheric and lower atmosphere research Optical, image and video signal processing Atmospheric, ionospheric and magnetospheric techniques and equipment Computer vision and image processing techniques Photography Computer software Xinming Tang verfasserin aut Guoyuan Li verfasserin aut Jinquan Guo verfasserin aut Jiyi Chen verfasserin aut Xiongdan Yang verfasserin aut Bo Ai verfasserin aut In IET Image Processing Wiley, 2021 15(2021), 10, Seite 2127-2134 (DE-627)527265993 (DE-600)2278776-8 17519667 nnns volume:15 year:2021 number:10 pages:2127-2134 https://doi.org/10.1049/ipr2.12141 kostenfrei https://doaj.org/article/9aad73434ded4d1ab187d1e1bb0077a1 kostenfrei https://doi.org/10.1049/ipr2.12141 kostenfrei https://doaj.org/toc/1751-9659 Journal toc kostenfrei https://doaj.org/toc/1751-9667 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 15 2021 10 2127-2134 |
allfields_unstemmed |
10.1049/ipr2.12141 doi (DE-627)DOAJ084421401 (DE-599)DOAJ9aad73434ded4d1ab187d1e1bb0077a1 DE-627 ger DE-627 rakwb eng TR1-1050 QA76.75-76.765 Jiaqi Yao verfasserin aut Cloud detection of GF‐7 satellite laser footprint image 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In November 2019, the GaoFen‐7(GF‐7) satellite was equipped with China's first laser altimeter with full waveform recording capability, which obtains high‐precision long‐range three‐dimensional coordinates. The influence of clouds is noticeable for laser transmission, and a footprint camera is used to determine laser pointing and to image the ground. However, the cloud inevitably appears in the laser footprint image. In this study, the authors propose a cloud detection scheme for footprint images based on deep learning. First, an adaptive pooling model is proposed according to the characteristics of the cloud region. Next, model fusion was performed based on the SegNet and U‐Net training results. Finally, test time augmentation was used to enhance the data and to improve cloud detection accuracy. The experimental results show that the fusion result of the model was approximately 5% better than that of the traditional cloud detection algorithm, which improved the shortcomings of the traditional algorithm, such as poor detection effect for thin clouds and complex underlying cloud surfaces. The related conclusions have certain reference significance for GF‐7 data processing and related research on footprint images. Cloud physics Data and information; acquisition, processing, storage and dissemination in geophysics Instrumentation and techniques for geophysical, hydrospheric and lower atmosphere research Optical, image and video signal processing Atmospheric, ionospheric and magnetospheric techniques and equipment Computer vision and image processing techniques Photography Computer software Xinming Tang verfasserin aut Guoyuan Li verfasserin aut Jinquan Guo verfasserin aut Jiyi Chen verfasserin aut Xiongdan Yang verfasserin aut Bo Ai verfasserin aut In IET Image Processing Wiley, 2021 15(2021), 10, Seite 2127-2134 (DE-627)527265993 (DE-600)2278776-8 17519667 nnns volume:15 year:2021 number:10 pages:2127-2134 https://doi.org/10.1049/ipr2.12141 kostenfrei https://doaj.org/article/9aad73434ded4d1ab187d1e1bb0077a1 kostenfrei https://doi.org/10.1049/ipr2.12141 kostenfrei https://doaj.org/toc/1751-9659 Journal toc kostenfrei https://doaj.org/toc/1751-9667 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 15 2021 10 2127-2134 |
allfieldsGer |
10.1049/ipr2.12141 doi (DE-627)DOAJ084421401 (DE-599)DOAJ9aad73434ded4d1ab187d1e1bb0077a1 DE-627 ger DE-627 rakwb eng TR1-1050 QA76.75-76.765 Jiaqi Yao verfasserin aut Cloud detection of GF‐7 satellite laser footprint image 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In November 2019, the GaoFen‐7(GF‐7) satellite was equipped with China's first laser altimeter with full waveform recording capability, which obtains high‐precision long‐range three‐dimensional coordinates. The influence of clouds is noticeable for laser transmission, and a footprint camera is used to determine laser pointing and to image the ground. However, the cloud inevitably appears in the laser footprint image. In this study, the authors propose a cloud detection scheme for footprint images based on deep learning. First, an adaptive pooling model is proposed according to the characteristics of the cloud region. Next, model fusion was performed based on the SegNet and U‐Net training results. Finally, test time augmentation was used to enhance the data and to improve cloud detection accuracy. The experimental results show that the fusion result of the model was approximately 5% better than that of the traditional cloud detection algorithm, which improved the shortcomings of the traditional algorithm, such as poor detection effect for thin clouds and complex underlying cloud surfaces. The related conclusions have certain reference significance for GF‐7 data processing and related research on footprint images. Cloud physics Data and information; acquisition, processing, storage and dissemination in geophysics Instrumentation and techniques for geophysical, hydrospheric and lower atmosphere research Optical, image and video signal processing Atmospheric, ionospheric and magnetospheric techniques and equipment Computer vision and image processing techniques Photography Computer software Xinming Tang verfasserin aut Guoyuan Li verfasserin aut Jinquan Guo verfasserin aut Jiyi Chen verfasserin aut Xiongdan Yang verfasserin aut Bo Ai verfasserin aut In IET Image Processing Wiley, 2021 15(2021), 10, Seite 2127-2134 (DE-627)527265993 (DE-600)2278776-8 17519667 nnns volume:15 year:2021 number:10 pages:2127-2134 https://doi.org/10.1049/ipr2.12141 kostenfrei https://doaj.org/article/9aad73434ded4d1ab187d1e1bb0077a1 kostenfrei https://doi.org/10.1049/ipr2.12141 kostenfrei https://doaj.org/toc/1751-9659 Journal toc kostenfrei https://doaj.org/toc/1751-9667 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 15 2021 10 2127-2134 |
allfieldsSound |
10.1049/ipr2.12141 doi (DE-627)DOAJ084421401 (DE-599)DOAJ9aad73434ded4d1ab187d1e1bb0077a1 DE-627 ger DE-627 rakwb eng TR1-1050 QA76.75-76.765 Jiaqi Yao verfasserin aut Cloud detection of GF‐7 satellite laser footprint image 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In November 2019, the GaoFen‐7(GF‐7) satellite was equipped with China's first laser altimeter with full waveform recording capability, which obtains high‐precision long‐range three‐dimensional coordinates. The influence of clouds is noticeable for laser transmission, and a footprint camera is used to determine laser pointing and to image the ground. However, the cloud inevitably appears in the laser footprint image. In this study, the authors propose a cloud detection scheme for footprint images based on deep learning. First, an adaptive pooling model is proposed according to the characteristics of the cloud region. Next, model fusion was performed based on the SegNet and U‐Net training results. Finally, test time augmentation was used to enhance the data and to improve cloud detection accuracy. The experimental results show that the fusion result of the model was approximately 5% better than that of the traditional cloud detection algorithm, which improved the shortcomings of the traditional algorithm, such as poor detection effect for thin clouds and complex underlying cloud surfaces. The related conclusions have certain reference significance for GF‐7 data processing and related research on footprint images. Cloud physics Data and information; acquisition, processing, storage and dissemination in geophysics Instrumentation and techniques for geophysical, hydrospheric and lower atmosphere research Optical, image and video signal processing Atmospheric, ionospheric and magnetospheric techniques and equipment Computer vision and image processing techniques Photography Computer software Xinming Tang verfasserin aut Guoyuan Li verfasserin aut Jinquan Guo verfasserin aut Jiyi Chen verfasserin aut Xiongdan Yang verfasserin aut Bo Ai verfasserin aut In IET Image Processing Wiley, 2021 15(2021), 10, Seite 2127-2134 (DE-627)527265993 (DE-600)2278776-8 17519667 nnns volume:15 year:2021 number:10 pages:2127-2134 https://doi.org/10.1049/ipr2.12141 kostenfrei https://doaj.org/article/9aad73434ded4d1ab187d1e1bb0077a1 kostenfrei https://doi.org/10.1049/ipr2.12141 kostenfrei https://doaj.org/toc/1751-9659 Journal toc kostenfrei https://doaj.org/toc/1751-9667 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 AR 15 2021 10 2127-2134 |
language |
English |
source |
In IET Image Processing 15(2021), 10, Seite 2127-2134 volume:15 year:2021 number:10 pages:2127-2134 |
sourceStr |
In IET Image Processing 15(2021), 10, Seite 2127-2134 volume:15 year:2021 number:10 pages:2127-2134 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Cloud physics Data and information; acquisition, processing, storage and dissemination in geophysics Instrumentation and techniques for geophysical, hydrospheric and lower atmosphere research Optical, image and video signal processing Atmospheric, ionospheric and magnetospheric techniques and equipment Computer vision and image processing techniques Photography Computer software |
isfreeaccess_bool |
true |
container_title |
IET Image Processing |
authorswithroles_txt_mv |
Jiaqi Yao @@aut@@ Xinming Tang @@aut@@ Guoyuan Li @@aut@@ Jinquan Guo @@aut@@ Jiyi Chen @@aut@@ Xiongdan Yang @@aut@@ Bo Ai @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
527265993 |
id |
DOAJ084421401 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ084421401</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311025939.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1049/ipr2.12141</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ084421401</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9aad73434ded4d1ab187d1e1bb0077a1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TR1-1050</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.75-76.765</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jiaqi Yao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cloud detection of GF‐7 satellite laser footprint image</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In November 2019, the GaoFen‐7(GF‐7) satellite was equipped with China's first laser altimeter with full waveform recording capability, which obtains high‐precision long‐range three‐dimensional coordinates. The influence of clouds is noticeable for laser transmission, and a footprint camera is used to determine laser pointing and to image the ground. However, the cloud inevitably appears in the laser footprint image. In this study, the authors propose a cloud detection scheme for footprint images based on deep learning. First, an adaptive pooling model is proposed according to the characteristics of the cloud region. Next, model fusion was performed based on the SegNet and U‐Net training results. Finally, test time augmentation was used to enhance the data and to improve cloud detection accuracy. The experimental results show that the fusion result of the model was approximately 5% better than that of the traditional cloud detection algorithm, which improved the shortcomings of the traditional algorithm, such as poor detection effect for thin clouds and complex underlying cloud surfaces. The related conclusions have certain reference significance for GF‐7 data processing and related research on footprint images.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cloud physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data and information; acquisition, processing, storage and dissemination in geophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Instrumentation and techniques for geophysical, hydrospheric and lower atmosphere research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical, image and video signal processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atmospheric, ionospheric and magnetospheric techniques and equipment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer vision and image processing techniques</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Photography</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer software</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xinming Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guoyuan Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinquan Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiyi Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiongdan Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bo Ai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IET Image Processing</subfield><subfield code="d">Wiley, 2021</subfield><subfield code="g">15(2021), 10, Seite 2127-2134</subfield><subfield code="w">(DE-627)527265993</subfield><subfield code="w">(DE-600)2278776-8</subfield><subfield code="x">17519667</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:10</subfield><subfield code="g">pages:2127-2134</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1049/ipr2.12141</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9aad73434ded4d1ab187d1e1bb0077a1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1049/ipr2.12141</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1751-9659</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1751-9667</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2021</subfield><subfield code="e">10</subfield><subfield code="h">2127-2134</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Jiaqi Yao |
spellingShingle |
Jiaqi Yao misc TR1-1050 misc QA76.75-76.765 misc Cloud physics misc Data and information; acquisition, processing, storage and dissemination in geophysics misc Instrumentation and techniques for geophysical, hydrospheric and lower atmosphere research misc Optical, image and video signal processing misc Atmospheric, ionospheric and magnetospheric techniques and equipment misc Computer vision and image processing techniques misc Photography misc Computer software Cloud detection of GF‐7 satellite laser footprint image |
authorStr |
Jiaqi Yao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)527265993 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TR1-1050 |
illustrated |
Not Illustrated |
issn |
17519667 |
topic_title |
TR1-1050 QA76.75-76.765 Cloud detection of GF‐7 satellite laser footprint image Cloud physics Data and information; acquisition, processing, storage and dissemination in geophysics Instrumentation and techniques for geophysical, hydrospheric and lower atmosphere research Optical, image and video signal processing Atmospheric, ionospheric and magnetospheric techniques and equipment Computer vision and image processing techniques |
topic |
misc TR1-1050 misc QA76.75-76.765 misc Cloud physics misc Data and information; acquisition, processing, storage and dissemination in geophysics misc Instrumentation and techniques for geophysical, hydrospheric and lower atmosphere research misc Optical, image and video signal processing misc Atmospheric, ionospheric and magnetospheric techniques and equipment misc Computer vision and image processing techniques misc Photography misc Computer software |
topic_unstemmed |
misc TR1-1050 misc QA76.75-76.765 misc Cloud physics misc Data and information; acquisition, processing, storage and dissemination in geophysics misc Instrumentation and techniques for geophysical, hydrospheric and lower atmosphere research misc Optical, image and video signal processing misc Atmospheric, ionospheric and magnetospheric techniques and equipment misc Computer vision and image processing techniques misc Photography misc Computer software |
topic_browse |
misc TR1-1050 misc QA76.75-76.765 misc Cloud physics misc Data and information; acquisition, processing, storage and dissemination in geophysics misc Instrumentation and techniques for geophysical, hydrospheric and lower atmosphere research misc Optical, image and video signal processing misc Atmospheric, ionospheric and magnetospheric techniques and equipment misc Computer vision and image processing techniques misc Photography misc Computer software |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
IET Image Processing |
hierarchy_parent_id |
527265993 |
hierarchy_top_title |
IET Image Processing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)527265993 (DE-600)2278776-8 |
title |
Cloud detection of GF‐7 satellite laser footprint image |
ctrlnum |
(DE-627)DOAJ084421401 (DE-599)DOAJ9aad73434ded4d1ab187d1e1bb0077a1 |
title_full |
Cloud detection of GF‐7 satellite laser footprint image |
author_sort |
Jiaqi Yao |
journal |
IET Image Processing |
journalStr |
IET Image Processing |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
2127 |
author_browse |
Jiaqi Yao Xinming Tang Guoyuan Li Jinquan Guo Jiyi Chen Xiongdan Yang Bo Ai |
container_volume |
15 |
class |
TR1-1050 QA76.75-76.765 |
format_se |
Elektronische Aufsätze |
author-letter |
Jiaqi Yao |
doi_str_mv |
10.1049/ipr2.12141 |
author2-role |
verfasserin |
title_sort |
cloud detection of gf‐7 satellite laser footprint image |
callnumber |
TR1-1050 |
title_auth |
Cloud detection of GF‐7 satellite laser footprint image |
abstract |
Abstract In November 2019, the GaoFen‐7(GF‐7) satellite was equipped with China's first laser altimeter with full waveform recording capability, which obtains high‐precision long‐range three‐dimensional coordinates. The influence of clouds is noticeable for laser transmission, and a footprint camera is used to determine laser pointing and to image the ground. However, the cloud inevitably appears in the laser footprint image. In this study, the authors propose a cloud detection scheme for footprint images based on deep learning. First, an adaptive pooling model is proposed according to the characteristics of the cloud region. Next, model fusion was performed based on the SegNet and U‐Net training results. Finally, test time augmentation was used to enhance the data and to improve cloud detection accuracy. The experimental results show that the fusion result of the model was approximately 5% better than that of the traditional cloud detection algorithm, which improved the shortcomings of the traditional algorithm, such as poor detection effect for thin clouds and complex underlying cloud surfaces. The related conclusions have certain reference significance for GF‐7 data processing and related research on footprint images. |
abstractGer |
Abstract In November 2019, the GaoFen‐7(GF‐7) satellite was equipped with China's first laser altimeter with full waveform recording capability, which obtains high‐precision long‐range three‐dimensional coordinates. The influence of clouds is noticeable for laser transmission, and a footprint camera is used to determine laser pointing and to image the ground. However, the cloud inevitably appears in the laser footprint image. In this study, the authors propose a cloud detection scheme for footprint images based on deep learning. First, an adaptive pooling model is proposed according to the characteristics of the cloud region. Next, model fusion was performed based on the SegNet and U‐Net training results. Finally, test time augmentation was used to enhance the data and to improve cloud detection accuracy. The experimental results show that the fusion result of the model was approximately 5% better than that of the traditional cloud detection algorithm, which improved the shortcomings of the traditional algorithm, such as poor detection effect for thin clouds and complex underlying cloud surfaces. The related conclusions have certain reference significance for GF‐7 data processing and related research on footprint images. |
abstract_unstemmed |
Abstract In November 2019, the GaoFen‐7(GF‐7) satellite was equipped with China's first laser altimeter with full waveform recording capability, which obtains high‐precision long‐range three‐dimensional coordinates. The influence of clouds is noticeable for laser transmission, and a footprint camera is used to determine laser pointing and to image the ground. However, the cloud inevitably appears in the laser footprint image. In this study, the authors propose a cloud detection scheme for footprint images based on deep learning. First, an adaptive pooling model is proposed according to the characteristics of the cloud region. Next, model fusion was performed based on the SegNet and U‐Net training results. Finally, test time augmentation was used to enhance the data and to improve cloud detection accuracy. The experimental results show that the fusion result of the model was approximately 5% better than that of the traditional cloud detection algorithm, which improved the shortcomings of the traditional algorithm, such as poor detection effect for thin clouds and complex underlying cloud surfaces. The related conclusions have certain reference significance for GF‐7 data processing and related research on footprint images. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
10 |
title_short |
Cloud detection of GF‐7 satellite laser footprint image |
url |
https://doi.org/10.1049/ipr2.12141 https://doaj.org/article/9aad73434ded4d1ab187d1e1bb0077a1 https://doaj.org/toc/1751-9659 https://doaj.org/toc/1751-9667 |
remote_bool |
true |
author2 |
Xinming Tang Guoyuan Li Jinquan Guo Jiyi Chen Xiongdan Yang Bo Ai |
author2Str |
Xinming Tang Guoyuan Li Jinquan Guo Jiyi Chen Xiongdan Yang Bo Ai |
ppnlink |
527265993 |
callnumber-subject |
TR - Photography |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1049/ipr2.12141 |
callnumber-a |
TR1-1050 |
up_date |
2024-07-03T22:55:17.131Z |
_version_ |
1803600335616344064 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ084421401</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311025939.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1049/ipr2.12141</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ084421401</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9aad73434ded4d1ab187d1e1bb0077a1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TR1-1050</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.75-76.765</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jiaqi Yao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cloud detection of GF‐7 satellite laser footprint image</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In November 2019, the GaoFen‐7(GF‐7) satellite was equipped with China's first laser altimeter with full waveform recording capability, which obtains high‐precision long‐range three‐dimensional coordinates. The influence of clouds is noticeable for laser transmission, and a footprint camera is used to determine laser pointing and to image the ground. However, the cloud inevitably appears in the laser footprint image. In this study, the authors propose a cloud detection scheme for footprint images based on deep learning. First, an adaptive pooling model is proposed according to the characteristics of the cloud region. Next, model fusion was performed based on the SegNet and U‐Net training results. Finally, test time augmentation was used to enhance the data and to improve cloud detection accuracy. The experimental results show that the fusion result of the model was approximately 5% better than that of the traditional cloud detection algorithm, which improved the shortcomings of the traditional algorithm, such as poor detection effect for thin clouds and complex underlying cloud surfaces. The related conclusions have certain reference significance for GF‐7 data processing and related research on footprint images.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cloud physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data and information; acquisition, processing, storage and dissemination in geophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Instrumentation and techniques for geophysical, hydrospheric and lower atmosphere research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical, image and video signal processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atmospheric, ionospheric and magnetospheric techniques and equipment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer vision and image processing techniques</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Photography</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer software</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xinming Tang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guoyuan Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jinquan Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jiyi Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiongdan Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Bo Ai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">IET Image Processing</subfield><subfield code="d">Wiley, 2021</subfield><subfield code="g">15(2021), 10, Seite 2127-2134</subfield><subfield code="w">(DE-627)527265993</subfield><subfield code="w">(DE-600)2278776-8</subfield><subfield code="x">17519667</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:10</subfield><subfield code="g">pages:2127-2134</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1049/ipr2.12141</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9aad73434ded4d1ab187d1e1bb0077a1</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1049/ipr2.12141</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1751-9659</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1751-9667</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2021</subfield><subfield code="e">10</subfield><subfield code="h">2127-2134</subfield></datafield></record></collection>
|
score |
7.401045 |