Gasification of lignite from Polish coal mine to hydrogen-rich gas
Abstract The efforts of the world research activities involved in clean coal technologies development focus to a considerable extent on integrated hydrogen and power generation technologies based on coal gasification. As an alternative to combustion processes, gasification offers increased efficienc...
Ausführliche Beschreibung
Autor*in: |
Adam Smolinski [verfasserIn] Sławomir Wochna [verfasserIn] Natalia Howaniec [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: International Journal of Coal Science & Technology - SpringerOpen, 2017, 9(2022), 1, Seite 10 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2022 ; number:1 ; pages:10 |
Links: |
Link aufrufen |
---|
DOI / URN: |
10.1007/s40789-022-00550-9 |
---|
Katalog-ID: |
DOAJ084455497 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ084455497 | ||
003 | DE-627 | ||
005 | 20230311030117.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230311s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40789-022-00550-9 |2 doi | |
035 | |a (DE-627)DOAJ084455497 | ||
035 | |a (DE-599)DOAJ9cce8ab748ed4faca5c1cc5576ffcb18 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TN1-997 | |
100 | 0 | |a Adam Smolinski |e verfasserin |4 aut | |
245 | 1 | 0 | |a Gasification of lignite from Polish coal mine to hydrogen-rich gas |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract The efforts of the world research activities involved in clean coal technologies development focus to a considerable extent on integrated hydrogen and power generation technologies based on coal gasification. As an alternative to combustion processes, gasification offers increased efficiency, lower negative environmental impact as well as wider application range of the main product—synthesis gas—in power generation and chemical syntheses. In order to select the most optimal lignite for the purpose of gasification, it is necessary to determine coal reactivity, the key parameter characterizing how fast the fuel reacts with the gasifying medium and controlling its process ability in thermochemical conversion to energy and/or energy carriers. This paper presents the experimental results of oxygen/steam gasification of lignite coal char in a fixed bed reactor under atmospheric pressure and at the temperature of 700, 800 and 900 °C; the samples come from an open pit lignite mine in the southwest of Poland. The effectiveness of the gasification process was tested in terms of the total gas and hydrogen yields, gas composition, carbon conversion rate and chars reactivity. | ||
650 | 4 | |a Coal gasification | |
650 | 4 | |a Hydrogen | |
650 | 4 | |a Syngas | |
650 | 4 | |a Clean coal technologies | |
653 | 0 | |a Mining engineering. Metallurgy | |
700 | 0 | |a Sławomir Wochna |e verfasserin |4 aut | |
700 | 0 | |a Natalia Howaniec |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t International Journal of Coal Science & Technology |d SpringerOpen, 2017 |g 9(2022), 1, Seite 10 |w (DE-627)815914261 |w (DE-600)2806625-X |x 21987823 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2022 |g number:1 |g pages:10 |
856 | 4 | 0 | |u https://doi.org/10.1007/s40789-022-00550-9 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/9cce8ab748ed4faca5c1cc5576ffcb18 |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1007/s40789-022-00550-9 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2095-8293 |y Journal toc |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/2198-7823 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2022 |e 1 |h 10 |
author_variant |
a s as s w sw n h nh |
---|---|
matchkey_str |
article:21987823:2022----::aiiainfintfoplscamnth |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
TN |
publishDate |
2022 |
allfields |
10.1007/s40789-022-00550-9 doi (DE-627)DOAJ084455497 (DE-599)DOAJ9cce8ab748ed4faca5c1cc5576ffcb18 DE-627 ger DE-627 rakwb eng TN1-997 Adam Smolinski verfasserin aut Gasification of lignite from Polish coal mine to hydrogen-rich gas 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The efforts of the world research activities involved in clean coal technologies development focus to a considerable extent on integrated hydrogen and power generation technologies based on coal gasification. As an alternative to combustion processes, gasification offers increased efficiency, lower negative environmental impact as well as wider application range of the main product—synthesis gas—in power generation and chemical syntheses. In order to select the most optimal lignite for the purpose of gasification, it is necessary to determine coal reactivity, the key parameter characterizing how fast the fuel reacts with the gasifying medium and controlling its process ability in thermochemical conversion to energy and/or energy carriers. This paper presents the experimental results of oxygen/steam gasification of lignite coal char in a fixed bed reactor under atmospheric pressure and at the temperature of 700, 800 and 900 °C; the samples come from an open pit lignite mine in the southwest of Poland. The effectiveness of the gasification process was tested in terms of the total gas and hydrogen yields, gas composition, carbon conversion rate and chars reactivity. Coal gasification Hydrogen Syngas Clean coal technologies Mining engineering. Metallurgy Sławomir Wochna verfasserin aut Natalia Howaniec verfasserin aut In International Journal of Coal Science & Technology SpringerOpen, 2017 9(2022), 1, Seite 10 (DE-627)815914261 (DE-600)2806625-X 21987823 nnns volume:9 year:2022 number:1 pages:10 https://doi.org/10.1007/s40789-022-00550-9 kostenfrei https://doaj.org/article/9cce8ab748ed4faca5c1cc5576ffcb18 kostenfrei https://doi.org/10.1007/s40789-022-00550-9 kostenfrei https://doaj.org/toc/2095-8293 Journal toc kostenfrei https://doaj.org/toc/2198-7823 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 1 10 |
spelling |
10.1007/s40789-022-00550-9 doi (DE-627)DOAJ084455497 (DE-599)DOAJ9cce8ab748ed4faca5c1cc5576ffcb18 DE-627 ger DE-627 rakwb eng TN1-997 Adam Smolinski verfasserin aut Gasification of lignite from Polish coal mine to hydrogen-rich gas 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The efforts of the world research activities involved in clean coal technologies development focus to a considerable extent on integrated hydrogen and power generation technologies based on coal gasification. As an alternative to combustion processes, gasification offers increased efficiency, lower negative environmental impact as well as wider application range of the main product—synthesis gas—in power generation and chemical syntheses. In order to select the most optimal lignite for the purpose of gasification, it is necessary to determine coal reactivity, the key parameter characterizing how fast the fuel reacts with the gasifying medium and controlling its process ability in thermochemical conversion to energy and/or energy carriers. This paper presents the experimental results of oxygen/steam gasification of lignite coal char in a fixed bed reactor under atmospheric pressure and at the temperature of 700, 800 and 900 °C; the samples come from an open pit lignite mine in the southwest of Poland. The effectiveness of the gasification process was tested in terms of the total gas and hydrogen yields, gas composition, carbon conversion rate and chars reactivity. Coal gasification Hydrogen Syngas Clean coal technologies Mining engineering. Metallurgy Sławomir Wochna verfasserin aut Natalia Howaniec verfasserin aut In International Journal of Coal Science & Technology SpringerOpen, 2017 9(2022), 1, Seite 10 (DE-627)815914261 (DE-600)2806625-X 21987823 nnns volume:9 year:2022 number:1 pages:10 https://doi.org/10.1007/s40789-022-00550-9 kostenfrei https://doaj.org/article/9cce8ab748ed4faca5c1cc5576ffcb18 kostenfrei https://doi.org/10.1007/s40789-022-00550-9 kostenfrei https://doaj.org/toc/2095-8293 Journal toc kostenfrei https://doaj.org/toc/2198-7823 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 1 10 |
allfields_unstemmed |
10.1007/s40789-022-00550-9 doi (DE-627)DOAJ084455497 (DE-599)DOAJ9cce8ab748ed4faca5c1cc5576ffcb18 DE-627 ger DE-627 rakwb eng TN1-997 Adam Smolinski verfasserin aut Gasification of lignite from Polish coal mine to hydrogen-rich gas 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The efforts of the world research activities involved in clean coal technologies development focus to a considerable extent on integrated hydrogen and power generation technologies based on coal gasification. As an alternative to combustion processes, gasification offers increased efficiency, lower negative environmental impact as well as wider application range of the main product—synthesis gas—in power generation and chemical syntheses. In order to select the most optimal lignite for the purpose of gasification, it is necessary to determine coal reactivity, the key parameter characterizing how fast the fuel reacts with the gasifying medium and controlling its process ability in thermochemical conversion to energy and/or energy carriers. This paper presents the experimental results of oxygen/steam gasification of lignite coal char in a fixed bed reactor under atmospheric pressure and at the temperature of 700, 800 and 900 °C; the samples come from an open pit lignite mine in the southwest of Poland. The effectiveness of the gasification process was tested in terms of the total gas and hydrogen yields, gas composition, carbon conversion rate and chars reactivity. Coal gasification Hydrogen Syngas Clean coal technologies Mining engineering. Metallurgy Sławomir Wochna verfasserin aut Natalia Howaniec verfasserin aut In International Journal of Coal Science & Technology SpringerOpen, 2017 9(2022), 1, Seite 10 (DE-627)815914261 (DE-600)2806625-X 21987823 nnns volume:9 year:2022 number:1 pages:10 https://doi.org/10.1007/s40789-022-00550-9 kostenfrei https://doaj.org/article/9cce8ab748ed4faca5c1cc5576ffcb18 kostenfrei https://doi.org/10.1007/s40789-022-00550-9 kostenfrei https://doaj.org/toc/2095-8293 Journal toc kostenfrei https://doaj.org/toc/2198-7823 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 1 10 |
allfieldsGer |
10.1007/s40789-022-00550-9 doi (DE-627)DOAJ084455497 (DE-599)DOAJ9cce8ab748ed4faca5c1cc5576ffcb18 DE-627 ger DE-627 rakwb eng TN1-997 Adam Smolinski verfasserin aut Gasification of lignite from Polish coal mine to hydrogen-rich gas 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The efforts of the world research activities involved in clean coal technologies development focus to a considerable extent on integrated hydrogen and power generation technologies based on coal gasification. As an alternative to combustion processes, gasification offers increased efficiency, lower negative environmental impact as well as wider application range of the main product—synthesis gas—in power generation and chemical syntheses. In order to select the most optimal lignite for the purpose of gasification, it is necessary to determine coal reactivity, the key parameter characterizing how fast the fuel reacts with the gasifying medium and controlling its process ability in thermochemical conversion to energy and/or energy carriers. This paper presents the experimental results of oxygen/steam gasification of lignite coal char in a fixed bed reactor under atmospheric pressure and at the temperature of 700, 800 and 900 °C; the samples come from an open pit lignite mine in the southwest of Poland. The effectiveness of the gasification process was tested in terms of the total gas and hydrogen yields, gas composition, carbon conversion rate and chars reactivity. Coal gasification Hydrogen Syngas Clean coal technologies Mining engineering. Metallurgy Sławomir Wochna verfasserin aut Natalia Howaniec verfasserin aut In International Journal of Coal Science & Technology SpringerOpen, 2017 9(2022), 1, Seite 10 (DE-627)815914261 (DE-600)2806625-X 21987823 nnns volume:9 year:2022 number:1 pages:10 https://doi.org/10.1007/s40789-022-00550-9 kostenfrei https://doaj.org/article/9cce8ab748ed4faca5c1cc5576ffcb18 kostenfrei https://doi.org/10.1007/s40789-022-00550-9 kostenfrei https://doaj.org/toc/2095-8293 Journal toc kostenfrei https://doaj.org/toc/2198-7823 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 1 10 |
allfieldsSound |
10.1007/s40789-022-00550-9 doi (DE-627)DOAJ084455497 (DE-599)DOAJ9cce8ab748ed4faca5c1cc5576ffcb18 DE-627 ger DE-627 rakwb eng TN1-997 Adam Smolinski verfasserin aut Gasification of lignite from Polish coal mine to hydrogen-rich gas 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The efforts of the world research activities involved in clean coal technologies development focus to a considerable extent on integrated hydrogen and power generation technologies based on coal gasification. As an alternative to combustion processes, gasification offers increased efficiency, lower negative environmental impact as well as wider application range of the main product—synthesis gas—in power generation and chemical syntheses. In order to select the most optimal lignite for the purpose of gasification, it is necessary to determine coal reactivity, the key parameter characterizing how fast the fuel reacts with the gasifying medium and controlling its process ability in thermochemical conversion to energy and/or energy carriers. This paper presents the experimental results of oxygen/steam gasification of lignite coal char in a fixed bed reactor under atmospheric pressure and at the temperature of 700, 800 and 900 °C; the samples come from an open pit lignite mine in the southwest of Poland. The effectiveness of the gasification process was tested in terms of the total gas and hydrogen yields, gas composition, carbon conversion rate and chars reactivity. Coal gasification Hydrogen Syngas Clean coal technologies Mining engineering. Metallurgy Sławomir Wochna verfasserin aut Natalia Howaniec verfasserin aut In International Journal of Coal Science & Technology SpringerOpen, 2017 9(2022), 1, Seite 10 (DE-627)815914261 (DE-600)2806625-X 21987823 nnns volume:9 year:2022 number:1 pages:10 https://doi.org/10.1007/s40789-022-00550-9 kostenfrei https://doaj.org/article/9cce8ab748ed4faca5c1cc5576ffcb18 kostenfrei https://doi.org/10.1007/s40789-022-00550-9 kostenfrei https://doaj.org/toc/2095-8293 Journal toc kostenfrei https://doaj.org/toc/2198-7823 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 9 2022 1 10 |
language |
English |
source |
In International Journal of Coal Science & Technology 9(2022), 1, Seite 10 volume:9 year:2022 number:1 pages:10 |
sourceStr |
In International Journal of Coal Science & Technology 9(2022), 1, Seite 10 volume:9 year:2022 number:1 pages:10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Coal gasification Hydrogen Syngas Clean coal technologies Mining engineering. Metallurgy |
isfreeaccess_bool |
true |
container_title |
International Journal of Coal Science & Technology |
authorswithroles_txt_mv |
Adam Smolinski @@aut@@ Sławomir Wochna @@aut@@ Natalia Howaniec @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
815914261 |
id |
DOAJ084455497 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ084455497</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311030117.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40789-022-00550-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ084455497</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9cce8ab748ed4faca5c1cc5576ffcb18</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TN1-997</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Adam Smolinski</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gasification of lignite from Polish coal mine to hydrogen-rich gas</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The efforts of the world research activities involved in clean coal technologies development focus to a considerable extent on integrated hydrogen and power generation technologies based on coal gasification. As an alternative to combustion processes, gasification offers increased efficiency, lower negative environmental impact as well as wider application range of the main product—synthesis gas—in power generation and chemical syntheses. In order to select the most optimal lignite for the purpose of gasification, it is necessary to determine coal reactivity, the key parameter characterizing how fast the fuel reacts with the gasifying medium and controlling its process ability in thermochemical conversion to energy and/or energy carriers. This paper presents the experimental results of oxygen/steam gasification of lignite coal char in a fixed bed reactor under atmospheric pressure and at the temperature of 700, 800 and 900 °C; the samples come from an open pit lignite mine in the southwest of Poland. The effectiveness of the gasification process was tested in terms of the total gas and hydrogen yields, gas composition, carbon conversion rate and chars reactivity.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coal gasification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Syngas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clean coal technologies</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mining engineering. Metallurgy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sławomir Wochna</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Natalia Howaniec</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Coal Science & Technology</subfield><subfield code="d">SpringerOpen, 2017</subfield><subfield code="g">9(2022), 1, Seite 10</subfield><subfield code="w">(DE-627)815914261</subfield><subfield code="w">(DE-600)2806625-X</subfield><subfield code="x">21987823</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/s40789-022-00550-9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9cce8ab748ed4faca5c1cc5576ffcb18</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/s40789-022-00550-9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2095-8293</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2198-7823</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">10</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Adam Smolinski |
spellingShingle |
Adam Smolinski misc TN1-997 misc Coal gasification misc Hydrogen misc Syngas misc Clean coal technologies misc Mining engineering. Metallurgy Gasification of lignite from Polish coal mine to hydrogen-rich gas |
authorStr |
Adam Smolinski |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)815914261 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TN1-997 |
illustrated |
Not Illustrated |
issn |
21987823 |
topic_title |
TN1-997 Gasification of lignite from Polish coal mine to hydrogen-rich gas Coal gasification Hydrogen Syngas Clean coal technologies |
topic |
misc TN1-997 misc Coal gasification misc Hydrogen misc Syngas misc Clean coal technologies misc Mining engineering. Metallurgy |
topic_unstemmed |
misc TN1-997 misc Coal gasification misc Hydrogen misc Syngas misc Clean coal technologies misc Mining engineering. Metallurgy |
topic_browse |
misc TN1-997 misc Coal gasification misc Hydrogen misc Syngas misc Clean coal technologies misc Mining engineering. Metallurgy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International Journal of Coal Science & Technology |
hierarchy_parent_id |
815914261 |
hierarchy_top_title |
International Journal of Coal Science & Technology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)815914261 (DE-600)2806625-X |
title |
Gasification of lignite from Polish coal mine to hydrogen-rich gas |
ctrlnum |
(DE-627)DOAJ084455497 (DE-599)DOAJ9cce8ab748ed4faca5c1cc5576ffcb18 |
title_full |
Gasification of lignite from Polish coal mine to hydrogen-rich gas |
author_sort |
Adam Smolinski |
journal |
International Journal of Coal Science & Technology |
journalStr |
International Journal of Coal Science & Technology |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
10 |
author_browse |
Adam Smolinski Sławomir Wochna Natalia Howaniec |
container_volume |
9 |
class |
TN1-997 |
format_se |
Elektronische Aufsätze |
author-letter |
Adam Smolinski |
doi_str_mv |
10.1007/s40789-022-00550-9 |
author2-role |
verfasserin |
title_sort |
gasification of lignite from polish coal mine to hydrogen-rich gas |
callnumber |
TN1-997 |
title_auth |
Gasification of lignite from Polish coal mine to hydrogen-rich gas |
abstract |
Abstract The efforts of the world research activities involved in clean coal technologies development focus to a considerable extent on integrated hydrogen and power generation technologies based on coal gasification. As an alternative to combustion processes, gasification offers increased efficiency, lower negative environmental impact as well as wider application range of the main product—synthesis gas—in power generation and chemical syntheses. In order to select the most optimal lignite for the purpose of gasification, it is necessary to determine coal reactivity, the key parameter characterizing how fast the fuel reacts with the gasifying medium and controlling its process ability in thermochemical conversion to energy and/or energy carriers. This paper presents the experimental results of oxygen/steam gasification of lignite coal char in a fixed bed reactor under atmospheric pressure and at the temperature of 700, 800 and 900 °C; the samples come from an open pit lignite mine in the southwest of Poland. The effectiveness of the gasification process was tested in terms of the total gas and hydrogen yields, gas composition, carbon conversion rate and chars reactivity. |
abstractGer |
Abstract The efforts of the world research activities involved in clean coal technologies development focus to a considerable extent on integrated hydrogen and power generation technologies based on coal gasification. As an alternative to combustion processes, gasification offers increased efficiency, lower negative environmental impact as well as wider application range of the main product—synthesis gas—in power generation and chemical syntheses. In order to select the most optimal lignite for the purpose of gasification, it is necessary to determine coal reactivity, the key parameter characterizing how fast the fuel reacts with the gasifying medium and controlling its process ability in thermochemical conversion to energy and/or energy carriers. This paper presents the experimental results of oxygen/steam gasification of lignite coal char in a fixed bed reactor under atmospheric pressure and at the temperature of 700, 800 and 900 °C; the samples come from an open pit lignite mine in the southwest of Poland. The effectiveness of the gasification process was tested in terms of the total gas and hydrogen yields, gas composition, carbon conversion rate and chars reactivity. |
abstract_unstemmed |
Abstract The efforts of the world research activities involved in clean coal technologies development focus to a considerable extent on integrated hydrogen and power generation technologies based on coal gasification. As an alternative to combustion processes, gasification offers increased efficiency, lower negative environmental impact as well as wider application range of the main product—synthesis gas—in power generation and chemical syntheses. In order to select the most optimal lignite for the purpose of gasification, it is necessary to determine coal reactivity, the key parameter characterizing how fast the fuel reacts with the gasifying medium and controlling its process ability in thermochemical conversion to energy and/or energy carriers. This paper presents the experimental results of oxygen/steam gasification of lignite coal char in a fixed bed reactor under atmospheric pressure and at the temperature of 700, 800 and 900 °C; the samples come from an open pit lignite mine in the southwest of Poland. The effectiveness of the gasification process was tested in terms of the total gas and hydrogen yields, gas composition, carbon conversion rate and chars reactivity. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Gasification of lignite from Polish coal mine to hydrogen-rich gas |
url |
https://doi.org/10.1007/s40789-022-00550-9 https://doaj.org/article/9cce8ab748ed4faca5c1cc5576ffcb18 https://doaj.org/toc/2095-8293 https://doaj.org/toc/2198-7823 |
remote_bool |
true |
author2 |
Sławomir Wochna Natalia Howaniec |
author2Str |
Sławomir Wochna Natalia Howaniec |
ppnlink |
815914261 |
callnumber-subject |
TN - Mining Engineering and Metallurgy |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40789-022-00550-9 |
callnumber-a |
TN1-997 |
up_date |
2024-07-03T23:06:25.283Z |
_version_ |
1803601036217155584 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ084455497</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230311030117.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230311s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40789-022-00550-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ084455497</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ9cce8ab748ed4faca5c1cc5576ffcb18</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TN1-997</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Adam Smolinski</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gasification of lignite from Polish coal mine to hydrogen-rich gas</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The efforts of the world research activities involved in clean coal technologies development focus to a considerable extent on integrated hydrogen and power generation technologies based on coal gasification. As an alternative to combustion processes, gasification offers increased efficiency, lower negative environmental impact as well as wider application range of the main product—synthesis gas—in power generation and chemical syntheses. In order to select the most optimal lignite for the purpose of gasification, it is necessary to determine coal reactivity, the key parameter characterizing how fast the fuel reacts with the gasifying medium and controlling its process ability in thermochemical conversion to energy and/or energy carriers. This paper presents the experimental results of oxygen/steam gasification of lignite coal char in a fixed bed reactor under atmospheric pressure and at the temperature of 700, 800 and 900 °C; the samples come from an open pit lignite mine in the southwest of Poland. The effectiveness of the gasification process was tested in terms of the total gas and hydrogen yields, gas composition, carbon conversion rate and chars reactivity.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coal gasification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Syngas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clean coal technologies</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mining engineering. Metallurgy</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sławomir Wochna</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Natalia Howaniec</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Coal Science & Technology</subfield><subfield code="d">SpringerOpen, 2017</subfield><subfield code="g">9(2022), 1, Seite 10</subfield><subfield code="w">(DE-627)815914261</subfield><subfield code="w">(DE-600)2806625-X</subfield><subfield code="x">21987823</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/s40789-022-00550-9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/9cce8ab748ed4faca5c1cc5576ffcb18</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/s40789-022-00550-9</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2095-8293</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/2198-7823</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="h">10</subfield></datafield></record></collection>
|
score |
7.403078 |